
326.041 (2015S) – Practical Software Technology
(Praktische Softwaretechnologie)

Searching, Big O Notation, Sorting

Alexander Baumgartner
Alexander.Baumgartner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Linear Search int[] Searching

1 pub l i c s t a t i c i n t s e a r c h (i n t [] a r r ay , i n t searchKey ,
2 i n t f romIdx , i n t t o I d x) {
3 f o r (; f romIdx < t o I d x ; f romIdx++) {
4 i f (a r r a y [f romIdx] == searchKey)
5 re tu rn f r omIdx ;
6 }
7 re tu rn −1;
8 }

Algorithm needs time linear to the size of the array.

Can we do better if the array is sorted?

Yes, we can use binary search.
For large arrays, it is much faster than a linear search.

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Binary Search int[] – Iterative Searching

1 pub l i c s t a t i c i n t b i n a r yS e a r c h (i n t [] a r r ay , i n t searchKey ,
2 i n t f romIdx , i n t t o I d x) {
3 whi le (f romIdx < t o I d x) {
4 i n t mid = (f romIdx + to I d x − 1) / 2 ;
5 i f (a r r a y [mid] == searchKey) re tu rn mid ;
6 e l s e i f (a r r a y [mid] > sea rchKey) t o I d x = mid ;
7 e l s e f r omIdx = mid + 1 ;
8 }
9 re tu rn −1;

10 }

As long as the interval is not empty:
1 Set mid to the middle of the interval.
2 If the value can be found at position mid, then we are done.
3 If the value at position mid is greater, then continue searching in the

lower half interval [fromIdx, mid].
4 If the value at position mid is smaller, then continue searching in the

upper half interval (mid, toIdx].

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Binary Search int[] – Recursive Searching

1 pub l i c s t a t i c i n t b i n a r yS e a r c h (i n t [] a r r ay , i n t searchKey ,
2 i n t f romIdx , i n t t o I d x) {
3 i f (f romIdx >= to I d x) re tu rn −1;
4 i n t mid = (f romIdx + to I d x − 1) / 2 ;
5 i f (a r r a y [mid] == searchKey) re tu rn mid ;
6 i f (a r r a y [mid] > sea rchKey)
7 re tu rn b i n a r yS e a r c h (a r ray , searchKey , f romIdx , mid) ;
8 re tu rn b i n a r yS e a r c h (a r ray , searchKey , mid + 1 , t o I d x) ;
9 }

1 Return −1 if the interval is empty.

2 Set mid to the middle of the interval.

3 If the value can be found at position mid, then we are done.

4 If the value at position mid is greater, then continue searching in the
lower half interval [fromIdx, mid].

5 If the value at position mid is smaller, then continue searching in the
upper half interval (mid, toIdx].

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Logarithmic Complexity Searching

Binary search is a divide and conquer algorithm.

It divides the size by two for each iteration.

It needs only log2(n) recursions, where n is the input size.

Size Recursions Needed

10 4

100 7

1 000 10

10 000 14

100 000 17

1 000 000 20

10 000 000 24

100 000 000 27

1 000 000 000 30

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Express the Efficiency Of Algorithms Big O Notation

Shorthand way to say how efficient a computer algorithm is.

In computer science, this rough measure is called “Big O” notation.

Tells how an algorithms speed is related to the number of items.

For example:
Time T needed to set an item of an array a of length n:

a[i] = value – Does not depend on the length. T is constant.

Time T needed for linear search:

for all x ∈ a if x = value... – Test all elements. T is proportional to n.

Time T needed for binary search:

Divide the size by two for each iteration. T is proportional to log2(n).
Logarithms are related by constants: log2(n) = K log(n), for some K.

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Big O Notation Big O Notation

Notation Name

O(1) constant

O(log(n)) logarithmic

O(n) linear

O(n log(n)) loglinear

O(n2) quadratic

O(n3) cubic

O(nc) polynomial

O(cn) exponential

O(n!) factorial

Constants C and “lower” contribution do not matter. E.g.:

O(C ∗ n) = C ∗O(n) = O(n) (1)

O(2 log(n) + n) < O(3 ∗ n) = O(n) (2)

O(n+ 2n2 + n3) < O(4 ∗ n3) = O(n3) (3)

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Sorting an Array Sorting

Figure: Unsorted team of players

Figure: Sorted team of players

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Bubble Sort Sorting

Compare two items.

If the one on the left is greater, swap them.

Move one position right.

Figure: First step

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Bubble Sort Sorting

Compare two items.

If the one on the left is greater, swap them.

Move one position right.

Figure: Second step

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Bubble Sort Sorting

Compare two items.

If the one on the left is greater, swap them.

Move one position right.

Figure: Third step

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Bubble Sort Sorting

Compare two items.

If the one on the left is greater, swap them.

Move one position right.

Figure: Fourth step

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Bubble Sort Sorting

Compare two items.

If the one on the left is greater, swap them.

Move one position right.

Figure: Bubble sort – One iteration

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Bubble Sort – Java Implementation Sorting

1 i n t [] a r r a y = . . .
2 . . .
3 pub l i c vo id bubb l eSo r t () {
4 f o r (i n t out = a r r a y . l e n g t h − 1 ; out > 1 ; out−−) {
5 f o r (i n t i n = 0 ; i n < out ; i n++) {
6 i f (a r r a y [i n] > a r r a y [i n + 1])
7 swap (in , i n + 1) ;
8 }
9 }

10 }

Items behind position out are always sorted.

