N2

326.041 (2015S) — Practical Software Technology

(Praktische Softwaretechnologie)
Searching, Big O Notation, Sorting

Alexander Baumgartner
Alexander.Baumgartner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Linear Search int[]

public static int search(int[] array, int searchKey,
int fromldx, int toldx) {
for (; fromldx < toldx; fromldx++) {
if (array[fromldx] = searchKey)
return fromldx;

}

return —1,

o Algorithm needs time linear to the size of the array.
o Can we do better if the array is sorted?

o Yes, we can use binary search.
o For large arrays, it is much faster than a linear search.

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

. . _ . Z\g
Binary Search int[] — Iterative o
public static int binarySearch(int[] array,int searchKey,

int fromldx, int toldx) {

while (fromldx < toldx) {
int mid = (fromldx + toldx — 1) / 2;
if (array[mid] = searchKey) return mid;
else if (array[mid] > searchKey) toldx = mid;
else fromldx = mid + 1;

}

return —1;

}

As long as the interval is not empty:
@ Set mid to the middle of the interval.
Q If the value can be found at position mid, then we are done.

O If the value at position mid is greater, then continue searching in the
lower half interval [fromIdx, mid.

@ |If the value at position mid is smaller, then continue searching in the
upper half interval (mid, toldx].

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Binary Search int[] — Recursive N

public static int binarySearch(int[] array,hint searchKey,

int fromldx, int toldx) {

if (fromldx >= toldx) return -1,

int mid = (fromldx + toldx — 1) / 2;

if (array[mid] = searchKey) return mid;

if (array[mid] > searchKey)
return binarySearch(array ,h searchKey, fromldx ,hmid);

return binarySearch(array, searchKey, mid + 1,toldx);

© Return —1 if the interval is empty.
Q@ Set mid to the middle of the interval.
© If the value can be found at position mid, then we are done.

© |If the value at position mid is greater, then continue searching in the
lower half interval [fromIdx, mid.

O If the value at position mid is smaller, then continue searching in the
upper half interval (mid, toldzx].

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Logarithmic Complexity

@ Binary search is a divide and conquer algorithm.

o It divides the size by two for each iteration.

A%

@ It needs only log,(n) recursions, where n is the input size.

Size | Recursions Needed
10 4
100 7
1 000 10
10 000 14
100 000 17
1 000 000 20
10 000 000 24
100 000 000 27
1 000 000 000 30

Searching, Big O Notation, Sorting — Practical Software Technology

Alexander.Baumgartner@risc.jku.at

Express the Efficiency Of Algorithms

Shorthand way to say how efficient a computer algorithm is.
In computer science, this rough measure is called “Big O" notation.

Tells how an algorithms speed is related to the number of items.

e 6 o o

For example:
o Time T needed to set an item of an array a of length n:
o ali] = value — Does not depend on the length. T is constant.
o Time T needed for linear search:
o for all x € a if x = value... — Test all elements. T is proportional to n.
o Time T needed for binary search:

o Divide the size by two for each iteration. T is proportional to log,(n).
o Logarithms are related by constants: log,(n) = K log(n), for some K.

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Big O Notation

Constants C' and

O(Cx*n) =

O(2log(n) +n) <
O(n+2n?+n?) <

Notation Name
O(1) | constant
O(log(n)) | logarithmic
O(n) linear
O(nlog(n)) | loglinear
O(n?) | quadratic
O(n3) cubic
O(n€) | polynomial
O(c") | exponential
O(n!) | factorial
“lower” contribution do

Cx0(n) =
OBxn) =
O4x*n3) =

Searching, Big O Notation, Sorting — Practical Software Technology

A%

not matter. E.g.:

O(n) (1)
O(n) ()
O(n?) (3)

Alexander.Baumgartner@risc.jku.at

Sorting an Array -@&-

ittt

Unsorted team of players

T4 L

Sorted team of players

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Bubble Sort 2\,

o Compare two items.
o If the one on the left is greater, swap them.
@ Move one position right.

Swap

it

First step

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Bubble Sort 2\,

o Compare two items.
o If the one on the left is greater, swap them.
@ Move one position right.

itfiitd

Second step

No Sw dp

if

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Bubble Sort 2\,

o Compare two items.
o If the one on the left is greater, swap them.
@ Move one position right.

it

Third step

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Bubble Sort 2\,

o Compare two items.
o If the one on the left is greater, swap them.
@ Move one position right.

il

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Svtap

L

Fourth step

|

Bubble Sort 2\,

o Compare two items.
o If the one on the left is greater, swap them.
@ Move one position right.

iitiitdt

Sorted

Bubble sort — One iteration

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Bubble Sort — Java Implementation "

int[] array =

public void bubbleSort() {
for (int out = array.length — 1; out > 1; out—) {
for (int in = 0; in < out; in++) {
if (array[in] > array[in + 1])
swap(in, in + 1);

o Items behind position out are always sorted.
@ Bubble sort runs in O(n?) time.
o A nested loop often leads to runtime complexity O(n?).

