
Specifying and Verifying System Properties

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner http://www.risc.jku.at 1/65

1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

Wolfgang Schreiner http://www.risc.jku.at 2/65

Motivation

We need a language for specifying system properties.

A system S is a pair 〈I ,R〉.
Initial states I , transition relation R.
More intuitive: reachability graph.

Starting from an initial state s0, the system runs evolve.

Consider the reachability graph as an infinite computation tree.
Different tree nodes may denote occurrences of the same state.

Each occurrence of a state has a unique predecessor in the tree.

Every path in this tree is infinite.

Every finite run s0 → . . .→ sn is extended to an infinite run
s0 → . . .→ sn → sn → sn → . . .

Or simply consider the graph as a set of system runs.

Same state may occur multiple times (in one or in different runs).

Temporal logic describes such trees respectively sets of system runs.

Wolfgang Schreiner http://www.risc.jku.at 3/65

Computation Trees versus System Runs

Edmund Clarke et al: “Model Checking”, 1999.

Set of system runs:
[a, b]→ c → c → . . .
[a, b]→ [b, c]→ c → . . .
[a, b]→ [b, c]→ [a, b]→ . . .
[a, b]→ [b, c]→ [a, b]→ . . .
. . .

Wolfgang Schreiner http://www.risc.jku.at 4/65



State Formula

Temporal logic is based on classical logic.

A state formula F is evaluated on a state s.

Any predicate logic formula is a state formula:
p(x),¬F ,F0 ∧ F1,F0 ∨ F1,F0 ⇒ F1,F0 ⇔ F1,∀x : F ,∃x : F .
In propositional temporal logic only propositional logic formulas are
state formulas (no quantification):
p,¬F ,F0 ∧ F1,F0 ∨ F1,F0 ⇒ F1,F0 ⇔ F1.

Semantics: s |= F (“F holds in state s”).
Example: semantics of conjunction.

(s |= F0 ∧ F1) :⇔ (s |= F0) ∧ (s |= F1).
“F0 ∧ F1 holds in s if and only if F0 holds in s and F1 holds in s”.

Classical logic reasoning on individual states.

Wolfgang Schreiner http://www.risc.jku.at 5/65

Temporal Logic

Extension of classical logic to reason about multiple states.
Temporal logic is an instance of modal logic.

Logic of “multiple worlds (situations)” that are in some way related.
Relationship may e.g. be a temporal one.
Amir Pnueli, 1977: temporal logic is suited to system specifications.
Many variants, two fundamental classes.

Branching Time Logic
Semantics defined over computation trees.

At each moment, there are multiple possible futures.

Prominent variant: CTL.
Computation tree logic; a propositional branching time logic.

Linear Time Logic
Semantics defined over sets of system runs.

At each moment, there is only one possible future.

Prominent variant: PLTL.
A propositional linear time logic.

Wolfgang Schreiner http://www.risc.jku.at 6/65

Branching Time Logic (CTL)

We use temporal logic to specify a system property F .

Core question: S |= F (“F holds in system S”).

System S = 〈I ,R〉, temporal logic formula F .

Branching time logic:

S |= F :⇔ S , s0 |= F , for every initial state s0 of S .
Property F must be evaluated on every pair of system S and initial
state s0.
Given a computation tree with root s0, F is evaluated on that tree.

CTL formulas are evaluated on computation trees.

Wolfgang Schreiner http://www.risc.jku.at 7/65

State Formulas

We have additional state formulas.

A state formula F is evaluated on state s of System S .

Every (classical) state formula f is such a state formula.
Let P denote a path formula (later).

Evaluated on a path (state sequence) p = p0 → p1 → p2 → . . ..

R(pi , pi+1) for every i ; p0 need not be an initial state.

Then the following are state formulas:

A P (“in every path P”),
E P (“in some path P”).

Path quantifiers: A,E.

Semantics: S , s |= F (“F holds in state s of system S”).

S , s |= f :⇔ s |= f .
S , s |= A P :⇔ S , p |= P, for every path p of S with p0 = s.
S , s |= E P :⇔ S , p |= P, for some path p of S with p0 = s.

Wolfgang Schreiner http://www.risc.jku.at 8/65



Path Formulas

We have a class of formulas that are not evaluated over individual states.

A path formula P is evaluated on a path p of system S .

Let F and G denote state formulas.
Then the following are path formulas:

X F (“next time F”),
G F (“always F”),
F F (“eventually F”),
F U G (“F until G”).

Temporal operators: X,G,F,U.

Semantics: S , p |= P (“P holds in path p of system S”).

S , p |= X F :⇔ S , p1 |= F .
S , p |= G F :⇔ ∀i ∈ N : S , pi |= F .
S , p |= F F :⇔ ∃i ∈ N : S , pi |= F .
S , p |= F U G :⇔ ∃i ∈ N : S , pi |= G ∧ ∀j ∈ Ni : S , pj |= F .

Wolfgang Schreiner http://www.risc.jku.at 9/65

Path Formulas

Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.

