
Formal Models for Parallel and Distributed Systems
Exercise 1 (April 19, 2021)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The exercise is to be submitted by the deadline stated above via the Moodle interface as a single .zip or
.tgz file containing

1. a single PDF file with a decent cover page (mentioning the title of the course, your full name and
Matrikelnummer) with

• nicely formatted listings of the commented model files,

• the outputs of the RISCAL system executions/checks,

• an explicit interpretation of the results (does the output indicate an error or not, how can it be
be explained).

2. the sources of all RISCAL model files used in the exercise.

Email submissions are not accepted.

RISCAL Model of Lamport’s Bakery Algorithm

Write a RISCAL model of a shared system that implements Leslie Lamport’s Bakery Algorithm1 to
preserve mutual exclusion among N ≥ 2 processes. In pseudo-code this model is as follows:

var e: Array[N,Bool] = Array[N,Bool](⊥);
var n: Array[N,N[M]] = Array[N,N[M]](0);
process Bakery(i:N[N]) { // not actual RISCAL code
loop {
// compute ticket number n[i] = 1+max(n[0],..,n[N-1])
0: e[i] B >;
1: m B 0; for j B 0; j < N; j B j+1; do { if n[j] > m then m := n[j] }
n[i] B 1+m;
e[i] B ⊥;

// check that ticket number n[i] is less than the number n[j] of every process j
2: for j B 0; j < N; j B j+1; do {

// wait if process j currently computes its ticket number
while e[j] { }
// wait if process j has a smaller ticket number n[j]
// break ties of equal ticket numbers by process number
3: while n[j] > 0 ∧ (n[j] < n[i] ∨ (n[j] = n[i] ∧ j < i)) do { }

}

// enter critical region
4: ...

// leave critical region and reset ticket number
n[i] B 0;

}
}

The intuition for this algorithm is that of a “bakery” where the service of customers is regulated by issuing
numbered “tickets”; whenever a customer enters the bakery, she receives a ticket whose number is greater
than the number of the tickets of all other customers waiting in the bakery; the customer with the smallest
ticket number is always the one to be served next.

In the actual algorithm, every process i has initially ticket number n[i] = 0 (indicating that it has no interest
in the critical region). If process i wants to enter the critical region, it first sets the Boolean flag e[i] to
indicate that it is in the process of computing its ticket number n[i] as 1 plus the maximum m of all ticket
numbers; the process resets e[i] to indicate that it is done with the computation.

Now, before process i enters the critical region, it waits until it has priority over every process j: if
process j is just in the course of computing its ticket number, as indicated by the flag e[j], then process i
waits until the computation has finished. Subsequently, process i waits, if process j has a ticket number
n[j] that is greater than 0 (indicating that process j wants to enter the critical region) but less than the
ticket number n[i] of process i (which indicates that process j is to be served before process i) or is equal
to n[i] (which represents a “tie” among the processes) but has process number j less than i (which breaks
the tie in favor of process j).

Once process i has ensured its priority over all other processes, it enters the critical region. It leaves it by
resetting its ticket number n[i] to 0; this allows other processes to enter the critical region.

Now your tasks are as follows:

1https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm

1

https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm

• First, using the accompanying file bakery.txt as a starting point, model this algorithm as a shared
system in the style of Peterson’s algorithm presented in class (and described in Section 7.1 of the
manuscript “Concrete Abstractions”):

– Describe the system state by shared arrays e, n, j, and m that represent at every index i the
values of above variables for process i. Also use an array pc of program counter values to
indicate different steps of the algorithm, but use as few values as possible (above labels 0–4
roughly indicate the main steps of the algorithm that you may have to differentiate).

– Ensure that every action a(i) of process i reads at most one shared variable v[j] owned by
another process j (as above pseudo-code shows, process i never writes a variable of another
process). Express the “execution logic” of the algorithm only by action preconditions; the
bodies of the actions shall be just plain assignments to the variables owned by process i.

There remains one problem to be solved: the ticket numbers computed by the algorithmmay become
arbitrarily large while our variable domains only have finitely many values; to avoid “overflows”, in
a first version of the model, extend the precondition of the action that computes n[i] := 1 + m by a
side condition m < M where constant M denotes the maximum values allowed for ticket numbers
(thus a system execution will deadlock if it requires larger ticket numbers).

• Now check the execution of the algorithm for suitable values for N and M (e.g., M = 3 and N = 6):

– Show that the modeled system indeed satisfies the safety property of “mutual exclusion” by
formulating a corresponding invariant and checking it in all reachable states of the system
(it is not necessary to make the invariant strong enough to show its correctness by checking
correspondingly generated verification conditions).

– Also show that the algorithm does not trivially deadlock by demonstrating that there is a
system run in which all processes get access to the critical region. For this purpose, introduce
a boolean array c that is initialized to “false” everywhere; process i sets c[i] to “true” when it
has entered the critical region. Formulate an invariant that claims that it is not possible that all
c[i] are true and let the system derive a counterexample run (use the execution option Depth
to minimize the length of the counterexample).

– Show that the algorithm indeed requires the use of variable e by commenting out its use from
the systemmodel and deriving a counterexample run that demonstrates that the system violates
mutual exclusion. Minimize the length of the example and informally explain the nature of
problem exhibited by it.

• Finally, create a second variant of the model where the problem of ticket number overflows is solved
in a more appropriate style. Whenever process i detects that m = M holds, it aborts the attempt to
enter the critical region, i.e., it returns to its initial state. Consequently, as soon as every process
j with n[j] = M has left the critical region and set n[j] to 0 again, the value of m becomes less
than M and another process may again enter the critical region with a ticket number less than M .
Demonstrate for this changed model that again “mutual exclusion” is preserved and that there exists
a system run where all processes enter the critical region.

Please give ample explanations of the results of the checks/executions and report any problems you may
have encountered.

2