Bubble sort runs in O(n2) time.

A nested loop often leads to runtime complexity O(n2).

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Insertion Sort Sorting

Works by partial sorting and a marker.
Items to the left of the marker are partially sorted.
Items to the right of the marker are unsorted.

Figure: Insertion sort – Players to the left are sorted

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Insertion Sort Sorting

Works by partial sorting and a marker.
Items to the left of the marker are partially sorted.
Items to the right of the marker are unsorted.

Figure: Insertion sort – Insert marked player at right position

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Insertion Sort Sorting

Works by partial sorting and a marker.
Items to the left of the marker are partially sorted.
Items to the right of the marker are unsorted.

Figure: Insertion sort – Mark next player and repeat the process
Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Insertion Sort – Java Implementation Sorting

1 i n t [] a r r a y = . . .
2 . . .
3 pub l i c vo id i n s e r t i o n S o r t () {
4 f o r (i n t out = 1 ; out < a r r a y . l e n g t h ; out++) {
5 i n t temp = a r r a y [out] ;
6 i n t i n = out ;
7 f o r (; i n > 0 && a r r a y [in −1] >= temp ; in−−)
8 a r r a y [i n] = a r r a y [in −1] ;
9 a r r a y [i n] = temp ;

10 }
11 }

out starts at 1 and moves right.

temp marks the leftmost unsorted item.

in starts at out and moves left.

Insertion sort still runs in O(n2) time.

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Mergesort Sorting

Is divide and conquer algorithm.

Successively divide the unsorted
array into n partitions.

Until each partition con-
tains 1 element, which
is considered sorted.

Repeatedly merge
partitioned units.

Until there is only
1 sublist remaining
which will be the sorted
list.

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Mergeing Arrays Sorting

The heart of the mergesort algorithm is the merging of two
already-sorted arrays.

Merging requires O(n) time.

Figure: Merging the arrays A and B into C

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Mergeing – Java Implementation Sorting

1 pub l i c s t a t i c i n t [] merge (i n t [] arrayA , i n t [] a r rayB) {
2 i n t [] a r rayC = new i n t [a r rayA . l e n g t h+ar rayB . l e n g t h] ;
3 i n t aDex = 0 , bDex = 0 , cDex = 0 ;
4 whi le (aDex < ar rayA . l e n g t h && bDex < ar rayB . l e n g t h) {
5 i f (a r rayA [aDex] < ar rayB [bDex])
6 a r rayC [cDex++] = arrayA [aDex++];
7 e l s e
8 ar rayC [cDex++] = arrayB [bDex++];
9 }

10 whi le (aDex < ar rayA . l e n g t h)
11 ar rayC [cDex++] = arrayA [aDex++];
12 whi le (bDex < ar rayB . l e n g t h)
13 ar rayC [cDex++] = arrayB [bDex++];
14 re tu rn ar rayC ;
15 }

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Mergesort – Java Implementation Sorting

1 pub l i c vo id mergeSort () {
2 doMergeSort (0 , s i z e − 1) ;
3 }
4
5 p r i v a t e vo id doMergeSort (i n t l e f t , i n t r i g h t) {
6 i f (l e f t < r i g h t) {
7 i n t mid = l e f t + (r i g h t − l e f t) / 2 ;
8 doMergeSort (l e f t , mid) ;
9 doMergeSort (mid + 1 , r i g h t) ;

10 mergeParts (l e f t , mid , r i g h t) ;
11 }
12 }

If left ≥ right, then it is either one or no element.
mid divides the array in two parts.
Recursively sort the left part.
Recursively sort the right part.
Merge the sorted parts.
Mergesort runs in O(n log(n)) time.

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Quicksort – Basic Idea Sorting

Choose an element, called pivot, from the list.

Partition the list so that:

The pivot is in its final place.
All elements to the left of pivot are smaller.
All elements to the right of pivot are larger.

Recursively apply the above steps to the two partitions.

Is also a divide and conquer algorithm.

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Quicksort – Illustration Sorting

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Quicksort – Java Implementation Sorting

1 pub l i c vo id qu i c kSo r t (i n t l e f t , i n t r i g h t) {
2 i f (r i g h t − l e f t > 0) {
3 i n t p a r t i t i o n = p a r t i t i o n I t (l e f t , r i g h t) ;
4 qu i c kSo r t (l e f t , p a r t i t i o n − 1) ;
5 qu i c kSo r t (p a r t i t i o n + 1 , r i g h t) ;
6 }
7 }

Quicksort runs in O(n2) time for the worst case.

Quicksort runs in O(n log(n)) time for the average case.

Quicksort can be faster than Mergesort for the average case.

Different selection strategies for pivot.
Random pivot.
Median-of-3 pivot.

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Exercise

Create a class IntArray which represents a dynamically growing
integer array for storing values of primitive type int without
autoboxing. (Like demonstrated in the lecture.)

Implement a modified version of the insertionSort() method from the
lecture so that it removes duplicates as it sorts.

Searching, Big O Notation, Sorting – Practical Software Technology Alexander.Baumgartner@risc.jku.at

	Searching
	Big O Notation
	Sorting