Wolfgang Schreiner http://www.risc.jku.at 10/65

Path Quantifiers and Temporal Operators

Edmund Clarke et al: “Model Checking”, 1999.

Wolfgang Schreiner http://www.risc.jku.at 11/65

Linear Time Logic (LTL)

We use temporal logic to specify a system property P.

Core question: S |= P (“P holds in system S”).

System S = 〈I ,R〉, temporal logic formula P.

Linear time logic:

S |= P :⇔ r |= P, for every run r of S .
Property P must be evaluated on every run r of S .
Given a computation tree with root s0, P is evaluated on every path
of that tree originating in s0.

If P holds for every path, P holds on S .

LTL formulas are evaluated on system runs.

Wolfgang Schreiner http://www.risc.jku.at 12/65



Formulas

No path quantifiers; all formulas are path formulas.
Every formula is evaluated on a path p.

Also every state formula f of classical logic (see below).
Let F and G denote formulas.
Then also the following are formulas:

X F (“next time F”), often written #F ,
G F (“always F”), often written 2F ,
F F (“eventually F”), often written 3F ,
F U G (“F until G”).

Semantics: p |= P (“P holds in path p”).
pi := 〈pi , pi+1, . . .〉.
p |= f :⇔ p0 |= f .
p |= X F :⇔ p1 |= F .
p |= G F :⇔ ∀i ∈ N : pi |= F .
p |= F F :⇔ ∃i ∈ N : pi |= F .
p |= F U G :⇔ ∃i ∈ N : pi |= G ∧ ∀j ∈ Ni : pj |= F .

Wolfgang Schreiner http://www.risc.jku.at 13/65

Formulas

Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.

Wolfgang Schreiner http://www.risc.jku.at 14/65

Branching versus Linear Time Logic

We use temporal logic to specify a system property P.

Core question: S |= P (“P holds in system S”).

System S = 〈I ,R〉, temporal logic formula P.

Branching time logic:

S |= P :⇔ S , s0 |= P, for every initial state s0 of S .
Property P must be evaluated on every pair (S , s0) of system S and
initial state s0.
Given a computation tree with root s0, P is evaluated on that tree.

Linear time logic:

S |= P :⇔ r |= P, for every run r of s.
Property P must be evaluated on every run r of S .
Given a computation tree with root s0, P is evaluated on every path
of that tree originating in s0.

If P holds for every path, P holds on S .

Wolfgang Schreiner http://www.risc.jku.at 15/65

Branching versus Linear Time Logic

B. Berard et al: “Systems and Software Verification”, 2001.

Linear time logic: both systems have the same runs.

Thus every formula has same truth value in both systems.

Branching time logic: the systems have different computation trees.

Take formula AX(EX Q ∧ EX ¬Q).
True for left system, false for right system.

The two variants of temporal logic have different expressive power.

Wolfgang Schreiner http://www.risc.jku.at 16/65



Branching versus Linear Time Logic

Is one temporal logic variant more expressive than the other one?
CTL formula: AG(EF F ).

“In every run, it is at any time still possible that later F will hold”.
Property cannot be expressed by any LTL logic formula.

LTL formula: 32F (i.e. FG F ).
“In every run, there is a moment from which on F holds forever.”.
Naive translation AFG F is not a CTL formula.

G F is a path formula, but F expects a state formula!

Translation AFAG F expresses a stronger property (see next page).
Property cannot be expressed by any CTL formula.

None of the two variants
is strictly more expressive
than the other one; no
variant can express every
system property.

Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.

Wolfgang Schreiner http://www.risc.jku.at 17/65

Branching versus Linear Time Logic

Proof that AFAG F (CTL) is different from 32F (LTL).

Wolfgang Schreiner http://www.risc.jku.at 18/65

1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

Wolfgang Schreiner http://www.risc.jku.at 19/65

Linear Time Logic

Why using linear time logic (LTL) for system specifications?

LTL has many advantages:
LTL formulas are easier to understand.

Reasoning about computation paths, not computation trees.
No explicit path quantifiers used.

LTL can express most interesting system properties.
Invariance, guarantee, response, . . . (see later).

LTL can express fairness constraints (see later).
CTL cannot do this.
But CTL can express that a state is reachable (which LTL cannot).

LTL has also some disadvantages:
LTL is strictly less expressive than other specification languages.

CTL∗ or µ-calculus.

Asymptotic complexity of model checking is higher.
LTL: exponential in size of formula; CTL: linear in size of formula.
In practice the number of states dominates the checking time.

Wolfgang Schreiner http://www.risc.jku.at 20/65



Frequently Used LTL Patterns

In practice, most temporal formulas are instances of particular patterns.

Pattern Pronounced Name

2F always F invariance
3F eventually F guarantee
23F F holds infinitely often recurrence
32F eventually F holds permanently stability
2(F ⇒ 3G) always, if F holds, then response

eventually G holds
2(F ⇒ (G U H)) always, if F holds, then precedence

G holds until H holds

Typically, there are at most two levels of nesting of temporal operators.

