Specifying and Verifying System Properties

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

1. The Basics of Temporal Logic

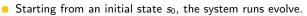
2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

Motivation

We need a language for specifying system properties.

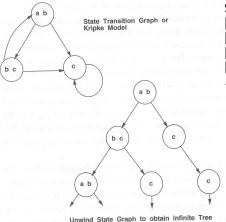
- A system S is a pair $\langle I, R \rangle$.
 - Initial states I, transition relation R.
 - More intuitive: reachability graph.



- Consider the reachability graph as an infinite computation tree.
 - Different tree nodes may denote occurrences of the same state.
 - **Each** occurrence of a state has a unique predecessor in the tree.
 - Every path in this tree is infinite.
 - Every finite run $s_0 \to \ldots \to s_n$ is extended to an infinite run $s_0 \to \ldots \to s_n \to s_n \to s_n \to s_n \to \ldots$
- Or simply consider the graph as a set of system runs.
 - Same state may occur multiple times (in one or in different runs).

Temporal logic describes such trees respectively sets of system runs.

Computation Trees versus System Runs



Set of system runs:

$$[a,b] \rightarrow c \rightarrow c \rightarrow \dots$$

$$[a,b] \rightarrow [b,c] \rightarrow c \rightarrow \dots$$

$$[a,b] \rightarrow [b,c] \rightarrow [a,b] \rightarrow \dots$$

 $[a,b] \rightarrow [b,c] \rightarrow [a,b] \rightarrow \dots$

Figure 3.1
Computation trees.

4/65

State Formula

Temporal logic is based on classical logic.

- A state formula F is evaluated on a state s.
 - Any predicate logic formula is a state formula: $p(x), \neg F, F_0 \land F_1, F_0 \lor F_1, F_0 \Rightarrow F_1, F_0 \Leftrightarrow F_1, \forall x : F, \exists x : F.$
 - In propositional temporal logic only propositional logic formulas are state formulas (no quantification):

$$p, \neg F, F_0 \land F_1, F_0 \lor F_1, F_0 \Rightarrow F_1, F_0 \Leftrightarrow F_1.$$

- Semantics: $s \models F$ ("F holds in state s").
 - Example: semantics of conjunction.
 - $(s \models F_0 \land F_1) :\Leftrightarrow (s \models F_0) \land (s \models F_1).$
 - " $F_0 \wedge F_1$ holds in s if and only if F_0 holds in s and F_1 holds in s".

Classical logic reasoning on individual states.

Temporal Logic

Extension of classical logic to reason about multiple states.

- Temporal logic is an instance of modal logic.
 - Logic of "multiple worlds (situations)" that are in some way related.
 - Relationship may e.g. be a temporal one.
 - Amir Pnueli, 1977: temporal logic is suited to system specifications.
 - Many variants, two fundamental classes.
- Branching Time Logic
 - Semantics defined over computation trees.

At each moment, there are multiple possible futures.

- Prominent variant: CTL.
 - Computation tree logic; a propositional branching time logic.
- Linear Time Logic
 - Semantics defined over sets of system runs.

At each moment, there is only one possible future.

- Prominent variant: PLTL.
 - A propositional linear time logic.

Branching Time Logic (CTL)

We use temporal logic to specify a system property F.

- **Core question:** $S \models F$ ("F holds in system S").
 - System $S = \langle I, R \rangle$, temporal logic formula F.
- Branching time logic:
 - $S \models F :\Leftrightarrow S, s_0 \models F$, for every initial state s_0 of S.
 - Property F must be evaluated on every pair of system S and initial state s_0 .
 - Given a computation tree with root s_0 , F is evaluated on that tree.

CTL formulas are evaluated on computation trees.

State Formulas

We have additional state formulas.

- A state formula F is evaluated on state s of System S.
 - Every (classical) state formula f is such a state formula.
 - Let *P* denote a path formula (later).
 - Evaluated on a path (state sequence) $p = p_0 \rightarrow p_1 \rightarrow p_2 \rightarrow \dots$ $R(p_i, p_{i+1})$ for every i; p_0 need not be an initial state.
 - Then the following are state formulas:

A
$$P$$
 ("in every path P "), **E** P ("in some path P ").

- Path quantifiers: A, E.
- Semantics: $S, s \models F$ ("F holds in state s of system S").

$$S, s \models f :\Leftrightarrow s \models f.$$

 $S, s \models A P :\Leftrightarrow S, p \models P$, for every path p of S with $p_0 = s$.

$$S, s \models \mathbf{E} P :\Leftrightarrow S, p \models P$$
, for some path p of S with $p_0 = s$.

Path Formulas

We have a class of formulas that are not evaluated over individual states.

- \blacksquare A path formula P is evaluated on a path p of system S.
 - Let F and G denote state formulas.
 - Then the following are path formulas:

```
X F ("next time F"), G F ("always F"), F F ("eventually F"), F U G ("F until G").
```

- Temporal operators: X, G, F, U.
- Semantics: $S, p \models P$ ("P holds in path p of system S").

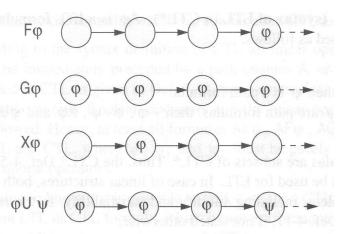
```
S, p \models \mathbf{X} \ F :\Leftrightarrow S, p_1 \models F.

S, p \models \mathbf{G} \ F :\Leftrightarrow \forall i \in \mathbb{N} : S, p_i \models F.

S, p \models \mathbf{F} \ F :\Leftrightarrow \exists i \in \mathbb{N} : S, p_i \models F.

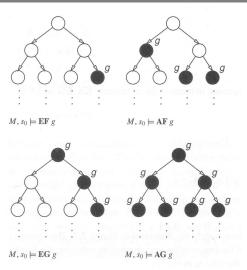
S, p \models F \ \mathbf{U} \ G :\Leftrightarrow \exists i \in \mathbb{N} : S, p_i \models G \land \forall j \in \mathbb{N}_i : S, p_i \models F.
```

Path Formulas



Thomas Kropf: "Introduction to Formal Hardware Verification", 1999.

Path Quantifiers and Temporal Operators



Edmund Clarke et al: "Model Checking", 1999.

Linear Time Logic (LTL)

We use temporal logic to specify a system property P.

- **Core question**: $S \models P$ ("P holds in system S").
 - System $S = \langle I, R \rangle$, temporal logic formula P.
- Linear time logic:
 - $S \models P$:⇔ $r \models P$, for every run r of S.
 - Property P must be evaluated on every run r of S.
 - Given a computation tree with root s_0 , P is evaluated on every path of that tree originating in s_0 .
 - If P holds for every path, P holds on S.

LTL formulas are evaluated on system runs.

Formulas

No path quantifiers; all formulas are path formulas.

- Every formula is evaluated on a path p.
 - Also every state formula f of classical logic (see below).
 - Let F and G denote formulas.
 - Then also the following are formulas:

X
$$F$$
 ("next time F "), often written $\bigcirc F$,

G
$$F$$
 ("always F "), often written $\Box F$,

F
$$F$$
 ("eventually F "), often written $\Diamond F$,

$$F$$
 U G (" F until G ").

- Semantics: $p \models P$ ("P holds in path p").
 - $p^i := \langle p_i, p_{i+1}, \ldots \rangle.$ $p \models f :\Leftrightarrow p_0 \models f$.

$$p \models t :\Leftrightarrow p_0 \models t$$
.

