

State Formula

Temporal logic is based on classical logic.

- A state formula F is evaluated on a state s.
 - Any predicate logic formula is a state formula: $p(x), \neg F, F_0 \land F_1, F_0 \lor F_1, F_0 \Rightarrow F_1, F_0 \Leftrightarrow F_1, \forall x : F, \exists x : F.$
 - p(x), $(r, r_0, r_1, r_0, v, r_1, r_0, v, r_1, r_0, v, r_1, v, v, r, _x, r, _x, r)$. ■ In propositional temporal logic only propositional logic formulas are
 - state formulas (no quantification):
 - $p, \neg F, F_0 \land F_1, F_0 \lor F_1, F_0 \Rightarrow F_1, F_0 \Leftrightarrow F_1.$
- Semantics: $s \models F$ ("F holds in state s").
 - Example: semantics of conjunction.
 - $\bullet (s \models F_0 \land F_1) :\Leftrightarrow (s \models F_0) \land (s \models F_1).$
 - " $F_0 \wedge F_1$ holds in s if and only if F_0 holds in s and F_1 holds in s".

Classical logic reasoning on individual states.

Wolfgang Schreiner

http://www.risc.jku.at

5/65

Branching Time Logic (CTL)

We use temporal logic to specify a system property F.

- Core question: $S \models F$ ("*F* holds in system *S*").
 - System $S = \langle I, R \rangle$, temporal logic formula F.
- Branching time logic:
 - $S \models F :\Leftrightarrow S, s_0 \models F$, for every initial state s_0 of S.
 - Property F must be evaluated on every pair of system S and initial state s₀.
 - Given a computation tree with root s_0 , F is evaluated on that tree.

CTL formulas are evaluated on computation trees.

Temporal Logic

Extension of classical logic to reason about multiple states.

- Temporal logic is an instance of modal logic.
 - Logic of "multiple worlds (situations)" that are in some way related.
 - Relationship may e.g. be a temporal one.
 - Amir Pnueli, 1977: temporal logic is suited to system specifications.
 - Many variants, two fundamental classes.
- Branching Time Logic
 - Semantics defined over computation trees.
 At each moment, there are multiple possible futures.
 - Prominent variant: CTL.
 - Computation tree logic; a propositional branching time logic.

Linear Time Logic

- Semantics defined over sets of system runs.
 - At each moment, there is only one possible future.
- Prominent variant: PLTL.

A propositional linear time logic.

Wolfgang Schreiner

http://www.risc.jku.at

State Formulas

We have additional state formulas.

- A state formula *F* is evaluated on state *s* of System *S*.
 - Every (classical) state formula *f* is such a state formula.
 - Let *P* denote a path formula (later).
 - Evaluated on a path (state sequence) $p = p_0 \rightarrow p_1 \rightarrow p_2 \rightarrow \dots$

 $R(p_i, p_{i+1})$ for every *i*; p_0 need not be an initial state.

- Then the following are state formulas:
 - **A** P ("in every path P"),
 - **E** P ("in some path P").
- Path quantifiers: A, E.
- Semantics: $S, s \models F$ ("F holds in state s of system S").
 - $S, s \models f :\Leftrightarrow s \models f.$
 - $S, s \models A P : \Leftrightarrow S, p \models P$, for every path p of S with $p_0 = s$.
 - $S, s \models \mathbf{E} P : \Leftrightarrow S, p \models P$, for some path p of S with $p_0 = s$.

Wolfgang Schreiner

Path Formulas

We have a class of formulas that are not evaluated over individual states.

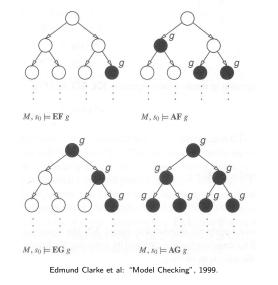
- A path formula *P* is evaluated on a path *p* of system *S*.
 - Let *F* and *G* denote state formulas.
 - Then the following are path formulas:
 - **X** *F* ("next time *F*"), **G** *F* ("always *F*"),
 - **F** F ("eventually F"),
 - F **U** G ("F until G").
 - Temporal operators: X, G, F, U.
- **Semantics**: $S, p \models P$ ("*P* holds in path *p* of system *S*").
 - $\begin{array}{l} S, p \models \mathbf{X} \ F \ :\Leftrightarrow S, p_1 \models F. \\ S, p \models \mathbf{G} \ F \ :\Leftrightarrow \forall i \in \mathbb{N} : S, p_i \models F. \\ S, p \models \mathbf{F} \ F \ :\Leftrightarrow \exists i \in \mathbb{N} : S, p_i \models F. \\ S, p \models F \ \mathbf{U} \ G \ :\Leftrightarrow \exists i \in \mathbb{N} : S, p_i \models G \land \forall j \in \mathbb{N}_i : S, p_j \models F. \end{array}$

Wolfgang Schreiner

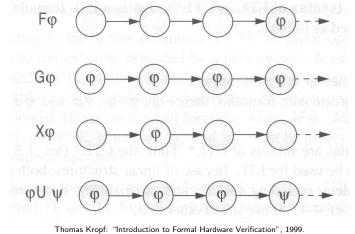
http://www.risc.jku.at

9/65

Path Quantifiers and Temporal Operators



Path Formulas



Thomas Ropi. Introduction to Formal Hardware Vermeation

Wolfgang Schreiner

http://www.risc.jku.at

Linear Time Logic (LTL)

We use temporal logic to specify a system property P.

- Core question: $S \models P$ ("*P* holds in system *S*").
 - System $S = \langle I, R \rangle$, temporal logic formula P.
- Linear time logic:
 - $S \models P$:⇔ $r \models P$, for every run r of S.
 - Property P must be evaluated on every run r of S.
 - Given a computation tree with root s_0 , P is evaluated on every path of that tree originating in s_0 .
 - If *P* holds for every path, *P* holds on *S*.

LTL formulas are evaluated on system runs.

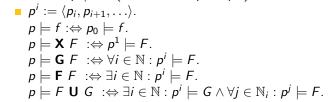
Formulas

No path quantifiers; all formulas are path formulas.

- Every formula is evaluated on a path *p*.
 - Also every state formula *f* of classical logic (see below).
 - Let *F* and *G* denote formulas.
 - Then also the following are formulas:
 - **X** *F* ("next time *F*"), often written $\bigcirc F$,
 - **G** F ("always F"), often written $\Box F$,
 - **F** *F* ("eventually *F*"), often written $\diamond F$,

$$F \mathbf{U} G ("F until G").$$

Semantics: $p \models P$ ("*P* holds in path *p*").



Wolfgang Schreiner

http://www.risc.jku.at

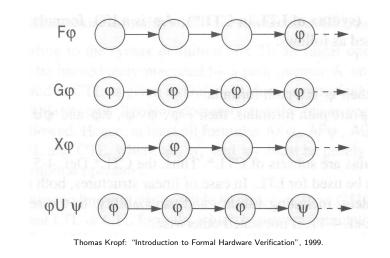
13/65

Branching versus Linear Time Logic

We use temporal logic to specify a system property P.