Wolfgang Schreiner http://www.risc.jku.at 21/65

Examples

Mutual exclusion: 2¬(pc1 = C ∧ pc2 = C ).

Alternatively: ¬3(pc1 = C ∧ pc2 = C ).
Never both components are simultaneously in the critical region.

No starvation: ∀i : 2(pc i = W ⇒ 3pc i = R).

Always, if component i waits for a response, it eventually receives it.

No deadlock: 2¬∀i : pc i = W .

Never all components are simultaneously in a wait state W .

Precedence: ∀i : 2(pc i 6= C ⇒ (pc i 6= C U lock = i)).

Always, if component i is out of the critical region, it stays out until it
receives the shared lock variable (which it eventually does).

Partial correctness: 2(pc = L ⇒ C ).

Always if the program reaches line L, the condition C holds.

Termination: ∀i : 3(pc i = T ).

Every component eventually terminates.

Wolfgang Schreiner http://www.risc.jku.at 22/65

Example

If event a occurs, then b must occur before c can occur (a run
. . . , a, (¬b)∗, c , . . . is illegal).

First idea (wrong)
a ⇒ . . .

Every run d , . . . becomes legal.

Next idea (correct)
2(a ⇒ . . .)

First attempt (wrong)
2(a ⇒ (b U c))

Run a, b,¬b, c , . . . is illegal.

Second attempt (better)
2(a ⇒ (¬c U b))

Run a,¬c ,¬c ,¬c , . . . is illegal.

Third attempt (correct)
2(a ⇒ ((2¬c) ∨ (¬c U b)))

Specifier has to think in terms of allowed/prohibited sequences.
Wolfgang Schreiner http://www.risc.jku.at 23/65

Temporal Rules

Temporal operators obey a number of fairly intuitive rules.
Extraction laws:

2F ⇔ F ∧ #2F .
3F ⇔ F ∨ #3F .
F U G ⇔ G ∨ (F ∧ #(F U G )).

Negation laws:
¬2F ⇔ 3¬F .
¬3F ⇔ 2¬F .
¬(F U G ) ⇔ ((¬G ) U (¬F ∧ ¬G )) ∨ ¬3G .

Distributivity laws:
2(F ∧ G ) ⇔ (2F ) ∧ (2G ).
3(F ∨ G ) ⇔ (3F ) ∨ (3G ).
(F ∧ G ) U H ⇔ (F U H) ∧ (G U H).
F U (G ∨ H) ⇔ (F U G ) ∨ (F U H).
23(F ∨ G ) ⇔ (23F ) ∨ (23G ).
32(F ∧ G ) ⇔ (32F ) ∧ (32G ).

Wolfgang Schreiner http://www.risc.jku.at 24/65



Classes of System Properties

There exists two important classes of system properties.

Safety Properties:
A safety property is a property such that, if it is violated by a run, it
is already violated by some finite prefix of the run.

This finite prefix cannot be extended in any way to a complete run
satisfying the property.

Example: 2F (with state property F ).

The violating run F → F → ¬F → . . . has the prefix F → F → ¬F
that cannot be extended in any way to a run satisfying 2F .

Liveness Properties:
A liveness property is a property such that every finite prefix can be
extended to a complete run satisfying this property.

Only a complete run itself can violate that property.

Example: 3F (with state property F ).

Any finite prefix p can be extended to a run p → F → . . . which
satisfies 3F .

Wolfgang Schreiner http://www.risc.jku.at 25/65

System Properties

Not every system property is itself a safety property or a liveness property.

Example: P :⇔ (2A) ∧ (3B) (with state properties A and B)

Conjunction of a safety property and a liveness property.

Take the run [A,¬B] → [A,¬B] → [A,¬B] → . . . violating P.

Any prefix [A,¬B] → . . . → [A,¬B] of this run can be extended to a
run [A,¬B] → . . . → [A,¬B] → [A,B] → [A,B] → . . . satisfying P.
Thus P is not a safety property.

Take the finite prefix [¬A,B].

This prefix cannot be extended in any way to a run satisfying P.
Thus P is not a liveness property.

So is the distinction “safety” versus “liveness” really useful?.

Wolfgang Schreiner http://www.risc.jku.at 26/65

System Properties

The real importance of the distinction is stated by the following theorem.

Theorem:

Every system property P is a conjunction S ∧ L of some safety
property S and some liveness property L.

If L is “true”, then P itself is a safety property.
If S is “true”, then P itself is a liveness property.

Consequence:

Assume we can decompose P into appropriate S and L.
For verifying M |= P, it then suffices to verify:

Safety: M |= S .
Liveness: M |= L.

Different strategies for verifying safety and liveness properties.

For verification, it is important to decompose a system property in its
“safety part” and its “liveness part”.

Wolfgang Schreiner http://www.risc.jku.at 27/65

Verifying Safety

We only consider a special case of a safety property.