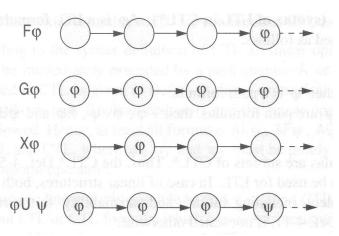
$$p \models \mathbf{X} \ F :\Leftrightarrow p^1 \models F.$$

$$p \models \mathbf{G} F :\Leftrightarrow \forall i \in \mathbb{N} : p^i \models F.$$

$$p \models \mathbf{F} \ F : \Leftrightarrow \exists i \in \mathbb{N} : p^i \models F.$$

$$p \models F \cup G : \Leftrightarrow \exists i \in \mathbb{N} : p^i \models G \land \forall j \in \mathbb{N}_i : p^j \models F.$$

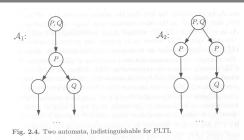
Formulas



Thomas Kropf: "Introduction to Formal Hardware Verification", 1999.

We use temporal logic to specify a system property P.

- **Core question:** $S \models P$ ("P holds in system S").
 - System $S = \langle I, R \rangle$, temporal logic formula P.
- Branching time logic:
 - $S \models P :\Leftrightarrow S, s_0 \models P$, for every initial state s_0 of S.
 - Property P must be evaluated on every pair (S, s_0) of system S and initial state s_0 .
 - Given a computation tree with root s_0 , P is evaluated on that tree.
- Linear time logic:
 - $S \models P :\Leftrightarrow r \models P$, for every run r of s.
 - Property P must be evaluated on every run r of S.
 - Given a computation tree with root s_0 , P is evaluated on every path of that tree originating in s_0 .
 - If P holds for every path, P holds on S.



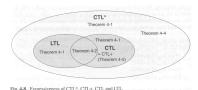
- B. Berard et al: "Systems and Software Verification", 2001.
- Linear time logic: both systems have the same runs.
 - Thus every formula has same truth value in both systems.
- Branching time logic: the systems have different computation trees.
 - Take formula $AX(EX Q \land EX \neg Q)$.
 - True for left system, false for right system.

The two variants of temporal logic have different expressive power.

Is one temporal logic variant more expressive than the other one?

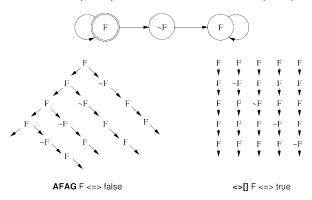
- CTL formula: AG(EF F).
 - "In every run, it is at any time still possible that later F will hold".
 - Property cannot be expressed by any LTL logic formula.
- LTL formula: $\Diamond \Box F$ (i.e. **FG** F).
 - "In every run, there is a moment from which on F holds forever.".
 - Naive translation **AFG** F is **not** a CTL formula.
 - **G** *F* is a path formula, but **F** expects a state formula!
 - Translation **AFAG** *F* expresses a stronger property (see next page).
 - Property cannot be expressed by any CTL formula.

None of the two variants is strictly more expressive than the other one; no variant can express every system property.



Thomas Kropf: "Introduction to Formal Hardware Verification", 1999.

Proof that **AFAG** F (CTL) is different from $\Diamond \Box F$ (LTL).



In every run, there is a moment when it is guarantueed that from now on F holds forever.

In every run, there is a moment from which on F holds forever.

1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

Linear Time Logic

Why using linear time logic (LTL) for system specifications?

- LTL has many advantages:
 - LTL formulas are easier to understand.
 - Reasoning about computation paths, not computation trees.
 - No explicit path quantifiers used.
 - LTL can express most interesting system properties.
 - Invariance, guarantee, response, ... (see later).
 - LTL can express fairness constraints (see later).
 - CTL cannot do this.
 - But CTL can express that a state is reachable (which LTL cannot).
- LTL has also some disadvantages:
 - LTL is strictly less expressive than other specification languages.
 - **CTL*** or μ -calculus.
 - Asymptotic complexity of model checking is higher.
 - LTL: exponential in size of formula; CTL: linear in size of formula.
 - In practice the number of states dominates the checking time.

Frequently Used LTL Patterns

In practice, most temporal formulas are instances of particular patterns.

Pattern	Pronounced	Name
$\Box F$	always <i>F</i>	invariance
$\Diamond F$	eventually F	guarantee
$\Box \Diamond F$	F holds infinitely often	recurrence
$\Diamond\Box F$	eventually F holds permanently	stability
$\Box(F\Rightarrow \Diamond G)$	always, if F holds, then	response
	eventually G holds	
$\Box(F\Rightarrow(G\ \mathbf{U}\ H))$	always, if F holds, then	precedence
	G holds until H holds	

Typically, there are at most two levels of nesting of temporal operators.

Examples

- Mutual exclusion: $\Box \neg (pc_1 = C \land pc_2 = C)$.
 - Alternatively: $\neg \diamondsuit (pc_1 = C \land pc_2 = C)$.
 - Never both components are simultaneously in the critical region.
- No starvation: $\forall i : \Box(pc_i = W \Rightarrow \Diamond pc_i = R)$.
 - Always, if component *i* waits for a response, it eventually receives it.
- No deadlock: $\Box \neg \forall i : pc_i = W$.
 - Never all components are simultaneously in a wait state W.
- Precedence: $\forall i : \Box(pc_i \neq C \Rightarrow (pc_i \neq C \cup lock = i)).$
 - Always, if component i is out of the critical region, it stays out until it receives the shared lock variable (which it eventually does).
- Partial correctness: $\Box(pc = L \Rightarrow C)$.
 - Always if the program reaches line *L*, the condition *C* holds.
- Termination: $\forall i : \Diamond (pc_i = T)$.
 - Every component eventually terminates.

Example

If event a occurs, then b must occur before c can occur (a run ..., a, $(\neg b)^*$, c, ... is illegal).

First idea (wrong)

$$a \Rightarrow \dots$$

- Every run d, \ldots becomes legal.
- Next idea (correct)

$$\Box$$
($a \Rightarrow ...$)

■ First attempt (wrong)

$$\Box$$
($a \Rightarrow (b \ \mathbf{U} \ c))$

- Run $a, b, \neg b, c, \ldots$ is illegal.
- Second attempt (better)

$$\Box(a \Rightarrow (\neg c \ \mathbf{U} \ b))$$

- Run $a, \neg c, \neg c, \neg c, \dots$ is illegal.
- Third attempt (correct)

$$\Box(a \Rightarrow ((\Box \neg c) \lor (\neg c \cup b)))$$

Specifier has to think in terms of allowed/prohibited sequences.

Temporal Rules

Temporal operators obey a number of fairly intuitive rules.

- Extraction laws:
 - $\Box F \Leftrightarrow F \land \bigcirc \Box F.$
 - $\diamond F \Leftrightarrow F \lor \Diamond \diamond F.$
 - $F \cup G \Leftrightarrow G \vee (F \wedge \bigcirc (F \cup G))$.
- Negation laws:
 - $\neg \Box F \Leftrightarrow \Diamond \neg F$.
 - $\neg \Diamond F \Leftrightarrow \Box \neg F$.
 - $\neg (F \cup G) \Leftrightarrow ((\neg G) \cup (\neg F \land \neg G)) \lor \neg \Diamond G.$
- Distributivity laws:
 - $\square (F \wedge G) \Leftrightarrow (\square F) \wedge (\square G).$

 - \blacksquare $(F \land G) \cup H \Leftrightarrow (F \cup H) \land (G \cup H).$
 - $F \mathbf{U} (G \vee H) \Leftrightarrow (F \mathbf{U} G) \vee (F \mathbf{U} H).$
 - $\Box \Diamond (F \vee G) \Leftrightarrow (\Box \Diamond F) \vee (\Box \Diamond G).$

Classes of System Properties

There exists two important classes of system properties.