- Core question: $S \models P$ ("*P* holds in system *S*").
 - System $S = \langle I, R \rangle$, temporal logic formula P.
- Branching time logic:
 - $S \models P :\Leftrightarrow S, s_0 \models P$, for every initial state s_0 of S.
 - Property P must be evaluated on every pair (S, s₀) of system S and initial state s₀.
 - Given a computation tree with root s_0 , P is evaluated on that tree.
- Linear time logic:
 - $S \models P :\Leftrightarrow r \models P$, for every run r of s.
 - Property P must be evaluated on every run r of S.
 - Given a computation tree with root s_0 , P is evaluated on every path of that tree originating in s_0 .
 - If P holds for every path, P holds on S.

Formulas



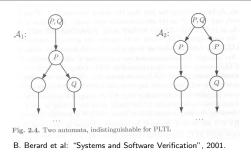
Wolfgang Schreiner

Wolfgang Schreiner

http://www.risc.jku.at

14/65

Branching versus Linear Time Logic



- Linear time logic: both systems have the same runs.
 - Thus every formula has same truth value in both systems.
- Branching time logic: the systems have different computation trees.
 - Take formula **AX**(**EX** $Q \land \mathbf{EX} \neg Q$).
 - True for left system, false for right system.

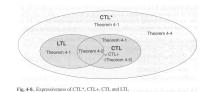
The two variants of temporal logic have different expressive power.

Branching versus Linear Time Logic

Is one temporal logic variant more expressive than the other one?

- CTL formula: AG(EF F).
 - "In every run, it is at any time still possible that later F will hold".
 - Property cannot be expressed by any LTL logic formula.
- **LTL** formula: $\Diamond \Box F$ (i.e. **FG** *F*).
 - "In every run, there is a moment from which on F holds forever.".
 - Naive translation **AFG** *F* is **not** a CTL formula.
 - **G** *F* is a path formula, but **F** expects a state formula!
 - Translation AFAG F expresses a stronger property (see next page).
 - Property cannot be expressed by any CTL formula.

None of the two variants is strictly more expressive than the other one; no variant can express every system property.



Wolfgang Schreiner

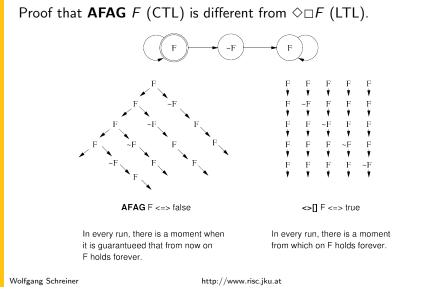
Thomas Kropf: "Introduction to Formal Hardware Verification", 1999. http://www.risc.jku.at 17/65

∧•∧

1. The Basics of Temporal Logic

- 2. Specifying with Linear Time Logic
- 3. Verifying Safety Properties by Computer-Supported Proving

Branching versus Linear Time Logic



Linear Time Logic

Why using linear time logic (LTL) for system specifications?

- LTL has many advantages:
 - LTL formulas are easier to understand.
 - Reasoning about computation paths, not computation trees.
 - No explicit path quantifiers used.
 - LTL can express most interesting system properties.
 - Invariance, guarantee, response, ... (see later).
 - LTL can express fairness constraints (see later).
 - CTL cannot do this.
 - But CTL can express that a state is reachable (which LTL cannot).
- LTL has also some disadvantages:
 - LTL is strictly less expressive than other specification languages.
 CTL* or μ-calculus.
 - CTE OF μ-calculus.
 - Asymptotic complexity of model checking is higher.
 - LTL: exponential in size of formula; CTL: linear in size of formula.
 - In practice the number of states dominates the checking time.

19/65

Wolfgang Schreiner

Frequently Used LTL Patterns

In practice, most temporal formulas are instances of particular patterns.

Pattern	Pronounced	Name
$\Box F$	always F	invariance
$\diamond F$	eventually F	guarantee
$\Box \Diamond F$	F holds infinitely often	recurrence
$\Diamond \Box F$	eventually F holds permanently	stability
$\Box(F \Rightarrow \Diamond G)$	always, if F holds, then	response
	eventually G holds	
$\Box(F \Rightarrow (G \mathbf{U} H))$	always, if F holds, then	precedence
	G holds until H holds	

Typically, there are at most two levels of nesting of temporal operators.

Wolfgang Schreiner

http://www.risc.jku.at

```
21/65
```

Example

If event a occurs, then b must occur before c can occur (a run $\ldots, a, (\neg b)^*, c, \ldots$ is illegal).

First idea (wrong)

 $a \Rightarrow \dots$

- Every run d,... becomes legal.
- Next idea (correct)
 - $\Box(a \Rightarrow \ldots)$
- First attempt (wrong)

```
\Box(a \Rightarrow (b \mathbf{U} c))
```

- **Run** $a, b, \neg b, c, \ldots$ is illegal.
- Second attempt (better)
 - $\Box(a \Rightarrow (\neg c \mathbf{U} b))$
 - **Run** $a, \neg c, \neg c, \neg c, \ldots$ is illegal.
- Third attempt (correct)

$$\Box(a \Rightarrow ((\Box \neg c) \lor (\neg c \ \mathbf{U} \ b)))$$

Specifier has to think in terms of allowed/prohibited sequences.

23/65

http://www.risc.jku.at

- Mutual exclusion: $\Box \neg (pc_1 = C \land pc_2 = C)$.
 - Alternatively: $\neg \Diamond (pc_1 = C \land pc_2 = C)$.
 - Never both components are simultaneously in the critical region.
- No starvation: $\forall i : \Box(pc_i = W \Rightarrow \Diamond pc_i = R)$.
 - Always, if component *i* waits for a response, it eventually receives it.
- No deadlock: $\Box \neg \forall i : pc_i = W$.
 - Never all components are simultaneously in a wait state W.
- Precedence: $\forall i : \Box(pc_i \neq C \Rightarrow (pc_i \neq C \cup lock = i)).$
 - Always, if component *i* is out of the critical region, it stays out until it receives the shared lock variable (which it eventually does).
- Partial correctness: $\Box(pc = L \Rightarrow C)$.
 - Always if the program reaches line *L*, the condition *C* holds.
- **Termination**: $\forall i : \Diamond (pc_i = T)$.
 - Every component eventually terminates.

```
Wolfgang Schreiner
```

Examples

http://www.risc.jku.at

Temporal Rules

Temporal operators obey a number of fairly intuitive rules. Extraction laws: $\blacksquare F \Leftrightarrow F \land \bigcirc \Box F.$ $\bullet \diamond F \Leftrightarrow F \lor \bigcirc \diamond F.$ • $F \mathbf{U} G \Leftrightarrow G \lor (F \land \bigcirc (F \mathbf{U} G)).$ Negation laws: $\neg \Box F \Leftrightarrow \Diamond \neg F.$ $\neg \Diamond F \Leftrightarrow \Box \neg F.$ $\neg (F \ \mathbf{U} \ G) \Leftrightarrow ((\neg G) \ \mathbf{U} \ (\neg F \land \neg G)) \lor \neg \diamondsuit G.$ Distributivity laws: $\blacksquare (F \land G) \Leftrightarrow (\Box F) \land (\Box G).$ $\diamond (F \lor G) \Leftrightarrow (\diamond F) \lor (\diamond G).$ $(F \land G) \mathbf{U} H \Leftrightarrow (F \mathbf{U} H) \land (G \mathbf{U} H).$

> $\bullet F \mathbf{U} (G \lor H) \Leftrightarrow (F \mathbf{U} G) \lor (F \mathbf{U} H).$ $\square \bigcirc (F \lor G) \iff (\square \land F) \lor (\square \land C)$

$$(F \land G) \Leftrightarrow (\Box \diamond F) \land (\Box \diamond G). \\ \Box (F \land G) \Leftrightarrow (\diamond \Box F) \land (\diamond \Box G).$$

$$\diamond \Box (F \land G) \Leftrightarrow (\diamond \Box F) \land (\diamond \Box G)$$

Classes of System Properties

There exists two important classes of system properties.