M |= 2F .
F is a state formula (a formula without temporal operator).
Verify that F is an invariant of system M.

M = 〈I ,R〉.
I (s) :⇔ . . .
R(s, s ′) :⇔ R0(s, s ′) ∨ R1(s, s ′) ∨ . . . ∨ Rn−1(s, s ′).

Induction Proof.
∀s : I (s) ⇒ F (s).

Proof that F holds in every initial state.

∀s, s ′ : F (s) ∧ R(s, s ′) ⇒ F (s ′).
Proof that each transition preserves F .
Reduces to a number of subproofs:

F (s) ∧ R0(s, s ′)⇒ F (s ′)
. . .
F (s) ∧ Rn−1(s, s ′)⇒ F (s ′)

Wolfgang Schreiner http://www.risc.jku.at 28/65



Example

var x := 0
loop

p0 : wait x = 0
p1 : x := x + 1

|| loop
q0 : wait x = 1
q1 : x := x − 1

State = {p0, p1} × {q0, q1} × Z.

I (p, q, x) :⇔ p = p0 ∧ q = q0 ∧ x = 0.
R(〈p, q, x〉, 〈p′, q′, x ′〉) :⇔ P0(. . .) ∨ P1(. . .) ∨ Q0(. . .) ∨ Q1(. . .).

P0(〈p, q, x〉, 〈p′, q′, x ′〉) :⇔ p = p0 ∧ x = 0 ∧ p′ = p1 ∧ q′ = q ∧ x ′ = x .
P1(〈p, q, x〉, 〈p′, q′, x ′〉) :⇔ p = p1 ∧ p′ = p0 ∧ q′ = q ∧ x ′ = x + 1.
Q0(〈p, q, x〉, 〈p′, q′, x ′〉) :⇔ q = q0 ∧ x = 1 ∧ p′ = p ∧ q′ = q1 ∧ x ′ = x .
Q1(〈p, q, x〉, 〈p′, q′, x ′〉) :⇔ q = q1 ∧ p′ = p ∧ q′ = q0 ∧ x ′ = x − 1.

Prove 〈I ,R〉 |= 2(x = 0 ∨ x = 1).

Wolfgang Schreiner http://www.risc.jku.at 29/65

Inductive System Properties

The induction strategy may not work for proving 2F

Problem: F is not inductive.
F is too weak to prove the induction step.

F (s) ∧ R(s, s ′)⇒ F (s ′).

Solution: find stronger invariant I .

If I ⇒ F , then (2I ) ⇒ (2F ).
It thus suffices to prove 2I .

Rationale: I may be inductive.
If yes, I is strong enough to prove the induction step.

I (s) ∧ R(s, s ′)⇒ I (s ′).

If not, find a stronger invariant I ′ and try again.

Invariant I represents additional knowledge for every proof.

Rather than proving 2P, prove 2(I ⇒ P).

The behavior of a system is captured by its strongest invariant.

Wolfgang Schreiner http://www.risc.jku.at 30/65

Example

Prove 〈I ,R〉 |= 2(x = 0 ∨ x = 1).

Proof attempt fails.

Prove 〈I ,R〉 |= 2G .
G :⇔

(x = 0 ∨ x = 1) ∧
(p = p1 ⇒ x = 0) ∧
(q = q1 ⇒ x = 1).

Proof works.
G ⇒ (x = 0 ∨ x = 1) obvious.

See the proof presented in class.

Wolfgang Schreiner http://www.risc.jku.at 31/65

Verifying Liveness

var x := 0, y := 0
loop

x := x + 1
|| loop

y := y + 1

State = N× N; Label = {p, q}.
I (x , y) :⇔ x = 0 ∧ y = 0.
R(l , 〈x , y〉, 〈x ′, y ′〉) :⇔

(l = p ∧ x ′ = x + 1 ∧ y ′ = y) ∨ (l = q ∧ x ′ = x ∧ y ′ = y + 1).

〈I ,R〉 6|= 3x = 1.

[x = 0, y = 0] → [x = 0, y = 1] → [x = 0, y = 2] → . . .
This run violates (as the only one) 3x = 1.
Thus the system as a whole does not satisfy 3x = 1.

For verifying liveness properties, “unfair” runs have to be ruled out.

Wolfgang Schreiner http://www.risc.jku.at 32/65



Enabling Condition

When is a particular transition enabled for execution?

EnabledR(l , s) :⇔ ∃t : R(l , s, t).

Labeled transition relation R, label l , state s.
Read: “Transition (with label) l is enabled in state s (w.r.t. R)”.

Example (previous slide):
EnabledR (p, 〈x , y〉)
⇔ ∃x ′, y ′ : R(p, 〈x , y〉, 〈x ′, y ′〉)
⇔ ∃x ′, y ′ :

(p = p ∧ x ′ = x + 1 ∧ y ′ = y) ∨
(p = q ∧ x ′ = x ∧ y ′ = y + 1)

⇔ (∃x ′, y ′ : p = p ∧ x ′ = x + 1 ∧ y ′ = y) ∨
(∃x ′, y ′ : p = q ∧ x ′ = x ∧ y ′ = y + 1)

⇔ true ∨ false
⇔ true.