- Safety Properties:
 - A safety property is a property such that, if it is violated by a run, it is already violated by some finite prefix of the run.
 - This finite prefix cannot be extended in any way to a complete run satisfying the property.
 - **Example:** $\Box F$ (with state property F).
 - The violating run $F \to F \to \neg F \to \dots$ has the prefix $F \to F \to \neg F$ that cannot be extended in any way to a run satisfying $\Box F$.
- Liveness Properties:
 - A liveness property is a property such that every finite prefix can be extended to a complete run satisfying this property.
 - Only a complete run itself can violate that property.
 - **Example:** $\Diamond F$ (with state property F).
 - Any finite prefix p can be extended to a run $p \rightarrow F \rightarrow \dots$ which satisfies $\Diamond F$

System Properties

Not every system property is itself a safety property or a liveness property.

- **Example:** $P :\Leftrightarrow (\Box A) \land (\Diamond B)$ (with state properties A and B)
 - Conjunction of a safety property and a liveness property.
- Take the run $[A, \neg B] \rightarrow [A, \neg B] \rightarrow [A, \neg B] \rightarrow \dots$ violating P.
 - Any prefix $[A, \neg B] \to \ldots \to [A, \neg B]$ of this run can be extended to a run $[A, \neg B] \to \ldots \to [A, \neg B] \to [A, B] \to [A, B] \to \ldots$ satisfying P.
 - Thus *P* is not a safety property.
- Take the finite prefix $[\neg A, B]$.
 - This prefix cannot be extended in any way to a run satisfying P.
 - Thus *P* is not a liveness property.

So is the distinction "safety" versus "liveness" really useful?.

System Properties

The real importance of the distinction is stated by the following theorem.

Theorem:

Every system property P is a conjunction $S \wedge L$ of some safety property S and some liveness property L.

- If L is "true", then P itself is a safety property.
- If S is "true", then P itself is a liveness property.

Consequence:

- Assume we can decompose P into appropriate S and L.
- For verifying $M \models P$, it then suffices to verify:
 - Safety: $M \models S$.
 - Liveness: $M \models L$.
- Different strategies for verifying safety and liveness properties.

For verification, it is important to decompose a system property in its "safety part" and its "liveness part".

Verifying Safety

28/65

We only consider a special case of a safety property.

- $M \models \Box F$.
 - F is a state formula (a formula without temporal operator).
 - Verify that F is an invariant of system M.
- $M = \langle I, R \rangle$.
 - $I(s):\Leftrightarrow \dots$
 - $R(s,s') : \Leftrightarrow R_0(s,s') \vee R_1(s,s') \vee \ldots \vee R_{n-1}(s,s').$
- Induction Proof.
 - $\forall s: I(s) \Rightarrow F(s).$
 - Proof that F holds in every initial state.
 - $\forall s, s' : F(s) \land R(s, s') \Rightarrow F(s').$
 - Proof that each transition preserves F.
 - Reduces to a number of subproofs:

$$F(s) \wedge R_0(s, s') \Rightarrow F(s')$$

...
 $F(s) \wedge R_{n-1}(s, s') \Rightarrow F(s')$

Example


```
var x := 0
                                   dool
                                                                                     dool
                                       p_0: wait x=0
                                                                                         q_0: wait x=1
                                       p_1: x := x + 1
                                                                                         a_1: x := x - 1
         State = \{p_0, p_1\} \times \{q_0, q_1\} \times \mathbb{Z}.
         I(p, a, x) : \Leftrightarrow p = p_0 \land a = a_0 \land x = 0.
         R(\langle p, q, x \rangle, \langle p', q', x' \rangle) : \Leftrightarrow P_0(\ldots) \vee P_1(\ldots) \vee Q_0(\ldots) \vee Q_1(\ldots).
         P_0(\langle p, q, x \rangle, \langle p', q', x' \rangle) : \Leftrightarrow p = p_0 \land x = 0 \land p' = p_1 \land q' = q \land x' = x.
         P_1(\langle p, q, x \rangle, \langle p', q', x' \rangle) : \Leftrightarrow p = p_1 \wedge p' = p_0 \wedge a' = a \wedge x' = x + 1.
         Q_0(\langle p, q, x \rangle, \langle p', q', x' \rangle) : \Leftrightarrow q = q_0 \land x = 1 \land p' = p \land q' = q_1 \land x' = x.
         Q_1(\langle p, q, x \rangle, \langle p', q', x' \rangle) : \Leftrightarrow q = q_1 \wedge p' = p \wedge q' = q_0 \wedge x' = x - 1.
Prove \langle I, R \rangle \models \Box (x = 0 \lor x = 1).
```

Inductive System Properties

The induction strategy may not work for proving $\Box F$

- Problem: F is not inductive.
 - F is too weak to prove the induction step.
 - $F(s) \wedge R(s,s') \Rightarrow F(s').$
- Solution: find stronger invariant *I*.
 - If $I \Rightarrow F$, then $(\Box I) \Rightarrow (\Box F)$.
 - It thus suffices to prove $\Box I$.
- Rationale: I may be inductive.
 - If yes, I is strong enough to prove the induction step.
 - $I(s) \wedge R(s,s') \Rightarrow I(s').$
 - If not, find a stronger invariant I' and try again.
- Invariant I represents additional knowledge for every proof.
 - Rather than proving $\Box P$, prove $\Box (I \Rightarrow P)$.

The behavior of a system is captured by its strongest invariant.

Example

31/65

- Prove $\langle I, R \rangle \models \Box (x = 0 \lor x = 1)$.
 - Proof attempt fails.
- Prove $\langle I, R \rangle \models \Box G$.

$$G:\Leftrightarrow (x = 0 \lor x = 1) \land (p = p_1 \Rightarrow x = 0) \land (q = q_1 \Rightarrow x = 1).$$

- Proof works.
- $G \Rightarrow (x = 0 \lor x = 1)$ obvious.

See the proof presented in class.

Verifying Liveness

$$egin{array}{lll} \mbox{var } x := 0, y := 0 \ & \mbox{loop} & || & \mbox{loop} \ & x := x + 1 & y := y + 1 \end{array}$$

$$State = \mathbb{N} \times \mathbb{N}; Label = \{p, q\}.$$

$$I(x, y) :\Leftrightarrow x = 0 \land y = 0.$$

$$R(I, \langle x, y \rangle, \langle x', y' \rangle) :\Leftrightarrow$$

$$(I = p \land x' = x + 1 \land y' = y) \lor (I = q \land x' = x \land y' = y + 1).$$

- $\langle I, R \rangle \not\models \Diamond x = 1.$
 - $[x = 0, y = 0] \rightarrow [x = 0, y = 1] \rightarrow [x = 0, y = 2] \rightarrow \dots$
 - This run violates (as the only one) $\Diamond x = 1$.
 - Thus the system as a whole does not satisfy $\Diamond x = 1$.

For verifying liveness properties, "unfair" runs have to be ruled out.

Enabling Condition

When is a particular transition enabled for execution?

