
Chapter 8
Computer Programs

Der liebe Gott gibt uns die Logik des Algorithmus. Der Teufel fügt den
Programmierer hinzu und schon ist das irdische Gleichgewicht wieder
hergestellt. (God gives us the logic of the algorithm. The devil adds the
programmer and already is the earthly balance restored.) — Heinz
Zemanek

The semantic formalisms presented in Chapter 7 define the meaning of programming
languages and thus implicitly also of computer programs written in these languages.
However, they are too low-level to be of practical use when our actual goal is to verify
the correctness of programs with respect to given specifications. In this chapter, we
are going to discuss various (closely related) calculi that allow us to reason about
programs on the high level. These calculi can be subsumed under the term axiomatic
semantics, because they are based on axioms and inference rules that describe how
we can derive expected program properties. The soundness of these calculi can be
shown from the underlying denotational semantics of the programming language.

Our presentation starts in Section 8.1 with a discussion of problem specifications
that serve as program contracts; we subsequently develop programs that satisfy these
contracts, i.e., solve the specified problems. Then Section 8.2 introduces the Hoare
Calculus, the father of axiomatic semantics; this calculus can be viewed as an abstract
procedure for the generation of verification conditions, i.e., logical formulas whose
validity implies the correctness of a program. Section 8.3 further elaborates the
theory of verification condition generation to the calculi of weakest preconditions,
strongest postconditions, and commands as relations, which are more suitable for
implementation in automated verification systems. While the previous presentation
have only considered a program’s partial correctness (the program does not produce
a wrong result), Section 8.4 deals with its total correctness (the program indeed
produces a result, i.e., it neither aborts prematurely nor does it fail to terminate).

So far the chapter has focused mainly on the “mechanics” of program verification;
in Section 8.5 we also discuss its “pragmatics”. In particular, we investigate by a
series of examples strategies for the elaboration of “meta-information” in the form of
loop invariants and termination measures which the human verifier has to provide
to make a verification succeed. Also the discussion so far has centered entirely on
commands, i.e., on “verification on the small”. As a preparation for “verification in
the large”, Section 8.6 addresses the refinement of commands. Section 8.7 builds upon
the insights gained there to finally discuss the contract-based modular verification of
programs composed of procedures.

393

400 8 Computer Programs

8.2 Verifying Programs

As a starting point for program verification, we will in this and in the subsequent
sections investigate various (closely related) formalisms to verify the correctness of
the commands that make up a program.

The Hoare Calculus

We begin with a formalism for program reasoning that was invented in 1969 by the
British computer scientists C.A.R. Hoare; this formalism was later called “Hoare
Calculus” or “axiomatic program semantics” (in contrast to denotational semantics
or operational semantics, axiomatic semantics describes how we can reason about the
externally observable effect of a command without describing its internal mechanism).
This calculus is the most popular one when it comes to manually proving the
correctness of programs (automated or semi-automated program verifiers typically
implement somewhat more advanced calculi; some of these will be discussed later).

The core judgement of the Hoare calculus is the “Hoare triple”

{P} C {Q}

where C is a command and P and Q are formulas. For the moment, our informal
interpretation of this judgement is the following:

If the execution of command C starts in a state in which the precondition P
holds, every normal termination of the command yields a state in which the
postcondition Q holds.

The pair ⟨P,Q⟩ thus represents a “specification” to be implemented by command C.
Please note that this specification only claims “partial correctness” of the command
execution; it does not rule out that the command aborts or runs forever (we will deal
with these issues later).

The Hoare calculus is an inference system for deriving Hoare triples; it is sound in
the sense that by its rules we can only derive Hoare triples that are true with respect
to the partial correctness interpretation given above.

Variable Substitutions

Before presenting the Hoare calculus, we introduce a technical concept that is applied
in some rules of the calculus.

Proposition 8.1 (Variable Substitution). Let E be a phrase (formula or term), V a
variable and T a term. The E[T/V] is defined as the phrase

© 2019 Wolfgang Schreiner.

8.2 Verifying Programs 401

E[T/V] B let V = T in E

whose value is the value of E when V is interpreted as the value of T (see Defini-
tion 2.16).