Transition p is always enabled.

Wolfgang Schreiner http://www.risc.jku.at 33/65

Weak Fairness

Weak Fairness

A run s0
l0→ s1

l1→ s2
l2→ . . . is weakly fair to a transition l , if

if transition l is eventually permanently enabled in the run,

then transition l is executed infinitely often in the run.

(∃i : ∀j ≥ i : EnabledR (l , sj ))⇒ (∀i : ∃j ≥ i : lj = l).

The run in the previous example was not weakly fair to transition p.

LTL formulas may explicitly specify weak fairness constraints.

Let El denote the enabling condition of transition l .
Let Xl denote the predicate “transition l is executed”.
Define WF l :⇔ (32El ) ⇒ (23Xl ).

If l is eventually enabled forever, it is executed infinitely often.

Prove 〈I ,R〉 |= (WF l ⇒ P).

Property P is only proved for runs that are weakly fair to l .

Alternatively, a model may also have weak fairness “built in”.

Wolfgang Schreiner http://www.risc.jku.at 34/65

Example

State = N× N; Label = {p, q}.
I (x , y) :⇔ x = 0 ∧ y = 0.
R(l , 〈x , y〉, 〈x ′, y ′〉) :⇔

(l = p ∧ x ′ = x + 1 ∧ y ′ = y) ∨ (l = q ∧ x ′ = x ∧ y ′ = y + 1).

〈I ,R〉 |= WFp ⇒ 3x = 1.

[x = 0, y = 0] → [x = 0, y = 1] → [x = 0, y = 2] → . . ..
This (only) violating run is not weakly fair to transition p.

p is always enabled.
p is never executed.

System satisfies specification if weak fairness is assumed.

Wolfgang Schreiner http://www.risc.jku.at 35/65

Strong Fairness

Strong Fairness

A run s0
l0→ s1

l1→ s2
l2→ . . . is strongly fair to a transition l , if

if l is infinitely often enabled in the run,

then l is also infinitely often executed the run.

(∀i : ∃j ≥ i : EnabledR (l , sj ))⇒ (∀i : ∃j ≥ i : lj = l).

If r is strongly fair to l , it is also weakly fair to l (but not vice versa).

LTL formulas may explicitly specify strong fairness constraints.

Let El denote the enabling condition of transition l .
Let Xl denote the predicate “transition l is executed”.
Define SF l :⇔ (23El ) ⇒ (23Xl ).

If l is enabled infinitely often, it is executed infinitely often.

Prove 〈I ,R〉 |= (SF l ⇒ P).

Property P is only proved for runs that are strongly fair to l .

A much stronger requirement to the fairness of a system.

Wolfgang Schreiner http://www.risc.jku.at 36/65



Example

var x=0
loop

a : x := −x
b : choose x := 0 [] x := 1

State := {a, b} × Z; Label = {A,B0,B1}.
I (p, x) :⇔ p = a ∧ x = 0.
R(l , 〈p, x〉, 〈p′, x ′〉) :⇔

(l = A ∧ (p = a ∧ p′ = b ∧ x ′ = −x)) ∨
(l = B0 ∧ (p = b ∧ p′ = a ∧ x ′ = 0)) ∨
(l = B1 ∧ (p = b ∧ p′ = a ∧ x ′ = 1)).

〈I ,R〉 |= SFB1 ⇒ 3x = 1.

[a, 0]
A→ [b, 0]

B0→ [a, 0]
A→ [b, 0]

B0→ [a, 0]
A→ . . .

This (only) violating run is not strongly fair to B1 (but weakly fair).
B1 is infinitely often enabled.
B1 is never executed.

System satisfies specification if strong fairness is assumed.
Wolfgang Schreiner http://www.risc.jku.at 37/65

Weak versus Strong Fairness

In which situations is which notion of fairness appropriate?

Process just waits to be scheduled for execution.

Only CPU time is required.
Weak fairness suffices.

Process waits for resource that may be temporarily blocked.

Critical region protected by lock variable (mutex/semaphore).
Strong fairness is required.

Non-deterministic choices are repeatedly made in program.

Simultaneous listing on multiple communication channels.
Strong fairness is required.

Many other notions or fairness exist.

Wolfgang Schreiner http://www.risc.jku.at 38/65

1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

Wolfgang Schreiner http://www.risc.jku.at 39/65

A Bit Transmission Protocol

var x , y
var v := 0, r := 0, a := 0

S: loop
choose x ∈ {0, 1}

1 : v , r := x , 1
2 : wait a = 1

r := 0
3 : wait a = 0

||
R: loop

1 : wait r = 1
y , a := v , 1

2 : wait r = 0
a := 0

Transmit a sequence of bits through a wire.