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Insertion Sort o7,

o Works by partial sorting and a marker.

o Items to the left of the marker are partially sorted.
@ Items to the right of the marker are unsorted.

witfhi

L 'Marked" player

Partially
Sorted

Insertion sort — Players to the left are sorted

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Insertion Sort o7,

o Works by partial sorting and a marker.

o Items to the left of the marker are partially sorted.
o Items to the right of the marker are unsorted.

witdl it

LEmpty space

To be shifted
(Taller than marked player)

Insertion sort — Insert marked player at right position

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Insertion Sort o7,

o Works by partial sorting and a marker.

o Items to the left of the marker are partially sorted.
o Items to the right of the marker are unsorted.

wiitilitd

Inserted —f

Shifted T—“Mﬁlrked" player

Internally sorted

Insertion sort — Mark next player and repeat the process
Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Searching, Big O Notation, Sorting — Practical Software Technology

Insertion Sort — Java Implementation

int[] array =

public void insertionSort() {
for (int out = 1; out < array.length; out++) {

int temp = array[out];

int in = out;

for (;in > 0 && array[in—1] >= temp; in——)
array[in] = array[in —1];

array[in] = temp;

o out starts at 1 and moves right.
o temp marks the leftmost unsorted item.
@ in starts at out and moves left.

@ Insertion sort still runs in O(n?) time.

Alexander.Baumgartner@risc.jku.at

Mergesort

I8
N

Sorting

o Is divide and conquer algorithm. |3a|z7 ‘43 | 3 | 9‘82|10]

o Successively divide the unsorted

array into n partitions. |38

o Until each partition con-

tains 1 element, which
is considered sorted.

|38

o Repeatedly merge /

partitioned units. ’ 38 ’ | 2

o Until there is only
1 sublist remaining

27

which will be the sorted

list.

Searching, Big O Notation, Sorting — Practical Software Technology

27|38‘43|82l

Alexander.Baumgartner@risc.jku.at

I

Mergeing Arrays Sorting N

@ The heart of the mergesort algorithm is the merging of two
already-sorted arrays.
o Merging requires O(n) time.

A|23|47|81|95'
o |1 |2 |s

Figure: Merging the arrays A and B into C

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Mergeing — Java Implementation

else

}

while (aDex < arrayA.
arrayC[cDex++4] =
while (bDex < arrayB.
arrayC [cDex++] =
return arrayC;

public static int[] merge(int[] arrayA,
int[] arrayC = new int[arrayA.length+arrayB.length];

int aDex = 0, bDex = 0, cDex = 0;
while (aDex < arrayA.length && bDex < arrayB.length){

if (arrayA[aDex] < arrayB[bDex])
arrayC[cDex++4] = arrayA[aDex

arrayC[cDex++4] = arrayB [bDex

length)
arrayA [aDex++];
length)
arrayB [bDex++];

int[] arrayB) {

++1;

++1;

Searching, Big O Notation, Sorting — Practical Software Technology

Alexander.Baumgartner@risc.jku.at

Mergesort — Java Implementation "

public void mergeSort() {
doMergeSort (0, size — 1);
}

private void doMergeSort(int left, int right) {
if (left < right) {
int mid = left + (right — left) / 2;
doMergeSort(left , mid);
doMergeSort(mid + 1, right);
mergeParts(left , mid, right);

If left > right, then it is either one or no element.
maid divides the array in two parts.

Recursively sort the left part.

Recursively sort the right part.

Merge the sorted parts.

@ Mergesort runs in O(nlog(n)) time.

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

®© 6 6 6 o

7\

Quicksort — Basic Idea 87

@ Choose an element, called pivot, from the list.
o Partition the list so that:
e The pivot is in its final place.
o All elements to the left of pivot are smaller.
o All elements to the right of pivot are larger.
@ Recursively apply the above steps to the two partitions.
o Is also a divide and conquer algorithm.

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

I

Quicksort — lllustration Sorting .
131718151211]9]5]4] i31112141518191517]

s *

[""""'"'"""""""'"""""""""'";
11213lai5]5]718l9]

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Quicksort — Java Implementation

public void quickSort(int left, int right) {
if (right — left > 0) {
int partition = partitionlt(left, right);
quickSort(left , partition — 1);
quickSort(partition + 1, right);

@ Quicksort runs in O(n?) time for the worst case.
@ Quicksort runs in O(nlog(n)) time for the average case.

@ Quicksort can be faster than Mergesort for the average case.

o Different selection strategies for pivot.
o Random pivot.
o Median-of-3 pivot.

Searching, Big O Notation, Sorting — Practical Software Technology

Alexander.Baumgartner@risc.jku.at

Exercise

o Create a class IntArray which represents a dynamically growing
integer array for storing values of primitive type int without
autoboxing. (Like demonstrated in the lecture.)

o Implement a modified version of the insertionSort() method from the
lecture so that it removes duplicates as it sorts.

Searching, Big O Notation, Sorting — Practical Software Technology Alexander.Baumgartner@risc.jku.at

	Searching
	Big O Notation
	Sorting