Alternatively (and more intuitively), E[T/V] can be understood as phrase E
where every free occurrence of variable V has been syntactically replaced by term T .
For instance, for F B x > z, formula F[x + 1/x] may be understood either as
let x = x + 1 in x > z or as x + 1 > z. While the alternative understanding of E[T/V]
by syntactic substitution seems simpler, it actually requires the appropriate renaming
of all quantified variables in E such that they do not coincide with any free variables
in T . Since this makes the general formalization more complicated, we prefer the
simple definition given above (but will use the easier to understand interpretation by
syntactic substitution, if E does not contain any quantifiers).

The Generation of Verification Conditions

The Hoare calculus is depicted in Figure 8.1. Before we dive into the details of the
individual inference rules of the calculus, we demonstrate the big picture of their
application. For instance, we may use these rules to derive the Hoare triple

{true} m:=x; if m<y then m:=y {Q}

for postcondition Q :⇔ (m = x ∨ m = y) ∧ (m ≤ x ∧ m ≤ y). This triple expresses
the correctness of a command that computes the maximum m of two numbers x
and y; it is derived by the following inference tree:

|= true⇒ x = x {x = x} m:=x {m = x}
{true} m:=x {m = x}

T |= m = x ∧ ¬(m < y) ⇒ Q

{m = x} if m<y then m:=y {Q}
{true} m:=x; if m<y then m:=y {Q}

Here T represents the following subtree:

|= m = x ∧ m < y ⇒ Q[y/m] {Q[y/m]} m:=y {Q}
{m = x ∧ m < y} m:=y {Q}

The application of these rules is mostly (but not completely) mechanically guided by
the structure of the command. There is one inference rule for every command; in above
example, the rules for command sequences, assignments, and one-sided conditional
were applied. The rules for the compound commands (command sequences and
one-sided conditional) reduce the problem of deriving the Hoare triple for a compound

© 2019 Wolfgang Schreiner.

402 8 Computer Programs

Judgement

{␣} ␣ {␣} ⊆ Formula × Command × Formula

Rules for {P } C {Q}:
|= P ⇒ P′ {P′} C {Q′} |= Q′ ⇒ Q

{P } C {Q}

{Q[T/V]} V:= T {Q}

{P } C {Q[V0/V]}
V,V0,V1 distinct V0,V1 not in P,C,Q

{
(∀V1: S. P[V1/V]

)
[V/V0]} varV : S;C {Q}

{P } C1 {R} {R} C2 {Q}
{P } C1;C2 {Q}

{P ∧ F } C1 {Q} {P ∧ ¬F } C2 {Q}
{P } if F thenC1 elseC2 {Q}

{P ∧ F } C {Q} |= P ∧ ¬F ⇒ Q

{P } if F thenC {Q}
|= P ⇒ I {I ∧ F } C {I } |= I ∧ ¬F ⇒ Q

{P } while F doC {Q}

Fig. 8.1 The Hoare Calculus (Partial Correctness)

command to the problem of deriving Hoare triples for its subcommands; this process
terminates with the rule for the for assignment command, which is atomic, i.e., it has
no subcommand. The assignment rule therefore has no premise, i.e., it is an axiom.
The leaves of the tree are either Hoare triples that are instances of the assignment
axiom or they are of the form |= F. The later represents the validity of formula F,
which has to be established by logical reasoning; we call F a verification condition
(in above derivation the verification conditions are marked with frames). The Hoare
calculus thus implicitly describes a verification condition generator, a syntax-guided
procedure that derives from a Hoare triple a set of verification conditions: these
conditions are formulas in first order logic whose combined validity implies the
correctness of the triple.

Figure 8.2 makes this procedure explicit by the definition of a function vcg that
takes a Hoare triple and returns the set of verification conditions determined by the
Hoare calculus; the verification condition generated for each kind of command is
directly derived from the corresponding inference rule. Since the inference rules
for the assignment command and for the variable declaration command do not
have arbitrary preconditions, the function vcg applies the knowledge of the first
rule of the calculus to generate a verification condition that demands that the given
precondition P implies the precondition derived by the inference rule.

Considering the example elaborated above, the verification condition generator
therefore generates the following result:

© 2019 Wolfgang Schreiner.