- $Enabled_R(I,s) : \Leftrightarrow \exists t : R(I,s,t).$
 - Labeled transition relation R, label I, state s.
 - Read: "Transition (with label) I is enabled in state s (w.r.t. R)".
- Example (previous slide):

```
\begin{aligned} &\textit{Enabled}_{R}(p,\langle x,y\rangle) \\ &\Leftrightarrow \exists x',y': R(p,\langle x,y\rangle,\langle x',y'\rangle) \\ &\Leftrightarrow \exists x',y': \\ &(p=p \land x'=x+1 \land y'=y) \lor \\ &(p=q \land x'=x \land y'=y+1) \\ &\Leftrightarrow (\exists x',y': p=p \land x'=x+1 \land y'=y) \lor \\ &(\exists x',y': p=q \land x'=x \land y'=y+1) \\ &\Leftrightarrow \textit{true} \lor \textit{false} \\ &\Leftrightarrow \textit{true}. \end{aligned}
```

Transition p is always enabled.

Weak Fairness

Weak Fairness

- A run $s_0 \xrightarrow{l_0} s_1 \xrightarrow{l_1} s_2 \xrightarrow{l_2} \dots$ is weakly fair to a transition l, if
 - if transition *I* is eventually permanently enabled in the run,
 - then transition *I* is executed infinitely often in the run.

$$(\exists i : \forall j \geq i : Enabled_R(I, s_i)) \Rightarrow (\forall i : \exists j \geq i : I_i = I).$$

- The run in the previous example was not weakly fair to transition p.
- LTL formulas may explicitly specify weak fairness constraints.
 - Let E_l denote the enabling condition of transition l.
 - Let X_I denote the predicate "transition I is executed".
 - Define $WF_I :\Leftrightarrow (\Diamond \Box E_I) \Rightarrow (\Box \Diamond X_I)$.

 If I is eventually enabled forever, it is executed infinitely often.
 - Prove $\langle I, R \rangle \models (WF_I \Rightarrow P)$.

Property P is only proved for runs that are weakly fair to I.

Alternatively, a model may also have weak fairness "built in".

Example

35/65

$$\begin{aligned} & \textit{State} = \mathbb{N} \times \mathbb{N}; \textit{Label} = \{p, q\}. \\ & \textit{I}(x, y) :\Leftrightarrow x = 0 \land y = 0. \\ & \textit{R}(\textit{I}, \langle x, y \rangle, \langle x', y' \rangle) :\Leftrightarrow \\ & \textit{(I} = p \land x' = x + 1 \land y' = y) \lor (\textit{I} = q \land x' = x \land y' = y + 1). \end{aligned}$$

- $\blacksquare \langle I, R \rangle \models \mathrm{WF}_{p} \Rightarrow \Diamond x = 1.$
 - $[x = 0, y = 0] \rightarrow [x = 0, y = 1] \rightarrow [x = 0, y = 2] \rightarrow \dots$
 - This (only) violating run is not weakly fair to transition p.
 - p is always enabled.
 - p is never executed.

System satisfies specification if weak fairness is assumed.

Strong Fairness

Strong Fairness

- A run $s_0 \xrightarrow{l_0} s_1 \xrightarrow{l_1} s_2 \xrightarrow{l_2} \dots$ is strongly fair to a transition l, if
 - if I is infinitely often enabled in the run,
 - then / is also infinitely often executed the run.

$$(\forall i : \exists j \geq i : Enabled_R(I, s_j)) \Rightarrow (\forall i : \exists j \geq i : I_j = I).$$

- If r is strongly fair to l, it is also weakly fair to l (but not vice versa).
- LTL formulas may explicitly specify strong fairness constraints.
 - Let E_l denote the enabling condition of transition l.
 - Let X_l denote the predicate "transition l is executed".
 - Define $SF_I : \Leftrightarrow (\Box \diamondsuit E_I) \Rightarrow (\Box \diamondsuit X_I)$.

 If I is enabled infinitely often, it is executed infinitely often.
 - Prove $\langle I, R \rangle \models (SF_I \Rightarrow P)$.
- Property P is only proved for runs that are strongly fair to I.

A much stronger requirement to the fairness of a system.

Example


```
loop
                                            a: x := -x
                                            b : choose x := 0 \ [] \ x := 1
    State := \{a, b\} \times \mathbb{Z}; Label = \{A, B_0, B_1\}.
    I(p,x):\Leftrightarrow p=a\wedge x=0.
    R(I, \langle p, x \rangle, \langle p', x' \rangle) : \Leftrightarrow
         (I = A \land (p = a \land p' = b \land x' = -x)) \lor
         (I = B_0 \wedge (p = b \wedge p' = a \wedge x' = 0)) \vee
         (I = B_1 \wedge (p = b \wedge p' = a \wedge x' = 1)).
\blacksquare \langle I, R \rangle \models SF_{B_1} \Rightarrow \Diamond x = 1.
         [a, 0] \xrightarrow{A} [b, 0] \xrightarrow{B_0} [a, 0] \xrightarrow{A} [b, 0] \xrightarrow{B_0} [a, 0] \xrightarrow{A} \dots
         This (only) violating run is not strongly fair to B_1 (but weakly fair).

 B<sub>1</sub> is infinitely often enabled.
```

System satisfies specification if strong fairness is assumed.

B₁ is never executed.

var x=0

Weak versus Strong Fairness

In which situations is which notion of fairness appropriate?

- Process just waits to be scheduled for execution.
 - Only CPU time is required.
 - Weak fairness suffices.
- Process waits for resource that may be temporarily blocked.
 - Critical region protected by lock variable (mutex/semaphore).
 - Strong fairness is required.
- Non-deterministic choices are repeatedly made in program.
 - Simultaneous listing on multiple communication channels.
 - Strong fairness is required.

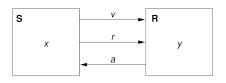
Many other notions or fairness exist.

1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

A Bit Transmission Protocol



var
$$x, y$$

var $v := 0, r := 0, a := 0$

```
S: loop

choose x \in \{0, 1\} ||

1: v, r := x, 1

2: wait a = 1

r := 0
```

R: **loop**

$$1 :$$
wait $r = 1$
 $y, a := v, 1$
 $2 :$ **wait** $r = 0$
 $a := 0$

Transmit a sequence of bits through a wire.

3 : wait a = 0

A (Simplified) Model of the Protocol


```
State := PC^2 \times (\mathbb{N}_2)^5
I(p, q, x, y, v, r, a) : \Leftrightarrow p = q = 1 \land x \in \mathbb{N}_2 \land v = r = a = 0.
R(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) : \Leftrightarrow
   S1(...) \vee S2(...) \vee S3(...) \vee R1(...) \vee R2(...)
S1(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', v', v', r', a' \rangle) : \Leftrightarrow
   p = 1 \land p' = 2 \land v' = x \land r' = 1 \land
   a' = a \wedge x' = x \wedge v' = v \wedge a' = a.
S2(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) : \Leftrightarrow
   p = 2 \land p' = 3 \land a = 1 \land r' = 0 \land
   q' = q \wedge x' = x \wedge y' = y \wedge y' = y \wedge a' = a.
S3(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) : \Leftrightarrow
   p = 3 \land p' = 1 \land a = 0 \land x' \in \mathbb{N}_2 \land
   q' = q \wedge v' = v \wedge v' = v \wedge r' = r \wedge a' = a.
R1(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', v', v', r', a' \rangle) :\Leftrightarrow
   a = 1 \land a' = 2 \land r = 1 \land v' = v \land a' = 1 \land
   p' = p \land x' = x \land v' = v \land r' = r.
R2(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) : \Leftrightarrow
   a = 2 \land a' = 1 \land r = 0 \land a' = 0 \land
   p' = p \land x' = x \land y' = y \land v' = v \land r' = r.
```

