Formal Methods in Software Development
Exercise 2 (November 9)

Wolfgang Schreiner
Wolfgang.Schreiner @risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with
* a cover page with the course title, your name, Matrikelnummer, and email address,

* a section for each part of the exercise with the requested deliverables and optionally
any explanations or comments you would like to make;

2. the RISCAL specification (. txt) file(s) used in the exercise.

Email submissions are not accepted.



Exercise 2: Deriving and Checking Verification Conditions

We are given an integer array a and an integer x that might appear as an element in a. Furthermore,
we are given two integers from and fo such that the closed interval [from, o] describes a range of
indices in a. We assume that a is sorted in ascending order within this range (the order is not
strictly ascending, i.e., the array may hold multiple identical elements). Our goal is to find an
integer r that is either —1 or an array index in the given range. If r is —1, then x does not occur
as an element of a in this range; otherwise, r is an index in this range at which a holds x. For
instance, for inputs a = [2,3,3,5,7,11,13], from = 1, to = 4, and x = 5, we expect output r = 3.
For the same inputs except for x = 11, we expect output r = —1.

We claim that this problem is solved by the following Java code fragment that implements the
core of the “binary search” algorithm:

int r = -1; int low = from; int high = to;
while (r = -1 && low <= high)
{

int mid = (low+high)/2;

if (a[mid] == x)
r = mid;

else if (a[mid] < x)
low = mid+1;

else
high = mid-1;

}

The goal of this exercise is to verify this claim by deriving and checking the verification conditions
whose validity implies the total correctness of this code with respect to the given specification.

1. Take file bsearch. txt which embeds the RISCAL version of above code in a procedure
bsearch and equip this procedure with suitable preconditions (requires) and postcon-
ditions (ensures) that formalize above specification (see Exercise 1). Check (for small
values of N and M) that the procedure indeed satisfies the specification (be assured that
for suitable pre- and post-conditions the procedure is indeed correct; you are not allowed
to change the code in any way).

2. Select the operation button “Show/Hide Tasks” to display all tasks related to the spec-
ification of the procedure (“Execute specification”, “Validate specification” and “Verify
specification preconditions”). Validate the specification by executing these tasks (run
“Execute specification” with execution option “Silent” switched off to investigate the in-
put/output pairs allowed by your specification; the checks of the other tasks which denote
theorems may be performed with option “Silent” switched on). If a task stays red, i.e., the
corresponding theorem does not hold, you may choose the entry “Show Counterexample”
from the popup menu of the task (which appears with a right-click) to get some further
insight, which may help you to improve your procedure specification.

3. Annotate the loop with suitable invariants (invariant) and termination term (decreases).



Rerun the procedure check to ensure that your annotations are not too strong (but they may
be still too weak to carry the verification).

Please note that RISCAL treats procedure parameters such as a, x, from and fo as un-
modifiable constants; thus all the knowledge from the preconditions of the procedure is
automatically inherited and does not have to specified in the invariants again. However,
you have to express in the invariant the following information:

» Knowledge about the range of the index variables range and high (you have to consider
here also the final values of these variables if x does not occur in the index range).

* Knowledge about that part of the search range that has already been processed by the
previous iterations of the loop.

* Knowledge about the result variable r, as it is needed for establishing the postcondition
of the procedure.

. Now demonstrate your knowledge of the Hoare calculus by manually deriving from the
specification and the loop annotations the verification conditions whose validity implies
the total correctness (partial correctness and termination) of the program.

Hint: Hoare calculus reasoning yields six conditions: one for showing that the input
condition of the loop (which is different from the input condition of the program!) implies
the invariant, one for showing that the invariant and the negation of the loop condition
implies the output condition, three for showing that the invariant is preserved and the value
of the termination term is decreased for each of the three possible execution paths in the
loop body, one for showing that the invariant implies that the value of the termination term
does not become negative (if you apply weakest precondition reasoning within the loop
body, only one condition is derived from the loop body).

Do not only give the final verification conditions but show in detail their derivation by
application of Hoare calculus (respectively the predicate transformer calculus). Don’t try
to “guess” the condition(s)!

Check these conditions with RISCAL, in the style of the verification of the “linear search”
algorithm presented in class. For this purpose, define predicates Input, Output, and
Invariant and a function Termination, where (as shown in class) Invariant and
Termination should be parametrized over the program variables. Then define six the-
orems A, T, B1, B2, B3, C describing the verification conditions and check these. Do not
forget to make the preconditions of the procedure also preconditions of these theorems.
If a theorem does not hold, you may select the operation button “Show/Hide Tasks” and
choose the menu entry “Show Counterexample” to get some further insight, which may
help you to correct your annotations.

. Finally, apply the capabilities of RISCAL to automatically generate the necessary ver-
ification conditions from the annotated program. For this select the operation button
“Show/Hide Tasks” to display all tasks related to the implementation (“Verify correctness
of result”, “Verify iteration and recursion”, and “Verify implementation preconditions’)
and verify the implementation by checking these tasks. If your annotations are adequate



(strong enough but not too strong), then all red tasks turn blue (as demonstrated in class for
the “summation” example). Again, if a task stays red, i.e., the corresponding verification
condition does not hold, you may choose the entry “Show Counterexample” to get some
further insight, which may help you to correct your annotations.

The deliverables for this exercise consists of the following items:

1. anicely formatted copy of the RISCAL specification (included as text, not as screenshots);
2. adetailed manual derivation of the verification conditions;

3. the outputs of the checks of these verification conditions (included as text, not as screen-
shots) with explicit statements whether the checks succeeded; if a task failed, give a
conjecture why the task failed.

4. screenshots of (part of) the RISCAL software illustrating the automatically generated tasks
after checking (panel “Tasks”, all/most of these tasks should be blue);

5. an explicit statement of whether all tasks could be successfully checked or not; if some
tasks could not be successfully checked, give screenshots of the RISCAL software after
the task has been selected (indicating in the editor area those parts of the program related
to the task) and your conjecture why this task failed;

If the check of a theorem fails, show the printed counterexample, and give corresponding
explanations. You may also (but need not) attempt to visualize its evaluation (see Exercise 1).