8.2 Verifying Programs 403

vcg : Formula × Command × Formula → Set(Formula)

vcg({P } V:=T {Q}) B {P ⇒ Q[T/V]}
vcg({P } varV : S;C {Q}) B let P1 = choose F . F ∈ Formula in

vcg({P1 } C {Q[V0/V]}) ∪{
P ⇒

(∀V1: S. P1[V1/V]
)
[V/V0]

}
vcg({P } C1;C2 {Q}) B let R = choose F . F ∈ Formula in

vcg({P } C1 {R}) ∪ vcg({R} C1 {Q})
vcg({P } if F thenC1 elseC2 {Q}) B vcg({P ∧ F } C1 {Q}) ∪

vcg({P ∧ ¬F } C2 {Q})
vcg({P } if F thenC {Q}) B vcg({P ∧ F } C1 {Q}) ∪ {P ∧ ¬F ⇒ Q}

vcg({P } while F doC {Q}) B let I = choose F . F ∈ Formula in

{(P ⇒ I), (I ∧ ¬F ⇒ Q)} ∪ vcg({I ∧ F } C {I })

Fig. 8.2 The Hoare Calculus as a Verification Condition Generator

vcg({true} m:=x; if m<y then m:=y {Q}) B{
true⇒ x = x , m = x ∧ m < y ⇒ Q[y/m] , m = x ∧ ¬m < y ⇒ Q

}
Thus, to verify the correctness of the given Hoare triple, it suffices to show the validity
of the three generated verification conditions.

Program verification thus consists of two essentially independent parts:

• the syntax-guided derivation of verification conditions (e.g., by the Hoare calculus),
• the establishment of the validity of the verification conditions (e.g., by proving the

formulas with the inference rules of first order logic).

Most rules of the Hoare calculus have a form that allows a mechanization of the first
part, but this is not true for all rules: as the definition of the verification condition
generator vcgmakes very explicit, the three rules for a variable declaration, a command
sequence, and a loop require choices of formulas that are not directly derived from
the input; indeed, only for suitable choices, the derived verification conditions are
valid and the verification can succeed. We will see later how other calculi replace
most of these choices by systematic calculations, but nevertheless for the verification
of a loop command always the choice of a loop invariant I is required. This choice
is the main creative step that has to be performed by a clever reasoner (human or
machine); we will discuss this creative aspect later. To subsequently establish the
validity of the generated verification conditions is a separate process that can be also
performed by a combination of human intelligence and sophisticated automation.

In a manual verification, the application of the Hoare rules to derive verification
conditions is rarely given in the form of detailed inference trees but are typically
indicated by a semi-formal text such as the following one:

© 2019 Wolfgang Schreiner.

404 8 Computer Programs

We verify {true} m:=x; if m<y then m:=y {Q}. Clearly we have {true}
m:=x {m = x}. Thus it suffices to show {m = x} if m<y then m:=y {Q}:

• We verify {m = x ∧ m < y} m:=y {Q}. For this we assume m = x and
m < y and show Q[y/m]. . .

• We show m = x ∧ ¬(m < y) ⇒ Q, i.e., we assume m = x and ¬(m < y)
and show Q. . .

Also we will use in the following such descriptions from which the reader has to
deduce the corresponding inference trees.

The Rules of the Hoare Calculus

After this first exposition of the Hoare calculus, we go into the details of its rules
which are depicted in Figure 8.1 and illustrate them by small examples.

The first rule of the Hoare calculus is “generic” (command-independent).

• Weakening/Strengthening:

|= P⇒ P′ {P′} C {Q′} |= Q′⇒ Q
{P} C {Q}

This rule states that the problem of deriving a Hoare triple {P} C {Q} can be
reduced to the problem of deriving another Hoare triple {P′} C {Q′} provided that

– the new precondition P′ is not stronger than the original precondition P (i.e.,
P′ is implied by P), and

– the new postcondition Q′ is not weaker than the original postcondition Q (i.e.,
Q′ implies Q).

In a nutshell, this rule states that, in the course of a correctness proof, we may
resort to the following principle:

Preconditions may be weakened and postconditions may be strengthened.

Example 8.5. According to the following rule instance

|= x > 0⇒ x ≥ 0 {x ≥ 0} C {y = 1 + x} |= y = 1 + x ⇒ y , x
{x > 0} C {y , x}

the problem of deriving the triple H1 = {x > 0} C {y , x} may be reduced to the
problem of deriving H2 = {x ≥ 0} C {y = 1 + x}, because x > 0 implies x ≥ 0
and y = 1+ x implies y , x, Thus any command C that satisfies the interpretation
of H2 also satisfies the interpretation of H1. □

To illustrate the soundness of the reasoning applied in above example, we may
assume that C satisfies the interpretation of H2. To show that then C also satisfies
the interpretation of H1, we have to show that if C starts execution in a state

© 2019 Wolfgang Schreiner.