Wolfgang Schreiner http://www.risc.jku.at 40/65



A (Simplified) Model of the Protocol

State := PC 2 × (N2)5

I (p, q, x , y , v , r , a) :⇔ p = q = 1 ∧ x ∈ N2 ∧ v = r = a = 0.
R(〈p, q, x , y , v , r , a〉, 〈p′, q′, x ′, y ′, v ′, r ′, a′〉) :⇔

S1(. . .) ∨ S2(. . .) ∨ S3(. . .) ∨ R1(. . .) ∨ R2(. . .).

S1(〈p, q, x , y , v , r , a〉, 〈p′, q′, x ′, y ′, v ′, r ′, a′〉) :⇔
p = 1 ∧ p′ = 2 ∧ v ′ = x ∧ r ′ = 1 ∧
q′ = q ∧ x ′ = x ∧ y ′ = y ∧ a′ = a.

S2(〈p, q, x , y , v , r , a〉, 〈p′, q′, x ′, y ′, v ′, r ′, a′〉) :⇔
p = 2 ∧ p′ = 3 ∧ a = 1 ∧ r ′ = 0 ∧
q′ = q ∧ x ′ = x ∧ y ′ = y ∧ v ′ = v ∧ a′ = a.

S3(〈p, q, x , y , v , r , a〉, 〈p′, q′, x ′, y ′, v ′, r ′, a′〉) :⇔
p = 3 ∧ p′ = 1 ∧ a = 0 ∧ x ′ ∈ N2 ∧
q′ = q ∧ y ′ = y ∧ v ′ = v ∧ r ′ = r ∧ a′ = a.

R1(〈p, q, x , y , v , r , a〉, 〈p′, q′, x ′, y ′, v ′, r ′, a′〉) :⇔
q = 1 ∧ q′ = 2 ∧ r = 1 ∧ y ′ = v ∧ a′ = 1 ∧
p′ = p ∧ x ′ = x ∧ v ′ = v ∧ r ′ = r .

R2(〈p, q, x , y , v , r , a〉, 〈p′, q′, x ′, y ′, v ′, r ′, a′〉) :⇔
q = 2 ∧ q′ = 1 ∧ r = 0 ∧ a′ = 0 ∧
p′ = p ∧ x ′ = x ∧ y ′ = y ∧ v ′ = v ∧ r ′ = r .

Wolfgang Schreiner http://www.risc.jku.at 41/65

A Verification Task

〈I ,R〉 |= 2(q = 2⇒ y = x)

Invariant(p, . . .)⇒ (q = 2⇒ y = x)

I (p, . . .)⇒ Invariant(p, . . .)
R(〈p, . . .〉, 〈p′, . . .〉) ∧ Invariant(p, . . .)⇒ Invariant(p′, . . .)

Invariant(p, q, x , y , v , r , a) :⇔
(p = 1 ∨ p = 2 ∨ p = 3) ∧ (q = 1 ∨ q = 2) ∧
(x = 0 ∨ x = 1) ∧ (v = 0 ∨ v = 1) ∧ (r = 0 ∨ r = 1) ∧ (a = 0 ∨ a = 1) ∧
(p = 1⇒ q = 1 ∧ r = 0 ∧ a = 0) ∧
(p = 2⇒ r = 1 ∧ v = x) ∧
(p = 3⇒ r = 0) ∧
(q = 1⇒ a = 0) ∧
(q = 2⇒ (p = 2 ∨ p = 3) ∧ a = 1 ∧ y = x)

The invariant captures the essence of the protocol.

Wolfgang Schreiner http://www.risc.jku.at 42/65

The RISC ProofNavigator Theory

newcontext "protocol";

p: NAT; q: NAT; x: NAT; y: NAT; v: NAT; r: NAT; a: NAT;

p0: NAT; q0: NAT; x0: NAT; y0: NAT; v0: NAT; r0: NAT; a0: NAT;

S1: BOOLEAN =

p = 1 AND p0 = 2 AND v0 = x AND r0 = 1 AND

q0 = q AND x0 = x AND y0 = y AND a0 = a;

S2: BOOLEAN =

p = 2 AND p0 = 3 AND a = 1 AND r0 = 0 AND

q0 = q AND x0 = x AND y0 = y AND v0 = v AND a0 = a;

S3: BOOLEAN =

p = 3 AND p0 = 1 AND a = 0 AND (x0 = 0 OR x0 = 1) AND

q0 = q AND y0 = y AND v0 = v AND r0 = r AND a0 = a;

R1: BOOLEAN =

q = 1 AND q0 = 2 AND r = 1 AND y0 = v AND a0 = 1 AND

p0 = p AND x0 = x AND v0 = v AND r0 = r;

R2: BOOLEAN =

q = 2 AND q0 = 1 AND r = 0 AND a0 = 0 AND

p0 = p AND x0 = x AND y0 = y AND v0 = v AND r0 = r;

Wolfgang Schreiner http://www.risc.jku.at 43/65

The RISC ProofNavigator Theory

Init: BOOLEAN =

p = 1 AND q = 1 AND (x = 0 OR x = 1) AND

v = 0 AND r = 0 AND a = 0;

