Formal Methods in Software Development
Exercise 5 (December 14)

Wolfgang Schreiner
Wolfgang.Schreiner @risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with
* a cover page with the course title, your name, Matrikelnummer, and email address,

* a section for each part of the exercise with the requested deliverables and optionally
any explanations or comments you would like to make;

2. the JML-annotated . java file(s) used in the exercise.

Email submissions are not accepted.



Exercise 5: JML Specifications

Formalize the method specifications given below in the JML heavy-weight format by a precon-
dition (requires), frame condition (assignable), and postcondition (ensures) and attach
the specification to the method implementations provided in file Exercise5. java. For this
purpose, extract the implementation of each method into a separate class Exercise5_TI (where /
is the number of the method in the list below) and give this class a main function that allows you
to test the implementation by a call of the corresponding method.

Make preconditions as weak as possible; e.g., if the method can be reasonably applied to
argument 0, do not require that the argument needs to be positive. Make postconditions as
strong as possible; e.g., if a result is always positive, do not just ensure that the result is non-
negative. Also do not forget to explicitly specify the null/non-null status and the lengths of arrays.
Please also note that JML has some restrictions about which values may be used in \old(...)
expressions; e.g., \result may not be used there. You can, however, write the following instead:

(\exists int r; r == \result; ... \old(...r...) ...)

For each method, first use jml to type-check the specification'. Then use the runtime assertion
compiler jmlc and the corresponding executor jmlrac to validate the specification respectively
implementation by at least three calls of each method; the calls shall contain at least two different
valid inputs and (if possible) also one invalid input (for arrays, use arrays with wrong length or
content, not just null pointers). Please print after each method call some output to make sure
that the method has not silently crashed. If you detect that the runtime assertion compiler fails
for some part of the specification, you may comment this part out as an informal property (*
... *) and repeat the check with the simplified specification.

Also try the more modern OpenJML tool set with the corresponding commands openjml,
openjmlrac, and openjmlrun and report your experience with these”.

Finally, use the extended static checker escjavaz2 to further validate the functions®; you may
use the option -NoCautions to suppress any cautions you may get from system libraries. Before
checking, comment out the main functions such that only the specified functions are checked.

The deliverables of this exercise consist of
* anicely formatted copy of the JIML-annotated Java code for each class,
* the output of running jml -Q and openjml on the class,
* the outputs of running jmlrac and openjmlrun on the class,

* the outputs of running escjavaz2 on the class.

IThe JML toolsuite only work with Java 5; on the course VM command aliases select this version.
2The OpenJML toolset only works with Java 8; on the course VM the command scripts select this version.
3ESC/Java2 only works with Java 5; on the course VM the command script selects this version.



both for the original and for the modified implementation of the method (if the implementation
was modified) including an explanation of the detected error and how you fixed it.

Please note that the fact that escjava2 does not give a warning does not prove that the function
indeed satisfies the specification (only that the tool could not find a violation); on the other hand,
if the checker reports a warning, this does not necessarily mean that the program indeed violates
its specification (only that the tool could not verify its correctness).

Recommendation: it is better to split pre/post-conditions that form conjunctions into multiple
requires respectively ensure clauses (one for each formula of the conjunction); if an error is
reported, it is then clear, to which formula it refers.

1. Specify the method
public static int minimumIndex(int[] a)
that takes an integer array a and returns a position of the smallest element in a.
2. Specify the method
public static int minimumElementl(int[] a)
that takes an integer array a and returns the smallest element in a.
3. Specify the method
public static int minimumElement2(int[] a)
that takes an integer array a of non-negative integers and returns the smallest element in a.
4. Specify the method
public static int[] insert(int[] a, int b[], int x)

that returns a new array that contains the elements of a with array b inserted at position p
(b may be also inserted at the beginning or at the end of a).

5. Specify the method
public static int replace(char[] a, char x, char y)

that takes a character array a and replaces in it every character x by y. The return value of
the function indicates the smallest position where a replacement has been performed (-1,
if no replacement has been performed).

6. Specify the method
public static boolean subtractl(int[] a, int[] b)

that takes two arrays a and b that hold non-negative integers and subtracts from every
element of a the corresponding element of b unless this would result in a negative result; in
that case the value remains unchanged. The function returns “true”, if no such “truncation”
has occurred.

Hint: you should rule out that a caller passes as a and b the same pointer (why?).



7. Specify the method
public static void subtract2(int[] a, int[] b) throws Truncated

that behaves like subtractl, except that at the first occurrence of an “truncation” an
exception is thrown that contains the position of the truncation; from that position on all
elements of a remain unchanged.

Hint: jmlc complains about the use of e.pos in the specification of Truncated, you
may comment out the corresponding specification clause. Furthermore, you may ignore
the warning of escjava2 about the possible violation of a modifies clause of class
Truncated; this is due to an underspecification of the superclass Exception.

Also escjava2 has problems with reasoning about \old(a[e.pos]); use the trick ex-
plained above of introducing an existentially quantified variable r whose value is e.pos
and write \old(e[r]) instead.

Please note that the given informal specifications may be too weak (e.g., preconditions may be
missing) or ambiguous (but not plainly wrong) and that the implementations may be incorrect. If
you detect problems, explain them, fix them such that specification and code match and re-run your
checks (please apply common sense and consier the probable intention of the developer/client in
order to decide how to complete the specification and/or fix the implementation).