Program Reasoning in RISCAL
and the RISC ProgramExplorer

There are numerous software systems that support the verification of pro-
grams in various languages, either by checking their executions in finite mod-
els or by proving verification conditions. We will present two such systems:

• RISCAL [82,97] is a specification language and associated software system
for modeling algorithms and specifying their behavior in first-order logic.
The type system of RISCAL ensures that the domains of all programs
and formulas are finite; this allows a model checker to fully automatically
check in small models all possible program executions with respect to their
contracts and other annotations (thus ensuring that invariants are not too
strong) but also the validity of verification conditions (thus ensuring that
invariants are not too weak). Thus errors may may be detected quickly
before attempting a proof-based verification for models of arbitrary size.

• The RISC ProgramExplorer [95,96] is a system for the verification of pro-
grams written in a subset of Java where the contracts of Java methods
are specified in first-order logic. The system translates the bodies of proce-
dures to state relations which are appropriately simplified and presented
to the user such that she may inspect the relations with respect to their
adequacy to satisfy the specified contracts. If no apparent errors are de-
tected, she may discharge the verification conditions generated from the
state relations with the help of the previously presented RISC ProofNavi-
gator [93,94] as a semi-automatic proof assistant.

The specifications used in the following presentations can be downloaded
from the URLs

https://www.risc.jku.at/people/schreine/TP/software/prog/prog.txt
https://www.risc.jku.at/people/schreine/TP/software/prog/Prog.java

and loaded by executing from the command line the following commands:

RISCAL prog.txt &
ProgramExplorer & (in an empty directory containing Prog.java)

479

https://www.risc.jku.at/people/schreine/TP/software/prog/prog.txt
https://www.risc.jku.at/people/schreine/TP/software/prog/Prog.java

480 Program Reasoning in RISCAL and the RISC ProgramExplorer

Fig. 8.11 The RISCAL Graphical User Interface

RISCAL

RISCAL (RISC Algorithm Language) is a software system with a graphical
user interface; when started from the command line with the name prog.txt
of a text file as an argument, the system opens the window depicted in
Figure 8.11. This window displays the contents of the file in an editor area
to the left and various control elements and an output area to the right.

The file contains the model of a variant of the linear search algorithm that
was specified in Section 8.1 and verified in Section 8.5. This model starts
with the declaration of various constants and types that describe the domain
in which the algorithm operates:

val N:N; val M:N;
type int = Z[-1,N];
type elem = N[M];
type array = Array[N,elem];

Here the constant N denotes the length of the arrays we consider; their ele-
ments are natural numbers up to the maximum value M. Furthermore int ,
elem and array denote the types of array indices (including −1 and N), of
array elements, and of the arrays themselves, respectively. The specification
may contain Unicode symbols such as N and Z; these symbols may be gener-
ated by typing in the editor Nat respectively Int and then pressing the key
shortcut <Ctrl>+#.

© 2019 Wolfgang Schreiner.

481

The remainder of the file contains the declaration of a procedure annotated
with its contract:

proc search(a:array, x:elem): int
ensures
if ¬∃k:int with 0 ≤ k ∧ k < N. a[k] = x then
result = -1

else
0 ≤ result ∧ result < N ∧
a[result] = x ∧ ∀k:int with 0 ≤ k ∧ k < result. a[k] , x;

{ ... }

This contract specifies no precondition (which is equivalent to the precondi-
tion “true”) but by the clause ensures a postcondition; in the postcondition,
the special name result refers to the return value of the procedure. Thus, if
the given argument array a does not contain at any position the element x,
the procedure returns the value −1; otherwise it returns the smallest index
at which x occurs in a.

The body of the procedure marked as “. . . ” is given below:

var i:int = 0;
var r:int = -1;
while i < N ∧ r = -1 do
{
if a[i] = x
then r B i;
else i B i+1;

}
return r;

This body represents essentially the command given in Section 8.5. To check
the correctness of the procedure, we open via the “Other Values” button
a menu that allows us to give values to the model constants, e.g., N := 4 and
M := 3. We then select in the “Operation” panel the operation search and
press the “Start Execution” button . This lets the procedure run for all
possible values of its input parameters, which produces the following output:

Executing search(Array[Z],Z) with all 1024 inputs.
Execution completed for ALL inputs (70 ms, 1024 checked, 0 inadmissible).