Step: BOOLEAN =

S1 OR S2 OR S3 OR R1 OR R2;

Invariant: (NAT, NAT, NAT, NAT, NAT, NAT, NAT)->BOOLEAN =

LAMBDA(p, q, x, y, v, r, a: NAT):

(p = 1 OR p = 2 OR p = 3) AND

(q = 1 OR q = 2) AND

(x = 0 OR x = 1) AND

(v = 0 OR v = 1) AND

(r = 0 OR r = 1) AND

(a = 0 OR a = 1) AND

(p = 1 => q = 1 AND r = 0 AND a = 0) AND

(p = 2 => r = 1 AND v = x) AND

(p = 3 => r = 0) AND

(q = 1 => a = 0) AND

(q = 2 => (p = 2 OR p = 3) AND a = 1 AND y = x);

Wolfgang Schreiner http://www.risc.jku.at 44/65



The RISC ProofNavigator Theory

Property: BOOLEAN =

q = 2 => y = x;

VC0: FORMULA

Invariant(p, q, x, y, v, r, a) => Property;

VC1: FORMULA

Init => Invariant(p, q, x, y, v, r, a);

VC2: FORMULA

Step AND Invariant(p, q, x, y, v, r, a) =>

Invariant(p0, q0, x0, y0, v0, r0, a0);

Wolfgang Schreiner http://www.risc.jku.at 45/65

The Proofs

[vd2]: expand Invariant, Property in m2v

[rle]: proved (CVCL)

[wd2]: expand Init, Invariant in nra

[ipl]: proved(CVCL)

[xd2]: expand Step, Invariant, S1, S2, S3, R1, R2

[6ss]: proved(CVCL)

More instructive: proof attempts with wrong or too weak invariants
(see demonstration).

Wolfgang Schreiner http://www.risc.jku.at 46/65

A Client/Server System

Client system Ci = 〈IC i ,RC i 〉.
State := PC × N2 × N2.
Int := {Ri , Si ,Ci}.

IC i (pc, request, answer) :⇔
pc = R ∧ request = 0 ∧ answer = 0.

RC i (l , 〈pc, request, answer〉,
〈pc′, request′, answer ′〉) :⇔

(l = Ri ∧ pc = R ∧ request = 0 ∧
pc ′ = S ∧ request′ = 1 ∧ answer ′ = answer) ∨

(l = Si ∧ pc = S ∧ answer 6= 0 ∧
pc ′ = C ∧ request′ = request ∧ answer ′ = 0) ∨

(l = Ci ∧ pc = C ∧ request = 0 ∧
pc ′ = R ∧ request′ = 1 ∧ answer ′ = answer) ∨

(l = REQ i ∧ request 6= 0 ∧
pc ′ = pc ∧ request′ = 0 ∧ answer ′ = answer) ∨

(l = ANS i ∧
pc ′ = pc ∧ request′ = request ∧ answer ′ = 1).

Client(ident):

param ident

begin

loop

...

R: sendRequest()

S: receiveAnswer()

C: // critical region

...

sendRequest()

endloop

end Client

Wolfgang Schreiner http://www.risc.jku.at 47/65

A Client/Server System (Contd)

Server system S = 〈IS ,RS〉.
State := (N3)3 × ({1, 2} → N2)2.
Int := {D1,D2,F ,A1,A2,W }.

IS(given,waiting , sender , rbuffer , sbuffer) :⇔
given = waiting = sender = 0 ∧
rbuffer(1) = rbuffer(2) = sbuffer(1) = sbuffer(2) = 0.

RS(l , 〈given,waiting , sender , rbuffer , sbuffer〉,
〈given′,waiting ′, sender ′, rbuffer ′, sbuffer ′〉) :⇔

∃i ∈ {1, 2} :
(l = Di ∧ sender = 0 ∧ rbuffer(i) 6= 0 ∧
sender ′ = i ∧ rbuffer ′(i) = 0 ∧
U(given,waiting , sbuffer) ∧
∀j ∈ {1, 2}\{i} : Uj (rbuffer)) ∨

. . .

U(x1, . . . , xn) :⇔ x ′1 = x1 ∧ . . . ∧ x ′n = xn.
Uj (x1, . . . , xn) :⇔ x ′1(j) = x1(j) ∧ . . . ∧ x ′n(j) = xn(j).