Safety Properties:

- A safety property is a property such that, if it is violated by a run, it is already violated by some finite prefix of the run.
 - This finite prefix cannot be extended in any way to a complete run satisfying the property.
- Example: $\Box F$ (with state property F).
 - The violating run F → F → ¬F → ... has the prefix F → F → ¬F that cannot be extended in any way to a run satisfying □F.
- Liveness Properties:
 - A liveness property is a property such that every finite prefix can be extended to a complete run satisfying this property.
 - Only a complete run itself can violate that property.
 - Example: $\Diamond F$ (with state property F).
 - Any finite prefix p can be extended to a run $p \rightarrow F \rightarrow \ldots$ which satisfies $\Diamond F$.

```
Wolfgang Schreiner
```

http://www.risc.jku.at

25/65

System Properties

The real importance of the distinction is stated by the following theorem.

Theorem:

Every system property *P* is a conjunction $S \wedge L$ of some safety property *S* and some liveness property *L*.

- If *L* is "true", then *P* itself is a safety property.
- If S is "true", then P itself is a liveness property.

Consequence:

- Assume we can decompose P into appropriate S and L.
- For verifying $M \models P$, it then suffices to verify:
 - Safety: $M \models S$.
 - Liveness: $M \models L$.
- Different strategies for verifying safety and liveness properties.

For verification, it is important to decompose a system property in its "safety part" and its "liveness part".

System Properties

Not every system property is itself a safety property or a liveness property.

- **Example:** $P :\Leftrightarrow (\Box A) \land (\Diamond B)$ (with state properties A and B)
 - Conjunction of a safety property and a liveness property.
- Take the run $[A, \neg B] \rightarrow [A, \neg B] \rightarrow [A, \neg B] \rightarrow \dots$ violating P.
 - Any prefix $[A, \neg B] \rightarrow \ldots \rightarrow [A, \neg B]$ of this run can be extended to a run $[A, \neg B] \rightarrow \ldots \rightarrow [A, \neg B] \rightarrow [A, B] \rightarrow [A, B] \rightarrow \ldots$ satisfying *P*.
 - Thus *P* is not a safety property.
- Take the finite prefix $[\neg A, B]$.
 - This prefix cannot be extended in any way to a run satisfying *P*.
 - Thus *P* is not a liveness property.

So is the distinction "safety" versus "liveness" really useful?.

Wolfgang Schreiner

http://www.risc.jku.at

26/65

Verifying Safety

We only consider a special case of a safety property.

- $M \models \Box F$.
 - F is a state formula (a formula without temporal operator).
 - Verify that *F* is an invariant of system *M*.
- $M = \langle I, R \rangle$.

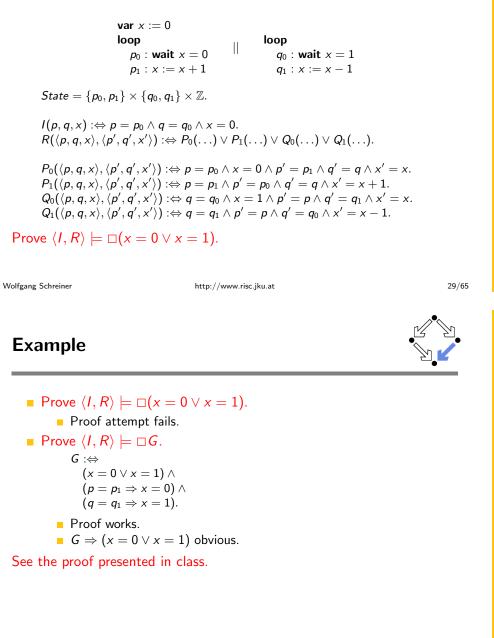
Wolfgang Schreiner

- $I(s) : \Leftrightarrow \dots$
- $R(s,s') :\Leftrightarrow R_0(s,s') \vee R_1(s,s') \vee \ldots \vee R_{n-1}(s,s').$
- Induction Proof.
 - $\bullet \forall s: I(s) \Rightarrow F(s).$
 - Proof that *F* holds in every initial state.
 - $\forall s,s':F(s) \land R(s,s') \Rightarrow F(s').$
 - Proof that each transition preserves *F*.
 - Reduces to a number of subproofs:

$$F(s) \wedge R_0(s,s') \Rightarrow F(s')$$

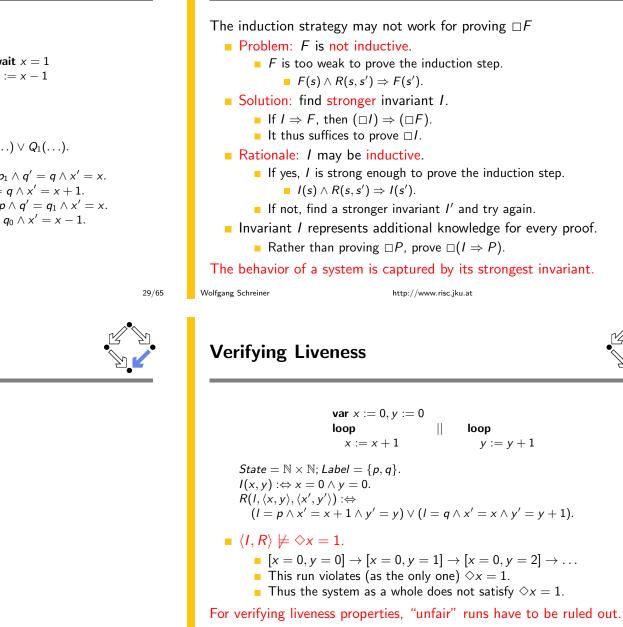
$$F(s) \wedge R_{n-1}(s,s') \Rightarrow F(s')$$

Example



Inductive System Properties

30/65



Wolfgang Schreiner

Enabling Condition

When is a particular transition enabled for execution?

• Enabled_R(I, s) : $\Leftrightarrow \exists t : R(I, s, t)$.

- Labeled transition relation *R*, label *I*, state *s*.
- Read: "Transition (with label) *I* is enabled in state *s* (w.r.t. *R*)".
- Example (previous slide):

```
\begin{split} & \textit{Enabled}_{R}(p, \langle x, y \rangle) \\ & \Leftrightarrow \exists x', y' : R(p, \langle x, y \rangle, \langle x', y' \rangle) \\ & \Leftrightarrow \exists x', y' : \\ & (p = p \land x' = x + 1 \land y' = y) \lor \\ & (p = q \land x' = x \land y' = y + 1) \\ & \Leftrightarrow (\exists x', y' : p = p \land x' = x + 1 \land y' = y) \lor \\ & (\exists x', y' : p = q \land x' = x \land y' = y + 1) \\ & \Leftrightarrow \text{true} \lor \text{false} \\ & \Leftrightarrow \text{true.} \end{split}
```

Transition p is always enabled.