In the course of these executions the postcondition was checked for every
result value of the procedure. For instance, if we change the test a[i] = x
erroneously to a[i] , x, the checker produces the following error message:

ERROR in execution of search([0,0,0,0],0): evaluation of
ensures if ¬(∃k:int with (0 ≤ k) ∧ (k < N). (a[k] = x)) then ...

at line 18 in file prog.txt:
postcondition is violated by result -1 for application search(...)

To further validate the correctness of the procedure, we annotate its core
loop with an invariant and a termination measure:

© 2019 Wolfgang Schreiner.

482 Program Reasoning in RISCAL and the RISC ProgramExplorer

while i < N ∧ r = -1 do
invariant 0 ≤ i ∧ i ≤ N;
invariant ∀k:int. 0 ≤ k ∧ k < i ⇒ a[k] , x;
invariant r = -1 ∨ (r = i ∧ i< N ∧ a[r] = x);
decreases if r = -1 then N-i else 0;

{ ... }

Here the invariant is represented by the conjunction of the formulas specified
in the multiple invariant clauses; the termination measure is specified by
the term in the decreases clause. With these annotations, every execution
of the procedure now also checks whether the invariant holds before and
after every loop iteration and whether every loop iteration decreases the
termination measure but does not make it negative. Thus, if we introduce
the same error as above, we get now the following message:

ERROR in execution of search([0,0,0,0],0): evaluation of
invariant ∀k:int. (((0 ≤ k) ∧ (k < i)) ⇒ (a[k] , x));

at line 29 in file prog.txt:
invariant is violated

Likewise, if we introduce by a clause decreases N-i a wrong termination
measure, we get the following message:

ERROR in execution of search([0,0,0,0],0): evaluation of
decreases N-i;

at line 31 in file prog.txt:
variant value 4 is not less than old value 4

By such checks we may validate the loop annotations, in particular we may
ensure that an invariant is not too strong, i.e., that it is not violated by any
iteration of the loop. However, this does not yet rule out that the invariant is
too weak, i.e., that it would not be able to carry a proof-based verification.

To further increase our confidence in the adequacy of the program and
its specification, we press the “Show/Hide Tasks” button , which opens an
additional panel depicted in the left part of Figure 8.12. This panel lists a
number of tasks that are still “open” (the red color indicates that the tasks
have not yet been performed). Apart from “Execute Operation” (which we
have already demonstrated above), there are essentially two sets of tasks,
those for validating a specification, and those for verifying the procedure.

The tasks listed under “Validate Specification” allow us to investigate the
adequacy of the procedure contract (i.e., to ensure that ir really expresses
our intentions). For instance, the task “Execute Specification” generates from
the contract the implicitly specified function

fun _search_0_Spec(a:array, x:elem): int = choose result:int with
if ... then result = (-1) else ... ;

If we execute this operation by a double-click (with the options “Nondeter-
minism” selected and “Silent” not selected), the system prints out all pairs of
input/output values admitted by the specification:

© 2019 Wolfgang Schreiner.

483

Fig. 8.12 Performing the Validation and Verification Tasks

Executing search(Array[Z],Z) with all 1024 inputs.
Run 0 of deterministic function search([0,0,0,0],0):
Result (0 ms): 0
Run 1 of deterministic function search([1,0,0,0],0):
Result (0 ms): 1
...
Run 5 of deterministic function search([1,1,0,0],0):
Result (0 ms): 2
...
Run 1023 of deterministic function search([3,3,3,3],3):
Result (0 ms): 0
Execution completed for ALL inputs (6757 ms, 1024 checked, ...).

Likewise, the task “Is result uniquely determined?” generates a theorem

theorem _search_0_PostUnique(a:array, x:elem) ⇔
∀result:int with (∀_result:int with (result = _result));

whose validity we may check to ensure that the specification does not allow
for one input multiple outputs:

Executing _search_0_PostUnique(Array[Z],Z) with all 1024 inputs.
Execution completed for ALL inputs (82 ms, 1024 checked, 0 inadmissible).

The majority of the tasks, however, deals with the validity of the verifi-
cation conditions generated from the program and its annotations. For this

© 2019 Wolfgang Schreiner.