A Verification Task

$$\langle I,R \rangle \models \Box (q=2\Rightarrow y=x)$$

 $Invariant(p,...) \Rightarrow (q=2\Rightarrow y=x)$
 $I(p,...) \Rightarrow Invariant(p,...)$
 $R(\langle p,... \rangle, \langle p',... \rangle) \wedge Invariant(p,...) \Rightarrow Invariant(p',...)$
 $Invariant(p,q,x,y,v,r,a) :\Leftrightarrow$
 $(p=1 \lor p=2 \lor p=3) \wedge (q=1 \lor q=2) \wedge$
 $(x=0 \lor x=1) \wedge (v=0 \lor v=1) \wedge (r=0 \lor r=1) \wedge (a=0 \lor a=1) \wedge$
 $(p=1 \Rightarrow q=1 \wedge r=0 \wedge a=0) \wedge$
 $(p=2 \Rightarrow r=1 \wedge v=x) \wedge$
 $(p=3 \Rightarrow r=0) \wedge$
 $(q=1 \Rightarrow a=0) \wedge$
 $(q=2 \Rightarrow (p=2 \lor p=3) \wedge a=1 \wedge y=x)$

The invariant captures the essence of the protocol.

43/65

```
newcontext "protocol";
p: NAT; q: NAT; x: NAT; v: NAT; v: NAT; r: NAT; a: NAT;
pO: NAT; qO: NAT; xO: NAT; yO: NAT; vO: NAT; rO: NAT; aO: NAT;
S1: BOOLEAN =
 p = 1 AND p0 = 2 AND v0 = x AND r0 = 1 AND
 q0 = q AND x0 = x AND y0 = y AND a0 = a;
S2: BOOLEAN =
 p = 2 AND p0 = 3 AND a = 1 AND r0 = 0 AND
 q0 = q AND x0 = x AND y0 = y AND v0 = v AND a0 = a;
S3: BOOLEAN =
 p = 3 AND p0 = 1 AND a = 0 AND (x0 = 0) OR x0 = 1) AND
 q0 = q AND v0 = v AND v0 = v AND r0 = r AND a0 = a;
R1: BOOLEAN =
 q = 1 AND q0 = 2 AND r = 1 AND v0 = v AND a0 = 1 AND
 pO = p AND xO = x AND vO = v AND rO = r:
R2: BOOLEAN =
 q = 2 AND q0 = 1 AND r = 0 AND a0 = 0 AND
 p0 = p AND x0 = x AND y0 = y AND v0 = v AND r0 = r;
```



```
Init: BOOLEAN =
  p = 1 AND q = 1 AND (x = 0) OR x = 1) AND
  v = 0 AND r = 0 AND a = 0:
Step: BOOLEAN =
  S1 OR S2 OR S3 OR R1 OR R2;
Invariant: (NAT, NAT, NAT, NAT, NAT, NAT, NAT)->BOOLEAN =
  LAMBDA(p, q, x, y, v, r, a: NAT):
     (p = 1 OR p = 2 OR p = 3) AND
     (q = 1 OR q = 2) AND
     (x = 0 \text{ OR } x = 1) \text{ AND}
     (v = 0 \text{ OR } v = 1) \text{ AND}
     (r = 0 OR r = 1) AND
     (a = 0 OR a = 1) AND
     (p = 1 \Rightarrow q = 1 \text{ AND } r = 0 \text{ AND } a = 0) \text{ AND}
     (p = 2 \Rightarrow r = 1 \text{ AND } v = x) \text{ AND}
     (p = 3 \Rightarrow r = 0) AND
     (q = 1 \Rightarrow a = 0) AND
     (q = 2 \Rightarrow (p = 2 OR p = 3) AND a = 1 AND y = x);
```



```
Property: BOOLEAN =
    q = 2 => y = x;

VCO: FORMULA
    Invariant(p, q, x, y, v, r, a) => Property;

VC1: FORMULA
    Init => Invariant(p, q, x, y, v, r, a);

VC2: FORMULA
    Step AND Invariant(p, q, x, y, v, r, a) =>
        Invariant(p0, q0, x0, y0, v0, r0, a0);
```

The Proofs

[vd2]: expand Invariant, Property in m2v

[rle]: proved (CVCL)

[wd2]: expand Init, Invariant in nra

[ipl]: proved(CVCL)

[xd2]: expand Step, Invariant, S1, S2, S3, R1, R2

[6ss]: proved(CVCL)

More instructive: proof attempts with wrong or too weak invariants (see demonstration).

A Client/Server System


```
Client system C_i = \langle IC_i, RC_i \rangle.
State := PC \times \mathbb{N}_2 \times \mathbb{N}_2.
Int := \{R_i, S_i, C_i\}.
IC_i(pc, request, answer) :\Leftrightarrow
   pc = R \land request = 0 \land answer = 0.
RC_i(I, \langle pc, request, answer \rangle,
      \langle pc', request', answer' \rangle):
   (I = R_i \land pc = R \land request = 0 \land
      pc' = S \land request' = 1 \land answer' = answer) \lor
   (I = S_i \land pc = S \land answer \neq 0 \land
      pc' = C \land request' = request \land answer' = 0) \lor
   (I = C_i \land pc = C \land request = 0 \land
      pc' = R \land request' = 1 \land answer' = answer) \lor
```

```
Client(ident):
   param ident
begin
  loop
    ...
R: sendRequest()
S: receiveAnswer()
C: // critical region
    ...
    sendRequest()
  endloop
end Client
```

A Client/Server System (Contd)


```
Server:
Server system S = \langle IS, RS \rangle.
                                                                           local given, waiting, sender
State := (\mathbb{N}_3)^3 \times (\{1,2\} \to \mathbb{N}_2)^2.
                                                                        begin
Int := \{D1, D2, F, A1, A2, W\}.
                                                                           given := 0; waiting := 0
                                                                           1000
IS(given, waiting, sender, rbuffer, sbuffer) : \Leftrightarrow
                                                                        D: sender := receiveRequest()
  given = waiting = sender = 0 \land
                                                                              if sender = given then
   rbuffer(1) = rbuffer(2) = sbuffer(1) = sbuffer(2) = 0.
                                                                                 if waiting = 0 then
                                                                        F:
                                                                                    given := 0
RS(I, \langle given, waiting, sender, rbuffer, sbuffer \rangle,
                                                                                 else
     \langle given', waiting', sender', rbuffer', sbuffer' \rangle : \Leftrightarrow
                                                                        A1:
                                                                                    given := waiting;
  \exists i \in \{1,2\}:
                                                                                    waiting := 0
     (I = D_i \land sender = 0 \land rbuffer(i) \neq 0 \land
                                                                                    sendAnswer(given)
     sender' = i \land rbuffer'(i) = 0 \land
                                                                                 endif
     U(given, waiting, sbuffer) \land
                                                                              elsif given = 0 then
     \forall i \in \{1,2\} \setminus \{i\} : U_i(rbuffer)) \vee
                                                                        A2:
                                                                                 given := sender
                                                                                 sendAnswer(given)
                                                                              else
U(x_1,\ldots,x_n):\Leftrightarrow x_1'=x_1\wedge\ldots\wedge x_n'=x_n.
                                                                        W:
                                                                                 waiting := sender
U_i(x_1,\ldots,x_n):\Leftrightarrow \bar{x_1'}(j)=x_1(j)\wedge\ldots\wedge x_n'(j)=x_n(j).
                                                                              endif
                                                                           endloop
```