Wolfgang Schreiner

http://www.risc.jku.at

33/65

Example

- $\begin{aligned} State &= \mathbb{N} \times \mathbb{N}; Label = \{p, q\}.\\ l(x, y) &:\Leftrightarrow x = 0 \land y = 0.\\ R(l, \langle x, y \rangle, \langle x', y' \rangle) &:\Leftrightarrow\\ (l &= p \land x' = x + 1 \land y' = y) \lor (l = q \land x' = x \land y' = y + 1). \end{aligned}$
- $\langle I, R \rangle \models \mathrm{WF}_{p} \Rightarrow \Diamond x = 1.$

•
$$[x = 0, y = 0] \rightarrow [x = 0, y = 1] \rightarrow [x = 0, y = 2] \rightarrow \dots$$

- This (only) violating run is not weakly fair to transition p.
 - p is always enabled.
 - p is never executed.

System satisfies specification if weak fairness is assumed.

Weak Fairness

Weak Fairness

- A run $s_0 \xrightarrow{h_0} s_1 \xrightarrow{h_1} s_2 \xrightarrow{h_2} \dots$ is weakly fair to a transition *I*, if ■ if transition *I* is eventually permanently enabled in the run,
 - then transition / is executed infinitely often in the run.

 $(\exists i: \forall j \ge i: Enabled_R(I, s_j)) \Rightarrow (\forall i: \exists j \ge i: I_j = I).$

- The run in the previous example was not weakly fair to transition *p*.
- LTL formulas may explicitly specify weak fairness constraints.
 - Let E_l denote the enabling condition of transition l.
 - Let X_l denote the predicate "transition l is executed".
 - Define $WF_I :\Leftrightarrow (\Diamond \Box E_I) \Rightarrow (\Box \Diamond X_I).$

If I is eventually enabled forever, it is executed infinitely often.

• Prove $\langle I, R \rangle \models (WF_I \Rightarrow P)$.

Property P is only proved for runs that are weakly fair to I.

Alternatively, a model may also have weak fairness "built in".

Wolfgang Schreiner

http://www.risc.jku.at

Strong Fairness

Strong Fairness

- A run $s_0 \stackrel{l_0}{\to} s_1 \stackrel{l_1}{\to} s_2 \stackrel{l_2}{\to} \dots$ is strongly fair to a transition *I*, if
 - if *I* is infinitely often enabled in the run,
 - then *l* is also infinitely often executed the run.
 - $(\forall i : \exists j \ge i : Enabled_R(I, s_j)) \Rightarrow (\forall i : \exists j \ge i : I_j = I).$
- If r is strongly fair to l, it is also weakly fair to l (but not vice versa).
- LTL formulas may explicitly specify strong fairness constraints.
 - Let E_l denote the enabling condition of transition l.
 - Let X₁ denote the predicate "transition 1 is executed".
 - Define $SF_I :\Leftrightarrow (\Box \Diamond E_I) \Rightarrow (\Box \Diamond X_I).$

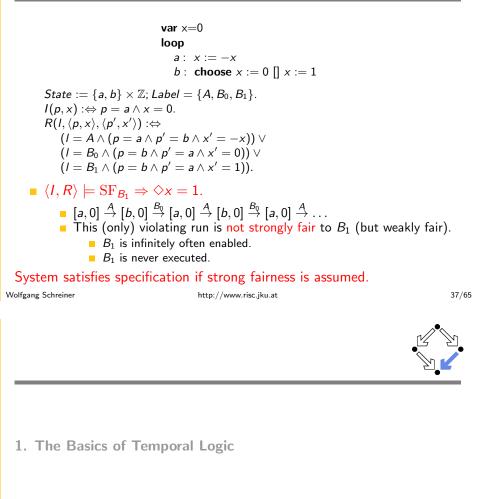
If *I* is enabled infinitely often, it is executed infinitely often.

Prove $\langle I, R \rangle \models (SF_I \Rightarrow P)$.

Property P is only proved for runs that are strongly fair to I.

A much stronger requirement to the fairness of a system.

Example



- 2. Specifying with Linear Time Logic
- 3. Verifying Safety Properties by Computer-Supported Proving

Weak versus Strong Fairness

In which situations is which notion of fairness appropriate?

- Process just waits to be scheduled for execution.
 - Only CPU time is required.
 - Weak fairness suffices.
- Process waits for resource that may be temporarily blocked.
 - Critical region protected by lock variable (mutex/semaphore).
 - Strong fairness is required.
- Non-deterministic choices are repeatedly made in program.
 - Simultaneous listing on multiple communication channels.
 - Strong fairness is required.

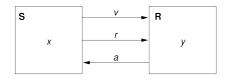
Many other notions or fairness exist.

Wolfgang Schreiner

http://www.risc.jku.at

38/65

A Bit Transmission Protocol



var x, yvar v := 0, r := 0, a := 0

S: loop	R: loop
choose $x \in \{0, 1\}$	1 : wait $r = 1$
1: v, r := x, 1	y, a := v, 1
2 : wait <i>a</i> = 1	2 : wait r = 0
r := 0	<i>a</i> := 0
3 : wait <i>a</i> = 0	

Transmit a sequence of bits through a wire.

A (Simplified) Model of the Protocol

State := $PC^2 \times (\mathbb{N}_2)^5$

```
I(p, q, x, y, v, r, a) :\Leftrightarrow p = q = 1 \land x \in \mathbb{N}_2 \land v = r = a = 0.
R(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) :\Leftrightarrow
   S1(\ldots) \lor S2(\ldots) \lor S3(\ldots) \lor R1(\ldots) \lor R2(\ldots).
S1(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) :\Leftrightarrow
   p = 1 \land p' = 2 \land v' = x \land r' = 1 \land
   q' = q \wedge x' = x \wedge y' = y \wedge a' = a.
S2(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) :\Leftrightarrow
   p = 2 \land p' = 3 \land a = 1 \land r' = 0 \land
    q' = q \land x' = x \land y' = y \land v' = v \land a' = a.
S3(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) :\Leftrightarrow
   p = 3 \land p' = 1 \land a = 0 \land x' \in \mathbb{N}_2 \land
   q' = q \land v' = v \land v' = v \land r' = r \land a' = a.
R1(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) :\Leftrightarrow
   a = 1 \land a' = 2 \land r = 1 \land v' = v \land a' = 1 \land
   p' = p \land x' = x \land v' = v \land r' = r.
R2(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) :\Leftrightarrow
   q = 2 \land q' = 1 \land r = 0 \land a' = 0 \land
   p' = p \land x' = x \land y' = y \land v' = v \land r' = r.
```

```
Wolfgang Schreiner
```

http://www.risc.jku.at

41/65

The RISC ProofNavigator Theory

newcontext "protocol";

```
p: NAT; q: NAT; x: NAT; y: NAT; v: NAT; r: NAT; a: NAT;
pO: NAT; qO: NAT; xO: NAT; yO: NAT; vO: NAT; rO: NAT; aO: NAT;
S1: BOOLEAN =
 p = 1 AND p0 = 2 AND v0 = x AND r0 = 1 AND
 q0 = q AND x0 = x AND y0 = y AND a0 = a;
S2: BOOLEAN =
 p = 2 AND p0 = 3 AND a = 1 AND r0 = 0 AND
 q0 = q AND x0 = x AND y0 = y AND v0 = v AND a0 = a;
S3: BOOLEAN =
 p = 3 AND p0 = 1 AND a = 0 AND (x0 = 0 OR x0 = 1) AND
 q0 = q AND v0 = v AND v0 = v AND r0 = r AND a0 = a;
R1: BOOLEAN =
 q = 1 AND q0 = 2 AND r = 1 AND y0 = v AND a0 = 1 AND
 pO = p AND xO = x AND vO = v AND rO = r;
R2: BOOLEAN =
 q = 2 AND q0 = 1 AND r = 0 AND a0 = 0 AND
 pO = p AND xO = x AND yO = y AND vO = v AND rO = r;
```



```
\langle I, R \rangle \models \Box (q = 2 \Rightarrow y = x)
```

