
Formal Methods in Software Development
Exercise 3 (November 23)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• a section for each part of the exercise with the requested deliverables and optionally
any explanations or comments you would like to make;

2. the RISCAL specification (.txt) file(s) used in the exercise;

3. the .java/.theory file(s) used in the exercise,

4. the task directory (.PETASKS*) generated by the RISC ProgramExplorer.

Email submissions are not accepted.

1



Exercise 3a (35P): Proving Verification Conditions

Take the six verification conditions A, T, B1, B2, B3, and C manually derived in Exercise 2 and
checked there with RISCAL (if you did not solve that exercise, you may ask a colleague for these
conditions or take them from the distributed sample solution).

The goal of this exercise is to prove these conditions with the help of the RISC ProofNavigator
(in the style of the verification of the “linear search” algorithm presented in class) for arrays of
arbitrary length and integer elements of arbitrary size.

For this purpose, write a declaration file with the following structure

newcontext "exercise3a";

// arrays as presented in class (except ELEM = INT)
...
ELEM: TYPE = INT;

// program variables and mathematical constants
a:ARR; x:INT; from:INT; to:INT; r:INT; low:INT; high:INT; mid:INT;

// make the precondition on parameters a,x,from,to an axiom
Parameters: AXIOM ... ;

Formulate in this file the precondition on the parameters a, x, from, to as an “axiom”; this is a
formula that will be automatically added as an assumption to every subsequent proof. Base your
formulation of the condition that array a is sorted on the formula ∀k1, k2. from ≤ k1 ≤ k2 ≤

to⇒ a[k1] ≤ a[k2] with two quantifed variables; the proof that the invariant is preserved by the
last two conditional branches then requires a (automatic or manual) instatation of this formula.

It should be possible to perform all proofs with the commands expand, decompose, split,
scatter, and auto; the sortedness formula above has to be most probably instantiated individ-
ually (auto label or instantiate). If you get lost in the proof, perform decompose and split
rather than scatter and possibly delay the application of expand; you may also use goal to
select the formula to be displayed in the goal position.

The deliverables for this exercise consists of the following items:

1. a (nicely formatted) copy of the ProofNavigator file (included as text, not as screenshots);

2. for each proof of a formula F, a readable screenshot of the RISC ProofNavigator after
executing the command proof F (displaying the proof tree) with explicit statements
whether the proof succeeded;

3. if any check gives an error respectively any proof fails, a detailed explanation of the
estimated reason of the failure.

2



Exercise 3b (65P): Verifying a Program by Checking and Proving

We consider the following problem: given an array a of non-negative integer elements, find the
minimum element m of a; if a is empty, this shall be indicated by m = −1 (which is not a possible
array element).
The goal of this exercise is to take the following Java program that solves this problem, and to use
the RISC ProgramExplorer to annotate the program with specification and annotations, analyze
its semantics, and verify its correctness with respect to its specification:

class Exercise3
{
// returns minimum element in array a
// of non-negative integers (-1, if a is empty)
public static int minimum(int[] a)
{
int n = a.length;
if (n == 0)
return -1;

else
{
int m = a[0];
for (int i = 1; i < n; i++)
{
if (a[i] < m) m = a[i];

}
return m;

}
}

}

In detail, perform the following tasks:

1. (20P) For a first validation of specification and invariants, take the file minimum.txtwhich
embeds the RISCAL version of above code in a procedure minimumElement and equip
this procedure with suitable pre-conditions, post-conditions, invariants, and termination
term. Validate (for small values N and M) the annotations (check the procedure and check
the automatically generated verification conditions; it is not necessary to manually derive
them). These validated annotations shall then serve as the basis of the further proof-based
verification.

2. (20P)Create a separate directory inwhich you place the file Exercise3.java that contains
above Java procedure, cd to this directory, and start ProgramExplorer & from there.
The task directory .PETASKS* is then generated as a subdirectory of this directory. (If
you use the virtual course machine, place the directory for this exercise into the home
directory of the guest user; in particular, do not place it into the directory shared with the
host computer).
Specify the method by an appropriate contract (clauses requires and ensures) and
annotate the loop with an appropriate invariant and termination term (do not forget the

3



non-null status of the array). In contrast to RISCAL, you have to specify here also all
available information you have from the precondition about the input array (because in
Java procedure parameters are not constants).

Investigate (by application of menu option “Show Semantics” for the procedure) the
computed semantics (transition relation and termination condition) of the method and give
an informal interpretation of the semantics (and your explanation whether respectively
why it seems adequate) in sufficient detail.

3. (30P) Verify all (non-optional) tasks generated from the method. Only few of them should
require interactive proofs; most of these can probably be performed just by application of
decompose, split, scatter and auto.

The onlymore complex cases should be the proofs that the invariant is preserved
and that the method body ensures the postcondition; here it is wise to first
perform a decompose and then a split corresponding to the two branches in
the method respectively the loop body (if you immediately perform a scatter,
you have to make a split in each of the resulting proof obligations which
considerably blows up the proof).

The deliverables of this exercise consist of

1. a nicely formatted copy of the RISCAL specification (included as text, not as screenshots);

2. the outputs of the checks (included as text, not as screenshots) with explicit statements
whether the checks succeeded;

3. a (nicely formatted) copy of the annotated .java file used in the exercise,

4. a screenshot of the corresponding “Semantics” view and an informal interpretation of the
method semantics;

5. a screenshot of the “Analysis” view of the RISC ProgramExplorer with the specifica-
tion/implementation of the method and the (expanded) tree of all (non-optional) tasks
generated from the method,

6. for each task generated by the RISC ProgramExplorer an explicit statement whether the
goal of the task was achieved or not and, if yes, how (fully automatic proof, immediate
completion after starting an interactive proof, complete or incomplete interactive proof),

7. for each truly interactive proof, a screenshot of the corresponding “Verify” view with the
proof tree.

4