end Server

A Client/Server System (Contd'2)


```
Server:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     local given, waiting, sender
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 begin
(I = F \land sender \neq 0 \land sender = given \land waiting = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     given := 0; waiting := 0
                  given' = 0 \land sender' = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1000
                    U(waiting, rbuffer, sbuffer)) \lor
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D: sender := receiveRequest()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        if sender = given then
 (I = A1 \land sender \neq 0 \land sbuffer(waiting) = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           if waiting = 0 then
                  sender = given \land waiting \neq 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             given := 0
                  given' = waiting \land waiting' = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           else
                    sbuffer'(waiting) = 1 \land sender' = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 A1:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             given := waiting;
                    U(rbuffer) \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             waiting := 0
                  \forall j \in \{1,2\} \setminus \{waiting\} : U_i(sbuffer) \setminus \{u_i(sbuffer)\} \setminus \{u_i(sbuffer)\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               sendAnswer(given)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           endif
 (I = A2 \land sender \neq 0 \land sbuffer(sender) = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        elsif given = 0 then
                  sender \neq given \land given = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 A2:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           given := sender
                  given' = sender \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            sendAnswer(given)
                  sbuffer'(sender) = 1 \land sender' = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        else
                    U(waiting, rbuffer) \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           waiting := sender
                  \forall i \in \{1,2\} \setminus \{sender\} : U_i(sbuffer) \setminus \forall i \in \{1,2\} \setminus \{sender\} : U_i(sbuffer) \setminus \{sender\} \in U_i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        endif
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     endloop
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 end Server
```

A Client/Server System (Contd'3)


```
(I = W \land sender \neq 0 \land sender \neq given \land given \neq 0 \land
   waiting' := sender \land sender' = 0 \land
  U(given, rbuffer, sbuffer)) \lor
\exists i \in \{1, 2\}:
   (I = REQ_i \land rbuffer'(i) = 1 \land
       U(given, waiting, sender, sbuffer) \land
      \forall j \in \{1,2\} \setminus \{i\} : U_i(rbuffer)) \vee
   (I = \overline{ANS_i} \land sbuffer(i) \neq 0 \land
      sbuffer'(i) = 0 \land
       U(given, waiting, sender, rbuffer) \land
      \forall j \in \{1,2\} \setminus \{i\} : U_i(sbuffer)).
```

```
Server:
  local given, waiting, sender
begin
  given := 0; waiting := 0
  1000
D: sender := receiveRequest()
    if sender = given then
      if waiting = 0 then
F:
        given := 0
      else
A1:
        given := waiting;
        waiting := 0
        sendAnswer(given)
      endif
    elsif given = 0 then
A2:
      given := sender
      sendAnswer(given)
    else
W:
      waiting := sender
    endif
  endloop
```

end Server

A Client/Server System (Contd'4)


```
State := (\{1,2\} \to PC) \times (\{1,2\} \to \mathbb{N}_2)^2 \times (\mathbb{N}_3)^2 \times (\{1,2\} \to \mathbb{N}_2)^2
I(pc, request, answer, given, waiting, sender, rbuffer, sbuffer) : \Leftrightarrow
   \forall i \in \{1, 2\} : IC(pc_i, request_i, answer_i) \land
   IS(given, waiting, sender, rbuffer, sbuffer)
R(\langle pc, request, answer, given, waiting, sender, rbuffer, sbuffer \rangle.
   \langle pc', request', answer', given', waiting', sender', rbuffer', sbuffer' \rangle : \Leftrightarrow
   (\exists i \in \{1,2\} : RC_{local}(\langle pc_i, request_i, answer_i \rangle, \langle pc'_i, request'_i, answer'_i \rangle) \land
       \langle given, waiting, sender, rbuffer, sbuffer \rangle =
          ⟨given', waiting', sender', rbuffer', sbuffer'⟩) ∨
   (RS_{local}(\langle given, waiting, sender, rbuffer, sbuffer),
               \langle given', waiting', sender', rbuffer', sbuffer' \rangle \land \land
      \forall i \in \{1,2\} : \langle pc_i, request_i, answer_i \rangle = \langle pc'_i, request'_i, answer'_i \rangle \} \vee
   (\exists i \in \{1,2\} : External(i, \langle request_i, answer_i, rbuffer, sbuffer),
                                        \langle request'_i, answer'_i, rbuffer', sbuffer' \rangle \land \land
       pc = pc' \land \langle sender, waiting, given \rangle = \langle sender', waiting', given' \rangle
```

The Verification Task

$$\langle I,R\rangle \models \Box \neg (pc_1 = C \land pc_2 = C)$$

```
Invariant(pc, request, answer, sender, given, waiting, rbuffer, sbuffer): ⇔
  \forall i \in \{1, 2\}:
    (pc(i) = C \lor sbuffer(i) = 1 \lor answer(i) = 1 \Rightarrow
       given = i \land
       \forall i: i \neq i \Rightarrow pc(i) \neq C \land sbuffer(i) = 0 \land answer(i) = 0) \land
    (pc(i) = R \Rightarrow
       sbuffer(i) = 0 \land answer(i) = 0 \land
       (i = given \Leftrightarrow request(i) = 1 \lor rbuffer(i) = 1 \lor sender = i) \land
       (request(i) = 0 \lor rbuffer(i) = 0)) \land
    (pc(i) = S \Rightarrow
       (sbuffer(i) = 1 \lor answer(i) = 1 \Rightarrow
           request(i) = 0 \land rbuffer(i) = 0 \land sender \neq i) \land
       (i \neq given \Rightarrow
           request(i) = 0 \lor rbuffer(i) = 0)) \land
    (pc(i) = C \Rightarrow
       request(i) = 0 \land rbuffer(i) = 0 \land sender \neq i \land
       sbuffer(i) = 0 \land answer(i) = 0) \land
```

The Verification Task (Contd)


```
(sender = 0 \land (request(i) = 1 \lor rbuffer(i) = 1) \Rightarrow
   sbuffer(i) = 0 \land answer(i) = 0) \land
(sender = i \Rightarrow
   (waiting \neq i) \land
   (sender = given \land pc(i) = R \Rightarrow
      request(i) = 0 \land rbuffer(i) = 0) \land
   (pc(i) = S \land i \neq given \Rightarrow
      request(i) = 0 \land rbuffer(i) = 0) \land
   (pc(i) = S \land i = given \Rightarrow
      request(i) = 0 \lor rbuffer(i) = 0)) \land
(waiting = i \Rightarrow
  given \neq i \land pc_i = S \land request_i = 0 \land rbuffer(i) = 0 \land
   sbuffer_i = 0 \land answer(i) = 0) \land
(sbuffer(i) = 1 \Rightarrow
   answer(i) = 0 \land request(i) = 0 \land rbuffer(i) = 0
```