Invariant $(p, \ldots) \Rightarrow (q = 2 \Rightarrow y = x)$

 $\begin{array}{l} I(p,\ldots) \Rightarrow \mathit{Invariant}(p,\ldots) \\ R(\langle p,\ldots\rangle,\langle p',\ldots\rangle) \land \mathit{Invariant}(p,\ldots) \Rightarrow \mathit{Invariant}(p',\ldots) \end{array}$

 $\begin{array}{l} \textit{Invariant}(p,q,x,y,v,r,a):\Leftrightarrow\\ (p=1\lor p=2\lor p=3)\land (q=1\lor q=2)\land\\ (x=0\lor x=1)\land (v=0\lor v=1)\land (r=0\lor r=1)\land (a=0\lor a=1)\land\\ (p=1\Rightarrow q=1\land r=0\land a=0)\land\\ (p=2\Rightarrow r=1\land v=x)\land\\ (p=3\Rightarrow r=0)\land\\ (q=1\Rightarrow a=0)\land\\ (q=2\Rightarrow (p=2\lor p=3)\land a=1\land y=x) \end{array}$

The invariant captures the essence of the protocol.

```
Wolfgang Schreiner
```

http://www.risc.jku.at

The RISC ProofNavigator Theory

```
Init: BOOLEAN =
  p = 1 AND q = 1 AND (x = 0 \text{ OR } x = 1) AND
 v = 0 AND r = 0 AND a = 0;
Step: BOOLEAN =
  S1 OR S2 OR S3 OR R1 OR R2;
Invariant: (NAT, NAT, NAT, NAT, NAT, NAT, NAT, NAT)->BOOLEAN =
  LAMBDA(p, q, x, y, v, r, a: NAT):
     (p = 1 \text{ OR } p = 2 \text{ OR } p = 3) \text{ AND}
     (q = 1 \text{ OR } q = 2) \text{ AND}
     (x = 0 \text{ OR } x = 1) \text{ AND}
     (v = 0 \text{ OR } v = 1) \text{ AND}
     (r = 0 \text{ OR } r = 1) \text{ AND}
     (a = 0 \text{ OR } a = 1) \text{ AND}
     (p = 1 \Rightarrow q = 1 AND r = 0 AND a = 0) AND
     (p = 2 \Rightarrow r = 1 AND v = x) AND
     (p = 3 => r = 0) AND
     (q = 1 => a = 0) AND
     (q = 2 \Rightarrow (p = 2 \text{ OR } p = 3) \text{ AND } a = 1 \text{ AND } y = x);
```

The RISC ProofNavigator Theory

Property: BOOLEAN = $q = 2 \implies y = x;$

VCO: FORMULA Invariant(p, q, x, y, v, r, a) => Property;

VC1: FORMULA Init => Invariant(p, q, x, y, v, r, a);

VC2: FORMULA Step AND Invariant(p, q, x, y, v, r, a) => Invariant(p0, q0, x0, y0, v0, r0, a0);

Wolfgang Schreiner

http://www.risc.jku.at

45/65

A Client/Server System

Client system $C_i = \langle IC_i, RC_i \rangle$.

State := $PC \times \mathbb{N}_2 \times \mathbb{N}_2$. $Int := \{R_i, S_i, C_i\}.$

 $IC_i(pc, request, answer) :\Leftrightarrow$ $pc = R \wedge request = 0 \wedge answer = 0.$ $RC_i(I, \langle pc, request, answer \rangle,$ $\langle pc', request', answer' \rangle : \Leftrightarrow$ $(I = R_i \land pc = R \land request = 0 \land$ $pc' = S \land request' = 1 \land answer' = answer) \lor$ $(I = S_i \land pc = S \land answer \neq 0 \land$ $pc' = C \land request' = request \land answer' = 0) \lor$ $(I = C_i \land pc = C \land request = 0 \land$ $pc' = R \land request' = 1 \land answer' = answer) \lor$

 $(I = \overline{REQ_i} \land request \neq 0 \land$ $pc' = pc \land request' = 0 \land answer' = answer) \lor$ $(I = ANS_i \land$ $pc' = pc \land request' = request \land answer' = 1$).

Client(ident): param ident begin loop . . . R: sendRequest() S: receiveAnswer() C: // critical region . . . sendRequest() endloop end Client

[vd2]: expand Invariant, Property in m2v

The Proofs

[rle]: proved (CVCL)

[wd2]: expand Init, Invariant in nra [ipl]: proved(CVCL)

[xd2]: expand Step, Invariant, S1, S2, S3, R1, R2 [6ss]: proved(CVCL)

More instructive: proof attempts with wrong or too weak invariants (see demonstration).

Wolfgang Schreiner

http://www.risc.jku.at

46/65

A Client/Server System (Contd)

Server system $S = \langle IS, RS \rangle$. *State* := $(\mathbb{N}_3)^3 \times (\{1, 2\} \to \mathbb{N}_2)^2$. $Int := \{D1, D2, F, A1, A2, W\}.$

 $IS(given, waiting, sender, rbuffer, sbuffer) :\Leftrightarrow$ given = waiting = sender = $0 \land$ rbuffer(1) = rbuffer(2) = sbuffer(1) = sbuffer(2) = 0.

 $RS(I, \langle given, waiting, sender, rbuffer, sbuffer \rangle$, $\langle given', waiting', sender', rbuffer', sbuffer' \rangle : \Leftrightarrow$ $\exists i \in \{1, 2\}$: $(I = D_i \land sender = 0 \land rbuffer(i) \neq 0 \land$ sender' = $i \wedge rbuffer'(i) = 0 \wedge$ $U(given, waiting, sbuffer) \land$ $\forall i \in \{1, 2\} \setminus \{i\} : U_i(rbuffer)) \lor$

 $U(x_1,\ldots,x_n):\Leftrightarrow x'_1=x_1\wedge\ldots\wedge x'_n=x_n.$ $U_i(x_1,\ldots,x_n):\Leftrightarrow \overline{x'_1(j)}=x_1(j)\wedge\ldots\wedge x'_n(j)=x_n(j).$

```
Server:
 local given, waiting, sender
begin
 given := 0; waiting := 0
 loop
D: sender := receiveRequest()
    if sender = given then
      if waiting = 0 then
F:
       given := 0
      else
A1:
       given := waiting;
       waiting := 0
       sendAnswer(given)
      endif
    elsif given = 0 then
A2: given := sender
      sendAnswer(given)
    else
     waiting := sender
W:
```

endif endloop end Server

A Client/Server System (Contd'2)

