
Object-Oriented Programming in C++ (SS 2021)
Exercise 2: April 29, 2021

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

The exercise is to be submitted by the denoted deadline via the submission interface of the
Moodle course as a single file in zip (.zip) or tarred gzip (.tgz) format which contains the
following files:

• A PDF file ExerciseNumber-MatNr.pdf (where Number is the number of the exercise
and MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise, and the
author of the solution (identified by name, Matrikelnummer and email address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that indenta-
tions are appropriately preserved) and an appropriate font size such that source code
lines do not break.

3. A description of all tests performed (copies of program inputs and program outputs)
explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your solution
has unwanted problems or bugs, please document these explicitly (you will get more
credit for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.



Exercise 2: Integers and Rationals

1. First, implement a class Integer whose objects represents integer numbers of arbitrary
size; this class shall provide (at least) the following interface:

class Integer {
public:
// integer number representing value <i>, default 0
Integer(int i = 0);

// integer number with sign <s> and <n> base-100 digits d[0],...
Integer(bool s, int n, char *d);

// destructor
~Integer();

// overload output operator for this type
friend ostream& operator<<(ostream& os, Integer& i);

// negation, sum, difference, product of this number and <i>
Integer operator-();
Integer operator+(Integer& i);
Integer operator-(Integer& i);
Integer operator*(Integer& i);

// equality and less-than-equality of this number and <i>
bool operator==(Integer& i);
bool operator<=(Integer& i);

};

An integer shall be represented by a triple 〈s,n, d〉 where s is a boolean value that is true if
the integer is negative, n is a natural number, and d is a (pointer to a) heap-allocated array of
length nwhose elements represent bytes (values of type char): every element d[i] holds the
two decimal digits of the integer with positional values 102i and 102i+1 (i.e., we represent
the integers in the number system with base 100). For instance, the number −12345 is
represented by s = true, n = 3, and d = [45,23,1] (i.e., d[0] = 45, d[1] = 23, d[2] = 1).
If n = 0, the representation denotes the number 0, if n > 0, then a[n − 1] > 0, i.e., the
representation does not store leading zeros (and is thus canonical).

If the second constructor is called with s = true and n = 0, the sign s = false is stored.
Furthermore, this constructor does not use the given array d as its internal representation
but creates a copy andmakes sure that this copy does not hold leading zeros. The destructor
frees this copy.

For implementing the arithmetic operations, first allocate a temporary array for the digits
of the result and then fill this array with the appropriate digits; finally construct the actual
result from this array using the second constructor and free the temporary array. The
operations are to be implemented with the usual “school algorithms”; for example, for

1



computing the product, multiply the first number with every digit of the second number
and add the (appropriately shifted) intermediate results.

2. Second, implement a class Rational whose objects represent rational numbers (with
numerators and denominators of arbitrary size); this class shall provide (at least) the
following interface:

class Rational {
public:
// rational with numerator <n> and denominator <d> (both may be negative)
Rational(Integer &n, Integer &d);

// destructor
~Rational();

// overload output operator for this type
friend ostream& operator<<(ostream& os, Rational& r);

// arithmetic on this number and <r>
Rational operator-();
Rational operator+(Rational& r);
Rational operator-(Rational& r);
Rational operator*(Rational& r);
Rational operator/(Rational& r);

// equality and less-than-equality of this number and <r>
bool operator==(Rational& r);
bool operator<=(Rational& r);

};

A rational shall be represented by a pair 〈n, d〉 where numerator n and denominator d > 0
are integers of arbitrary size (values of type Integer); n and d may have common divisors,
thus this representation is not canonical (please note that the comparison a1/b1 = a2/b2
can be implemented by the test a1 · b2 = a2 · b1; similarly a test for inequality is possible).

If the constructor is called with d = 0, the program aborts with an error message. If d < 0,
then both the signs of n and d are inverted.

The classes thus support the following operations:

char d1[] = { 45, 23, 1 };
char d2[] = { 99, 66, 33, 0, 0 };
Integer i1(true, 3, d1); Integer i2(false, 5, d2);
cout << i1 << " " << i2 << endl;
Integer i3 = -i1; Integer i4 = i1+i2;
cout << i3 << " " << i4 << endl;
Integer i5 = i1-i2; Integer i6 = i1*i2;
cout << i5 << " " << i6 << endl;

Rational r1(i1,i2); Rational r2(i4,i5);

2



cout << r1 << " " << r2 << endl;
Rational r3 = -r1; Rational r4 = r1+r2; Rational r5 = r1-r2;
cout << r3 << " " << r4 << " " << r5 << endl;
Rational r6 = r1*r2; Rational r7 = r1/r2;
cout << r6 << " " << r7 << endl;

Test each of the two classes in a comprehensiveway (several calls of each method) including also
the calls shown above (print the results and show the program output in the deliverable).

3