As usual, the invariant has been elaborated in the course of the proof.


```
newcontext "clientServer":
Index: TYPE = SUBTYPE(LAMBDA(x:INT): x=1 OR x=2):
IndexO: TYPE = SUBTYPE(LAMBDA(x:INT): x=0 OR x=1 OR x=2):
% program counter type
PCBASE: TYPE;
R: PCBASE: S: PCBASE: C: PCBASE:
PC: TYPE = SUBTYPE(LAMBDA(x:PCBASE): x=R OR x=S OR x=C);
PCs: AXIOM R /= S AND R /= C AND S /= C:
% client states
pc: Index->PC; pc0: Index->PC;
request: Index->BOOLEAN; request0: Index->BOOLEAN;
answer: Index->BOOLEAN; answer0: Index->BOOLEAN;
% server state
given: Index0; given0: Index0;
waiting: Index0; waiting0: Index0;
sender: Index0; sender0: Index0;
rbuffer: Index -> BOOLEAN; rbuffer0: Index -> BOOLEAN;
sbuffer: Index -> BOOLEAN: sbuffer0: Index -> BOOLEAN:
```

The RISC ProofNavigator Theory (Contd)


```
% initial state condition
 ______
IC: (PC, BOOLEAN, BOOLEAN) -> BOOLEAN =
 LAMBDA(pc: PC, request: BOOLEAN, answer: BOOLEAN):
   pc = R AND (request <=> FALSE) AND (answer <=> FALSE);
IS: (IndexO, IndexO, IndexO, Index->BOOLEAN, Index->BOOLEAN) -> BOOLEAN =
 LAMBDA(given: Index0, waiting: Index0, sender: Index0,
        rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN):
   given = 0 AND waiting = 0 AND sender = 0 AND
   (FORALL(i:Index): (rbuffer(i) <=>FALSE) AND (sbuffer(i) <=>FALSE)):
Initial: BOOLEAN =
 (FORALL(i:Index): IC(pc(i), request(i), answer(i))) AND
 IS(given, waiting, sender, rbuffer, sbuffer):
```

The RISC ProofNavigator Theory (Contd'2)


```
transition relation
         _____
RC: (PC, BOOLEAN, BOOLEAN, PC, BOOLEAN, BOOLEAN)->BOOLEAN =
  LAMBDA(pc: PC, request: BOOLEAN, answer: BOOLEAN,
        pc0: PC, request0: BOOLEAN, answer0: BOOLEAN):
    (pc = R AND (request <=> FALSE) AND
      pc0 = S AND (request0 <=> TRUE) AND (answer0 <=> answer)) OR
    (pc = S AND (answer <=> TRUE) AND
      pc0 = C AND (request0 <=> request) AND (answer0 <=> FALSE)) OR
    (pc = C AND (request <=> FALSE) AND
      pc0 = R AND (request0 <=> TRUE) AND (answer0 <=> answer));
RS: (Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN,
    Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN)->BOOLEAN =
 LAMBDA(given: Index0, waiting: Index0, sender: Index0,
        rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN,
        given0: Index0, waiting0: Index0, sender0: Index0,
        rbuffer0: Index->BOOLEAN, sbuffer0: Index->BOOLEAN):
```

The RISC ProofNavigator Theory (Contd'3)


```
(EXISTS(i:Index):
   sender = 0 AND (rbuffer(i) <=> TRUE) AND
   sender0 = i AND (rbuffer0(i) <=> FALSE) AND
   given = givenO AND waiting = waitingO AND sbuffer = sbufferO AND
   (FORALL(j:Index): j /= i => (rbuffer(j) <=> rbuffer0(j)))) OR
(sender /= 0 AND sender = given AND waiting = 0 AND
   given0 = 0 AND sender0 = 0 AND
   waiting = waitingO AND rbuffer = rbufferO AND sbuffer = sbufferO) OR
(sender /= 0 AND
   sender = given AND waiting /= 0 AND
   (sbuffer(waiting) <=> FALSE) AND
   given0 = waiting AND waiting0 = 0 AND
   (sbuffer0(waiting) <=> TRUE) AND (sender0 = 0) AND
   (rbuffer = rbuffer0) AND
   (FORALL(j:Index): j /= waiting => (sbuffer(j) <=> sbuffer0(j)))) OR
(sender /= 0 AND (sbuffer(sender) <=> FALSE) AND
   sender /= given AND given = 0 AND given0 = sender AND
   (sbufferO(sender) <=> TRUE) AND senderO=O AND
   (waiting=waiting0) AND (rbuffer=rbuffer0) AND
   (FORALL(j:Index): j/= sender => (sbuffer(j) <=> sbuffer0(j)))) OR
(sender /= 0 AND sender /= given AND given /= 0 AND
   waiting0 = sender AND sender0 = 0 AND
```

The RISC ProofNavigator Theory (Contd'4)


```
External: (Index. PC. BOOLEAN, BOOLEAN, PC. BOOLEAN, BOOLEAN,
           IndexO, IndexO, IndexO, Index->BOOLEAN, Index->BOOLEAN,
           Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN)->BOOLEAN =
  LAMBDA(i:Index.
         pc: PC, request: BOOLEAN, answer: BOOLEAN,
         pc0: PC, request0: BOOLEAN, answer0: BOOLEAN,
         given: Index0, waiting: Index0, sender: Index0,
           rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN,
         given0: Index0, waiting0: Index0, sender0: Index0,
           rbuffer0: Index->BOOLEAN, sbuffer0: Index->BOOLEAN):
    ((request <=> TRUE) AND
       pc0 = pc AND (request0 <=> FALSE) AND (answer0 <=> answer) AND
         (rbuffer0(i) <=> TRUE) AND given = given0 AND waiting = waiting0
         AND sender = sender() AND shuffer = shuffer() AND
         (FORALL (j: Index): j /= i => (rbuffer(j) <=> rbuffer0(j)))) OR
    (pc0 = pc AND (request0 <=> request) AND (answer0 <=> TRUE) AND
     (sbuffer(i) <=> TRUE) AND (sbuffer0(i) <=> FALSE) AND
     given = givenO AND waiting = waitingO AND sender = senderO AND
     rbuffer = rbuffer0 AND
     (FORALL (j: Index): j /= i => (sbuffer(j) <=> sbuffer0(j))));
```

The RISC ProofNavigator Theory (Contd'5)


```
Next: BOOLEAN =
  ((EXISTS (i: Index):
      RC(pc(i), request(i), answer(i),
         pc0(i), request0(i), answer0(i)) AND
     (FORALL (j: Index): j /= i =>
        pc(j) = pc0(j) AND (request(j) <=> request0(j)) AND
        (answer(j) <=> answer0(j)))) AND
    given = givenO AND waiting = waitingO AND sender = senderO AND
    rbuffer = rbuffer0 AND sbuffer = sbuffer0) OR
  (RS(given, waiting, sender, rbuffer, sbuffer,
      given0, waiting0, sender0, rbuffer0, sbuffer0) AND
   (FORALL (j:Index): pc(j) = pc0(j) AND (request(j) <=> request0(j)) AND
      (answer(j) <=> answer0(j)))) OR
  (EXISTS (i: Index):
    External(i, pc(i), request(i), answer(i),
                pc0(i), request0(i), answer0(i),
             given, waiting, sender, rbuffer, sbuffer,
             given0, waiting0, sender0, rbuffer0, sbuffer0) AND
   (FORALL (j: Index): j /= i =>
      pc(j) = pc0(j) AND (request(j) <=> request0(j)) AND
      (answer(j) <=> answer0(j))));
```