	Ser	ver:
	1	ocal g
$(I = F \land sender \neq 0 \land sender = given \land waiting = 0 \land$	beg	
given $' = 0 \land$ sender $' = 0 \land$	0	iven
$U(waiting, rbuffer, sbuffer)) \lor$	1	oop
	D:	sende
$(I = A1 \land sender \neq 0 \land sbuffer(waiting) = 0 \land$		if se
sender = given \land waiting $\neq 0 \land$		if
given' = waiting \land waiting' = 0 \land	F:	Ę
sbuffer' (waiting) = $1 \land$ sender' = $0 \land$		els
	A1:	Ę
$U(rbuffer) \land$		7
$orall j \in \{1,2\} ackslash \{ \textit{waiting} \} : U_j(\textit{sbuffer})) \lor$		5
		end
$(I = A2 \land sender \neq 0 \land sbuffer(sender) = 0 \land$		elsi
sender $ eq$ given \land given $=$ 0 \land	A2:	giv
$given' = sender \land$		sei
sbuffer' (sender) $= 1 \land$ sender' $= 0 \land$		else
$U(waiting, rbuffer) \land$		
$\forall j \in \{1,2\} \setminus \{sender\} : U_i(sbuffer)) \lor$	W:	wa
		endi

```
given, waiting, sender
        := 0; waiting := 0
        ler := receiveRequest()
        ender = given then
        waiting = 0 then
        given := 0
        .se
        given := waiting;
        waiting := 0
        sendAnswer(given)
        dif
        f given = 0 then
        ven := sender
        endAnswer(given)
        iting := sender
        f
  endloop
end Server
                           49/65
```

A Client/Server System (Contd'4)


```
State := (\{1,2\} \to PC) \times (\{1,2\} \to \mathbb{N}_2)^2 \times (\mathbb{N}_3)^2 \times (\{1,2\} \to \mathbb{N}_2)^2
```

http://www.risc.jku.at

```
I(pc, request, answer, given, waiting, sender, rbuffer, sbuffer) :\Leftrightarrow
  \forall i \in \{1, 2\} : IC(pc_i, request_i, answer_i) \land
   IS(given, waiting, sender, rbuffer, sbuffer)
```

```
R(\langle pc, request, answer, given, waiting, sender, rbuffer, sbuffer \rangle,
   (pc', request', answer', given', waiting', sender', rbuffer', sbuffer')) :\Leftrightarrow
   (\exists i \in \{1,2\} : RC_{local}(\langle pc_i, request_i, answer_i \rangle, \langle pc'_i, request'_i, answer'_i \rangle) \land
       \langle given, waiting, sender, rbuffer, sbuffer \rangle =
          \langle given', waiting', sender', rbuffer', sbuffer' \rangle ) \lor
   (RS_{local}(\langle given, waiting, sender, rbuffer, sbuffer \rangle)
               \langle given', waiting', sender', rbuffer', sbuffer' \rangle \rangle \land
      \forall i \in \{1, 2\} : \langle pc_i, request_i, answer_i \rangle = \langle pc'_i, request'_i, answer'_i \rangle ) \lor
   (\exists i \in \{1, 2\} : External(i, \langle request_i, answer_i, rbuffer, sbuffer \rangle),
                                         \langle request'_i, answer'_i, rbuffer', sbuffer' \rangle ) \land
      pc = pc' \land \langle sender, waiting, given \rangle = \langle sender', waiting', given' \rangle
```

A Client/Server System (Contd'3)

 $(I = W \land sender \neq 0 \land sender \neq given \land given \neq 0 \land$

waiting' := sender \land sender' = 0 \land

 $U(given, rbuffer, sbuffer)) \lor$

 $(I = REQ_i \land rbuffer'(i) = 1 \land$

 $(I = \overline{ANS_i} \land sbuffer(i) \neq 0 \land$

sbuffer'(i) = $0 \land$

 $U(given, waiting, sender, sbuffer) \land$

 $U(given, waiting, sender, rbuffer) \land$

 $\forall j \in \{1, 2\} \setminus \{i\} : U_i(sbuffer)).$

 $\forall j \in \{1,2\} \setminus \{i\} : U_i(rbuffer)) \lor$

Server:

```
local given, waiting, sender
begin
 given := 0; waiting := 0
```

```
loop
D: sender := receiveRequest()
    if sender = given then
      if waiting = 0 then
       given := 0
F:
```

```
else
A1:
```

```
given := waiting;
   waiting := 0
   sendAnswer(given)
 endif
elsif given = 0 then
```

```
A2:
     given := sender
     sendAnswer(given)
```

```
else
```

```
waiting := sender
W:
    endif
  endloop
end Server
```

```
Wolfgang Schreiner
```

 $\exists i \in \{1, 2\}$:

The Verification Task

$\langle I, R \rangle \models \Box \neg (pc_1 = C \land pc_2 = C)$

```
Invariant(pc, request, answer, sender, given, waiting, rbuffer, sbuffer) : \Leftrightarrow
   \forall i \in \{1, 2\}:
     (pc(i) = C \lor sbuffer(i) = 1 \lor answer(i) = 1 \Rightarrow
        given = i \land
        \forall i : i \neq i \Rightarrow pc(i) \neq C \land sbuffer(i) = 0 \land answer(i) = 0) \land
     (pc(i) = R \Rightarrow
        sbuffer(i) = 0 \land answer(i) = 0 \land
        (i = given \Leftrightarrow request(i) = 1 \lor rbuffer(i) = 1 \lor sender = i) \land
        (request(i) = 0 \lor rbuffer(i) = 0)) \land
     (pc(i) = S \Rightarrow
        (sbuffer(i) = 1 \lor answer(i) = 1 \Rightarrow
           request(i) = 0 \land rbuffer(i) = 0 \land sender \neq i) \land
        (i \neq given \Rightarrow
           request(i) = 0 \lor rbuffer(i) = 0)) \land
     (pc(i) = C \Rightarrow
        request(i) = 0 \land rbuffer(i) = 0 \land sender \neq i \land
        sbuffer(i) = 0 \land answer(i) = 0) \land
```

http://www.risc.jku.at

Wolfgang Schreiner

. . .

Wolfgang Schreiner

51/65

```
Wolfgang Schreiner
```

The Verification Task (Contd)


```
      (sender = 0 \land (request(i) = 1 \lor rbuffer(i) = 1) \Rightarrow \\ sbuffer(i) = 0 \land answer(i) = 0) \land \\ (sender = i \Rightarrow \\ (waiting \neq i) \land \\ (sender = given \land pc(i) = R \Rightarrow \\ request(i) = 0 \land rbuffer(i) = 0) \land \\ (pc(i) = S \land i \neq given \Rightarrow \\ request(i) = 0 \land rbuffer(i) = 0) \land \\ (pc(i) = S \land i = given \Rightarrow \\ request(i) = 0 \lor rbuffer(i) = 0)) \land \\ (waiting = i \Rightarrow \\ given \neq i \land pc_i = S \land request_i = 0 \land rbuffer(i) = 0 \land \\ (sbuffer(i) = 1 \Rightarrow \\ answer(i) = 0 \land request(i) = 0 \land rbuffer(i) = 0)
```

As usual, the invariant has been elaborated in the course of the proof.