484 Program Reasoning in RISCAL and the RISC ProgramExplorer

purpose, RISCAL implements a variant of the weakest precondition calculus
introduced in Section 8.3; this variant does not result in a single monolithic
verification condition but in a lot of small conditions; if a particular condition
is not valid, the source of the error thus becomes easier to find. The condition
“Is result correct?” is the core condition: it checks whether the precondition of
the procedure implies the weakest precondition calculated from the body of
the procedure. The tasks listed under “Verify implementation precondition”
are side conditions that check whether all operations in the procedure are
well-defined, i.e., whether they are only applied to legal arguments.

The conditions listed under “Verify iteration and recursion” deal with the
verification of loops and recursive procedures: in our example, they check
whether the various invariants hold in the initial state of the loop and whether
every branch of the loop body preserves their validity and decreases the
termination measure. By single-clicking a task the relevant part of the code
is high-lighted, by double-clicking its validity is checked. For example, if we
single-click the first task labeled “Is loop invariant preserved?”, the following
piece of code is highlighted:

The verification task thus checks the preservation of the first invariant in the
first branch of the loop body. If we double-click the task, the validity of the
condition is checked:

Executing _search_0_LoopOp4(Array[Z],Z) with all 1024 inputs.
Execution completed for ALL inputs (164 ms, 1024 checked, ...).

If we select by a right-click the top-level task folder a menu pops up with an
entry “Execute all tasks”. By selecting this entry, all tasks are closed in a few
seconds and thus turn blue as indicated in the right part of Figure 8.12.

By the fully automatic checking of some small models, RISCAL allows to
quickly falsify programs, in particular also to find errors and inadequacies
in their contracts and their formal annotations. This is much easier than
finding the source of errors from failed proof attempts, which may be due
to errors in the models, but (more often than not) also due to inadequacies
in the proof strategy respectively proof automation. However, to ultimately
verify a program, i.e., to show that is is correct in all models of arbitrary
size, indeed proof-based verification is required.

© 2019 Wolfgang Schreiner.

	Part I The Foundations
	Syntax and Semantics
	Abstract Syntax
	Structural Induction
	Semantics
	Type Systems
	The Semantics of Typed Languages
	Exercises
	Further Reading

	Abstract Syntax Trees in OCaml
	The Language of Logic
	First-Order Logic
	Informal Interpretation
	Well-Formed Terms and Formulas
	Propositional Logic
	Free and Bound Variables
	Formal Semantics
	Validity and Equivalence
	Exercises
	Further Reading

	The Logic of the RISC ProofNavigator
	The Art of Reasoning
	Reasoning and Proofs
	Inference Rules and Proof Trees
	Reasoning in First Order Logic
	Reasoning by Induction
	Exercises
	Further Reading

	Reasoning with the RISC ProofNavigator
	Building Models
	Axioms and Definitions
	The Theory of Sets
	Products and Sums
	Set-Theoretic Functions and Relations
	More Type Constructions
	Implicit Definitions and Function Specifications
	Exercises
	Further Reading

	Writing Definitions in Isabelle/HOL
	Recursion
	Recursive Definitions
	Primitive Recursion
	Least and Greatest Fixed Points
	Defining Continuous Functions
	Inductive and Coinductive Relation Definitions
	Rule-Oriented Inductive and Coinductive Relation Definitions
	Inductive and Coinductive Function Definitions
	Inductive and Coinductive Proofs
	Exercises
	Further Reading

	Recursive Definitions in Isabelle/HOL

	Part II The Upper Floors
	Abstract Data Types
	Introduction
	Declarations, Signatures, and Presentations
	Algebras, Homomorphisms, and Abstract Data Types
	Loose Specifications
	Generated and Free Specifications
	Cogenerated and Cofree Specifications
	Specifying in the Large
	Reasoning about Specifications
	Exercises
	Further Reading

	Abstract Data Types in CafeOBJ and CASL
	Programming Languages
	Programs and Commands
	A Denotational Semantics
	An Operational Semantics
	The Correctness of Translations
	Procedures
	Exercises
	Further Reading

	Language Semantics in OCaml and the K Framework
	Computer Programs
	Specifying Problems
	Verifying Programs
	Predicate Transformers and Commands as Relations
	Non-Abortion and Termination
	Loop Invariants and Termination Measures
	The Refinement of Commands
	Reasoning about Procedures
	Exercises
	Further Reading

	Program Reasoning in RISCAL and the RISC ProgramExplorer
	References
	Index