The RISC ProofNavigator Theory (Contd'6)


```
invariant
Invariant: (Index->PC, Index->BOOLEAN, Index->BOOLEAN,
           Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN =
 LAMBDA(pc: Index->PC, request: Index->BOOLEAN, answer: Index->BOOLEAN,
        given: Index0, waiting: Index0, sender: Index0,
        rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN):
   FORALL (i: Index):
      (pc(i) = C OR (sbuffer(i) <=> TRUE) OR (answer(i) <=> TRUE) =>
        given = i AND
         (FORALL (j: Index): j /= i =>
           pc(j) /= C AND
            (sbuffer(j) <=> FALSE) AND (answer(j) <=> FALSE))) AND
      (pc(i) = R =>
         (sbuffer(i) <=> FALSE) AND (answer(i) <=> FALSE) AND
         (i /= given =>
           (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE) AND sender /= i)
           AND
         (i = given =>
           (request(i) <=> TRUE) OR (rbuffer(i) <=> TRUE) OR sender = i) AND
         ((request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND
```

The RISC ProofNavigator Theory (Contd'7)


```
(pc(i) = S =>
  ((sbuffer(i) <=> TRUE) OR (answer(i) <=> TRUE) =>
     (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE) AND sender /= i)
     AND
  (i /= given =>
     (request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND
(pc(i) = C =>
 (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE) AND sender /= i AND
 (sbuffer(i) <=> FALSE) AND (answer(i) <=> FALSE)) AND
(sender = 0 AND ((request(i) <=> TRUE) OR (rbuffer(i) <=> TRUE)) =>
 (sbuffer(i) <=> FALSE) AND (answer(i) <=> FALSE)) AND
(sender = i =>
 (sender = given AND pc(i) = R =>
     (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE)) AND
 waiting /= i AND
 (pc(i) = S AND i /= given =>
     (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE)) AND
 (pc(i) = S AND i = given =>
     (request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND
```

The RISC ProofNavigator Theory (Contd'8)

The RISC ProofNavigator Theory (Contd'9)


```
mutual exclusion proof
 ______
Mut.Ex: FORMUI.A
 Invariant(pc, request, answer, given, waiting, sender, rbuffer, sbuffer) =>
 NOT(pc(1) = C AND pc(2) = C);
 -----
 invariance proof
 ______
Inv1: FORMULA
 Initial =>
   Invariant(pc, request, answer, given, waiting, sender, rbuffer, sbuffer);
Inv2: FORMULA
 Invariant(pc, request, answer, given, waiting, sender,
   rbuffer, sbuffer) AND Next =>
 Invariant(pc0, request0, answer0, given0, waiting0, sender0,
   rbuffer(), sbuffer():
```

The Proofs: MutEx and Inv1

64/65

[m5h]: proved (CVCL)

```
[z3f]: expand Invariant, IC, IS
[nhn]: scatter
[znj]: auto
    [niu]: proved (CVCL)
```

Single application of autostar.

```
[eii]: scatter
                                            [n5h]: proved (CVCL)
 [5ull: auto
                                            [o5h]: proved (CVCL)
   [uvi]: proved (CVCL)
                                            [p5h]: proved (CVCL)
 [6ul]: auto
                                            [q5h]: proved (CVCL)
    [2u6]: proved (CVCL)
                                            [a5i]: proved (CVCL)
 [avl]: auto
                                            [r5i]: proved (CVCL)
    [cuv]: proved (CVCL)
                                            [s5i]: proved (CVCL)
 [bvl]: auto
                                            [t5i]: proved (CVCL)
    [jtl]: proved (CVCL)
                                            [u5i]: auto
 [cvl]: auto
                                             [1br]: proved (CVCL)
   [asb]: proved (CVCL)
                                            [v5i]: auto
 [dvl]: auto
                                             [roy]: proved (CVCL)
                                            [w5i]: auto
    [xrx]: proved (CVCL)
 [evl]: auto
                                             [i26]: proved (CVCL)
    [5an]: proved (CVCL)
                                            [x5i]: proved (CVCL)
 [fvl]: auto
                                            [v5i]: auto
   [fqd]: proved (CVCL)
                                             [wuo]: proved (CVCL)
                                           [z5i]: auto
 [gvl]: auto
    [mpz]: proved (CVCL)
                                             [nbw]: proved (CVCL)
 [hvl]: proved (CVCL)
                                           [z5j]: auto
 [h5h]: auto
                                             [nbn]: proved (CVCL)
    [p3z]: proved (CVCL)
                                           [15i]: auto
 [i5h]: auto
                                             [eou]: proved (CVCL)
    [gib]: proved (CVCL)
                                           [25i]: proved (CVCL)
 [j5h]: auto
                                             [35j]: proved (CVCL)
    [4vi]: proved (CVCL)
                                           [45i]: proved (CVCL)
 [k5h]: auto
                                            [55i]: proved (CVCL)
    [ucq]: proved (CVCL)
                                            [65i]: proved (CVCL)
 [15h]: auto
    [lpx]: proved (CVCL)
```

[oas]: expand Initial, Invariant, IC, IS

The Proofs: Inv2


```
[pas]: scatter
                                               [st6]: scatter
                                                                                 [h4b]: scatter
   [1bh]: expand Next
                                                 [aef]: expand Invariant
                                                                                   [tob]: expand Invariant
      [pzi]: split bfv
                                                    [cwk]: scatter
                                                                                     [h1g]: scatter
        [leh]: decompose
                                                     [al6]: auto
                                                                                       [t4i]: auto
          [pkr]: expand RS
                                                        [seg]: proved (CVCL)
                                                                                         [hpk]: proved (CVCL)
            [lpn]: split 5xv
                                                      ... (21 times)
                                                                                       ... (36 times)
              [pt6]: expand Invariant
                                                     [w16]: proved (CVCL)[neh]: scatter
                [lcw]: scatter
                                                     ... (12 times)
                                                                            [4oc]: expand RC
                                               [tt6]: scatter
                                                                              [nuh]: split nwz
                  [puh]: auto
                    [143]: proved (CVCL)
                                                 [hp6]: expand Invariant
                                                                                 [4ge]: scatter
                  ... (20 times)
                                                   [twl]: scatter
                                                                                   [ney]: expand Invariant
                  [tuh]: proved (CVCL)
                                                                                     [45d]: scatter
                                                     [hqv]: auto
                  ... (15 times)
                                                       [tbi]: proved (CVCL)
                                                                                       [nuil: auto
              [gt6]: expand Invariant
                                                     ... (27 times)
                                                                                         [4wr]: proved (CVCL)
                [snq]: scatter
                                                     [nqv]: proved (CVCL)
                                                                                       ... (36 times)
                  [avil: auto
                                                     ... (6 times)
                                                                                     [5ge]: scatter
                    [cct]: proved (CVCL)[meh]: scatter
                                                                                       [ups]: expand Invariant
                  ... (26 times)
                                           [w3z]: expand External
                                                                                         [o6e]: scatter
                                                                                           [ez5]: auto
                  [gvi]: proved (CVCL)
                                             [3rk]: split lhe
                  ... (6 times)
                                               [g4b]: scatter
                                                                                             [5tu]: proved (CVCL)
              [rt6]: scatter
                                                 [mdh]: expand Invariant
                                                                                           ... (36 times)
                                                   [wzf]: scatter
                [zvk]: expand Invariant
                                                                                     [6ge]: scatter
                  [rvil: scatter
                                                     [3vs]: auto
                                                                                       [21m]: expand Invariant
                    [zgj]: auto
                                                       [gsh]: proved (CVCL)
                                                                                         [66f]: scatter
                      [rhd]: proved (CVCL)
                                                     ... (36 times)
                                                                                           [24u]: auto
                    ... (31 times)
                                                                                             [6qx]: proved (CVCL)
                    [2f3]: proved (CVCL)
                                                                                           ... (36 times)
                    ... (1 times)
```

Ten main branches each requiring only single application of autostar.