Wolfgang Schreiner

http://www.risc.jku.at

53/65

The RISC ProofNavigator Theory (Contd)

- % ------% initial state condition % ------
- IC: (PC, BOOLEAN, BOOLEAN) -> BOOLEAN =
 LAMBDA(pc: PC, request: BOOLEAN, answer: BOOLEAN):
 pc = R AND (request <=> FALSE) AND (answer <=> FALSE);
- IS: (Index0, Index0, Index->BOOLEAN, Index->BOOLEAN) -> BOOLEAN =
 LAMBDA(given: Index0, waiting: Index0, sender: Index0,
 rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN):
 given = 0 AND waiting = 0 AND sender = 0 AND
 (FORALL(i:Index): (rbuffer(i)<=>FALSE) AND (sbuffer(i)<=>FALSE));
- Initial: BOOLEAN =
 (FORALL(i:Index): IC(pc(i), request(i), answer(i))) AND
 IS(given, waiting, sender, rbuffer, sbuffer);

The RISC ProofNavigator Theory

newcontext "clientServer";

Index: TYPE = SUBTYPE(LAMBDA(x:INT): x=1 OR x=2); Index0: TYPE = SUBTYPE(LAMBDA(x:INT): x=0 OR x=1 OR x=2);

% program counter type PCBASE: TYPE; R: PCBASE; S: PCBASE; C: PCBASE; PC: TYPE = SUBTYPE(LAMBDA(x:PCBASE): x=R OR x=S OR x=C); PCs: AXIOM R /= S AND R /= C AND S /= C;

% client states
pc: Index->PC; pc0: Index->PC;
request: Index->BOOLEAN; request0: Index->BOOLEAN;
answer: Index->BOOLEAN; answer0: Index->BOOLEAN;

% server state given: Index0; given0: Index0; waiting: Index0; waiting0: Index0; sender: Index0; sender0: Index0; rbuffer: Index -> BOOLEAN; rbuffer0: Index -> BOOLEAN; sbuffer: Index -> BOOLEAN; sbuffer0: Index -> BOOLEAN;

Wolfgang Schreiner

http://www.risc.jku.at

54/65

The RISC ProofNavigator Theory (Contd'2)

_____ transition relation _____ RC: (PC, BOOLEAN, BOOLEAN, PC, BOOLEAN, BOOLEAN)->BOOLEAN = LAMBDA(pc: PC, request: BOOLEAN, answer: BOOLEAN, pc0: PC, request0: BOOLEAN, answer0: BOOLEAN): (pc = R AND (request <=> FALSE) AND pc0 = S AND (request0 <=> TRUE) AND (answer0 <=> answer)) OR (pc = S AND (answer <=> TRUE) AND pc0 = C AND (request0 <=> request) AND (answer0 <=> FALSE)) OR (pc = C AND (request <=> FALSE) AND pc0 = R AND (request0 <=> TRUE) AND (answer0 <=> answer)); RS: (Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN, IndexO, IndexO, IndexO, Index->BOOLEAN, Index->BOOLEAN)->BOOLEAN = LAMBDA(given: Index0, waiting: Index0, sender: Index0, rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN, given0: Index0, waiting0: Index0, sender0: Index0, rbuffer0: Index->BOOLEAN, sbuffer0: Index->BOOLEAN):

The RISC ProofNavigator Theory (Contd'3

(EXISTS(i:Index):

sender = 0 AND (rbuffer(i) <=> TRUE) AND sender0 = i AND (rbuffer0(i) <=> FALSE) AND given = given0 AND waiting = waiting0 AND sbuffer = sbuffer0 AND (FORALL(j:Index): j /= i => (rbuffer(j) <=> rbuffer0(j)))) OR (sender /= 0 AND sender = given AND waiting = 0 AND given0 = 0 AND sender0 = 0 AND waiting = waiting0 AND rbuffer = rbuffer0 AND sbuffer = sbuffer0) OR (sender /= 0 AND)sender = given AND waiting /= 0 AND (sbuffer(waiting) <=> FALSE) AND given0 = waiting AND waiting0 = 0 AND (sbuffer0(waiting) <=>TRUE) AND (sender0 = 0) AND (rbuffer = rbuffer0) AND (FORALL(j:Index): j /= waiting => (sbuffer(j) <=> sbuffer0(j))) OR (sender /= 0 AND (sbuffer(sender) <=> FALSE) AND sender /= given AND given = 0 AND given0 = sender AND (sbuffer0(sender)<=>TRUE) AND sender0=0 AND (waiting=waiting0) AND (rbuffer=rbuffer0) AND (FORALL(j:Index): j/= sender => (sbuffer(j) <=> sbuffer0(j))) OR (sender /= 0 AND sender /= given AND given /= 0 AND waiting0 = sender AND sender0 = 0 AND given = given0 AND rbuffer = rbuffer0 AND sbuffer = sbuffer0); Wolfgang Schreiner 57/65 http://www.risc.jku.at

The RISC ProofNavigator Theory (Contd'

External: (Index, PC, BOOLEAN, BOOLEAN, PC, BOOLEAN, BOOLEAN, Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN, Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN)->BOOLEAN = LAMBDA(i:Index, pc: PC, request: BOOLEAN, answer: BOOLEAN, pc0: PC, request0: BOOLEAN, answer0: BOOLEAN, given: Index0, waiting: Index0, sender: Index0, rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN, given0: Index0, waiting0: Index0, sender0: Index0, rbuffer0: Index->BOOLEAN, sbuffer0: Index->BOOLEAN): ((request <=> TRUE) AND pc0 = pc AND (request0 <=> FALSE) AND (answer0 <=> answer) AND (rbuffer0(i) <=> TRUE) AND given = given0 AND waiting = waiting0 AND sender = sender0 AND sbuffer = sbuffer0 AND (FORALL (j: Index): j /= i => (rbuffer(j) <=> rbuffer0(j)))) OR (pc0 = pc AND (request0 <=> request) AND (answer0 <=> TRUE) AND (sbuffer(i) <=> TRUE) AND (sbuffer0(i) <=> FALSE) AND given = givenO AND waiting = waitingO AND sender = senderO AND rbuffer = rbuffer0 AND (FORALL (j: Index): j /= i => (sbuffer(j) <=> sbuffer0(j)));

Wolfgang Schreiner

http://www.risc.jku.at

58/65

% invariant Invariant: (Index->PC, Index->BOOLEAN, Index->BOOLEAN, Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN) -> BOOLEAN = LAMBDA(pc: Index->PC, request: Index->BOOLEAN, answer: Index->BOOLEAN, given: Index0, waiting: Index0, sender: Index0, rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN): FORALL (i: Index): (pc(i) = C OR (sbuffer(i) <=> TRUE) OR (answer(i) <=> TRUE) => given = i AND (FORALL (j: Index): j /= i => pc(j) /= C AND(sbuffer(j) <=> FALSE) AND (answer(j) <=> FALSE))) AND (pc(i) = R =>(sbuffer(i) <=> FALSE) AND (answer(i) <=> FALSE) AND (i /= given =>(request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE) AND sender /= i) AND (i = given => (request(i) <=> TRUE) OR (rbuffer(i) <=> TRUE) OR sender = i) AND ((request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND

The RISC ProofNavigator Theory (Contd'5

```
pc0(i), request0(i), answer0(i)) AND
pc(j) = pc0(j) AND (request(j) <=> request0(j)) AND
```

(answer(j) <=> answer0(j)))) AND given = given0 AND waiting = waiting0 AND sender = sender0 AND rbuffer = rbuffer0 AND sbuffer = sbuffer0) OR (RS(given, waiting, sender, rbuffer, sbuffer, given0, waiting0, sender0, rbuffer0, sbuffer0) AND (FORALL (j:Index): pc(j) = pc0(j) AND (request(j) <=> request0(j)) AND (answer(j) <=> answer0(j)))) OR (EXISTS (i: Index): External(i, pc(i), request(i), answer(i), pc0(i), request0(i), answer0(i), given, waiting, sender, rbuffer, sbuffer, given0, waiting0, sender0, rbuffer0, sbuffer0) AND (FORALL (j: Index): j /= i => pc(j) = pc0(j) AND (request(j) <=> request0(j)) AND

```
(answer(j) <=> answer0(j))));
```

Next: BOOLEAN =

((EXISTS (i: Index):

RC(pc(i), request(i), answer(i),

(FORALL (i: Index): i /= i =>

The RISC ProofNavigator Theory (Contd'7


```
(pc(i) = S \Rightarrow
  ((sbuffer(i) <=> TRUE) OR (answer(i) <=> TRUE) =>
      (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE) AND sender /= i)
      AND
  (i /= given =>
      (request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND
(pc(i) = C \Rightarrow
  (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE) AND sender /= i AND
  (sbuffer(i) <=> FALSE) AND (answer(i) <=> FALSE)) AND
(sender = 0 AND ((request(i) <=> TRUE) OR (rbuffer(i) <=> TRUE)) =>
  (sbuffer(i) <=> FALSE) AND (answer(i) <=> FALSE)) AND
(sender = i =>
  (sender = given AND pc(i) = R =>
     (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE)) AND
  waiting /= i AND
  (pc(i) = S AND i /= given =>
     (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE)) AND
  (pc(i) = S AND i = given =>
     (request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND
```

The RISC ProofNavigator Theory (Contd'8

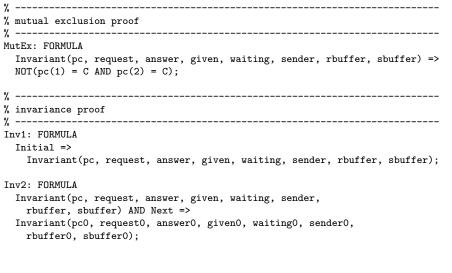
(waiting = i => given /= i AND pc(waiting) = S AND (request(waiting) <=> FALSE) AND (rbuffer(waiting) <=> FALSE) AND (sbuffer(waiting) <=> FALSE) AND (answer(waiting) <=> FALSE)) AND ((sbuffer(i) <=> TRUE) => (answer(i) <=> FALSE) AND (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE)); Wolfgang Schreiner http://www.risc.jku.at 62/65 The Proofs: MutEx and Inv1 [oas]: expand Initial, Invariant, IC, IS [z3f]: expand Invariant, IC, IS [m5h]: proved (CVCL) [n5h]: proved (CVCL) [nhn]: scatter [eij]: scatter [znj]: auto [5u1]: auto [o5h]: proved (CVCL) [n1u]: proved (CVCL) [uvj]: proved (CVCL) [p5h]: proved (CVCL) [6ul]: auto [q5h]: proved (CVCL) [2u6]: proved (CVCL) [q5i]: proved (CVCL) Single application [r5i]: proved (CVCL) [avl]: auto [cuv]: proved (CVCL) [s5i]: proved (CVCL) of autostar. [bvl]: auto [t5i]: proved (CVCL) [jtl]: proved (CVCL) [u5i]: auto [cvl]: auto [1br]: proved (CVCL) [qsb]: proved (CVCL) [v5i]: auto [dvl]: auto [roy]: proved (CVCL) [xrx]: proved (CVCL) [w5i]: auto [evl]: auto [i26]: proved (CVCL) [5qn]: proved (CVCL) [x5i]: proved (CVCL) [fvl]: auto [y5i]: auto [fqd]: proved (CVCL) [wuo]: proved (CVCL) [gvl]: auto [z5i]: auto [mpz]: proved (CVCL) [nbw]: proved (CVCL) [hvl]: proved (CVCL) [z5j]: auto [h5h]: auto [nbn]: proved (CVCL) [p3z]: proved (CVCL) [15j]: auto [i5h]: auto [eou]: proved (CVCL) [25j]: proved (CVCL) [gjb]: proved (CVCL) [35j]: proved (CVCL) [j5h]: auto [4vi]: proved (CVCL) [45j]: proved (CVCL) [k5h]: auto [55j]: proved (CVCL) [ucq]: proved (CVCL) [65j]: proved (CVCL) [15h]: auto [lpx]: proved (CVCL)

Wolfgang Schreiner

http://www.risc.jku.at

61/65

The RISC ProofNavigator Theory (Contd'9



Wolfgang Schreiner

The Proofs: Inv2

[pas]: scatter	[st6]: scatter	[h4b]: scatter
[lbh]: expand Next	[aef]: expand Invariant	[tob]: expand Invariant
[pzi]: split bfv	[cwk]: scatter	[h1g]: scatter
[leh]: decompose	[q16]: auto	[t4i]: auto
[pkr]: expand RS	[seg]: proved (CVCL)	[hpk]: proved (CVCL)
[lpn]: split 5xv	(21 times)	(36 times)
[pt6]: expand Invariant	[w16]: proved (CVCL)[neh]: scatter	
[lcw]: scatter	(12 times)	[4oc]: expand RC
[puh]: auto	[tt6]: scatter	[nuh]: split nwz
[143]: proved (CVCL)	[hp6]: expand Invariant	[4ge]: scatter
(20 times)	[twl]: scatter	[ney]: expand Invariant
[tuh]: proved (CVCL)	[hqv]: auto	[45d]: scatter
(15 times)	[tbj]: proved (CVCL)	[nui]: auto
[qt6]: expand Invariant	(27 times)	[4wr]: proved (CVCL)
[snq]: scatter	[nqv]: proved (CVCL)	(36 times)
[avi]: auto	(6 times)	[5ge]: scatter
[cct]: proved (CVCL)[me	eh]: scatter	[ups]: expand Invariant
(26 times) [[w3z]: expand External	[o6e]: scatter
[gvi]: proved (CVCL)	[3rk]: split lhe	[ez5]: auto
(6 times)	[g4b]: scatter	[5tu]: proved (CVCL)
[rt6]: scatter	[mdh]: expand Invariant	(36 times)
<pre>[zyk]: expand Invariant</pre>	[wzf]: scatter	[6ge]: scatter
[rvj]: scatter	[3ys]: auto	<pre>[21m]: expand Invariant</pre>
[zgj]: auto	[gsh]: proved (CVCL)	[66f]: scatter
[rhd]: proved (CVCL)	(36 times)	[24u]: auto
(31 times)		[6qx]: proved (CVCL)
[2f3]: proved (CVCL)		(36 times)
(1 times)		
The matter because an an all manual	ation and contraction of a second second	attain of an endance

Ten main branches each requiring only single application of autostar.

Wolfgang Schreiner

http://www.risc.jku.at