Server:

local given, waiting, sender

begin

given := 0; waiting := 0

loop

D: sender := receiveRequest()

if sender = given then

if waiting = 0 then

F: given := 0

else

A1: given := waiting;

waiting := 0

sendAnswer(given)

endif

elsif given = 0 then

A2: given := sender

sendAnswer(given)

else

W: waiting := sender

endif

endloop

end Server
Wolfgang Schreiner http://www.risc.jku.at 48/65



A Client/Server System (Contd’2)

. . .
(l = F ∧ sender 6= 0 ∧ sender = given ∧waiting = 0 ∧

given′ = 0 ∧ sender ′ = 0 ∧
U(waiting , rbuffer , sbuffer)) ∨

(l = A1 ∧ sender 6= 0 ∧ sbuffer(waiting) = 0 ∧
sender = given ∧ waiting 6= 0 ∧
given′ = waiting ∧ waiting ′ = 0 ∧
sbuffer ′(waiting) = 1 ∧ sender ′ = 0 ∧
U(rbuffer) ∧
∀j ∈ {1, 2}\{waiting} : Uj (sbuffer)) ∨

(l = A2 ∧ sender 6= 0 ∧ sbuffer(sender) = 0 ∧
sender 6= given ∧ given = 0 ∧
given′ = sender ∧
sbuffer ′(sender) = 1 ∧ sender ′ = 0 ∧
U(waiting , rbuffer) ∧
∀j ∈ {1, 2}\{sender} : Uj (sbuffer)) ∨

. . .

Server:

local given, waiting, sender

begin

given := 0; waiting := 0

loop

D: sender := receiveRequest()

if sender = given then

if waiting = 0 then

F: given := 0

else

A1: given := waiting;

waiting := 0

sendAnswer(given)

endif

elsif given = 0 then

A2: given := sender

sendAnswer(given)

else

W: waiting := sender

endif

endloop

end Server
Wolfgang Schreiner http://www.risc.jku.at 49/65

A Client/Server System (Contd’3)

. . .
(l = W ∧ sender 6= 0 ∧ sender 6= given ∧ given 6= 0 ∧

waiting ′ := sender ∧ sender ′ = 0 ∧
U(given, rbuffer , sbuffer)) ∨

∃i ∈ {1, 2} :

(l = REQ i ∧ rbuffer ′(i) = 1 ∧
U(given,waiting , sender , sbuffer) ∧
∀j ∈ {1, 2}\{i} : Uj (rbuffer)) ∨

(l = ANS i ∧ sbuffer(i) 6= 0 ∧
sbuffer ′(i) = 0 ∧
U(given,waiting , sender , rbuffer) ∧
∀j ∈ {1, 2}\{i} : Uj (sbuffer)).

Server:

local given, waiting, sender

begin

given := 0; waiting := 0

loop

D: sender := receiveRequest()

if sender = given then

if waiting = 0 then

F: given := 0

else

A1: given := waiting;

waiting := 0

sendAnswer(given)

endif

elsif given = 0 then

A2: given := sender

sendAnswer(given)

else

W: waiting := sender

endif

endloop

end Server
Wolfgang Schreiner http://www.risc.jku.at 50/65

A Client/Server System (Contd’4)

State := ({1, 2} → PC)× ({1, 2} → N2)2 × (N3)2 × ({1, 2} → N2)2

I (pc, request, answer , given,waiting , sender , rbuffer , sbuffer) :⇔
∀i ∈ {1, 2} : IC(pc i , requesti , answer i ) ∧
IS(given,waiting , sender , rbuffer , sbuffer)

R(〈pc, request, answer , given,waiting , sender , rbuffer , sbuffer〉,
〈pc ′, request′, answer ′, given′,waiting ′, sender ′, rbuffer ′, sbuffer ′〉) :⇔
(∃i ∈ {1, 2} : RC local (〈pc i , request i , answer i 〉, 〈pc ′i , request′i , answer ′i 〉) ∧
〈given,waiting , sender , rbuffer , sbuffer〉 =
〈given′,waiting ′, sender ′, rbuffer ′, sbuffer ′〉) ∨

(RS local (〈given,waiting , sender , rbuffer , sbuffer〉,
〈given′,waiting ′, sender ′, rbuffer ′, sbuffer ′〉) ∧

∀i ∈ {1, 2} : 〈pc i , request i , answer i 〉 = 〈pc ′i , request′i , answer ′i 〉) ∨
(∃i ∈ {1, 2} : External(i , 〈request i , answer i , rbuffer , sbuffer〉,

〈request′i , answer ′i , rbuffer ′, sbuffer ′〉) ∧
pc = pc ′ ∧ 〈sender ,waiting , given〉 = 〈sender ′,waiting ′, given′〉)

Wolfgang Schreiner http://www.risc.jku.at 51/65

The Verification Task

〈I ,R〉 |= 2¬(pc1 = C ∧ pc2 = C )

Invariant(pc, request, answer , sender , given,waiting , rbuffer , sbuffer) :⇔
∀i ∈ {1, 2} :

(pc(i) = C ∨ sbuffer(i) = 1 ∨ answer(i) = 1⇒
given = i ∧
∀j : j 6= i ⇒ pc(j) 6= C ∧ sbuffer(j) = 0 ∧ answer(j) = 0) ∧

(pc(i) = R ⇒
sbuffer(i) = 0 ∧ answer(i) = 0 ∧
(i = given⇔ request(i) = 1 ∨ rbuffer(i) = 1 ∨ sender = i) ∧
(request(i) = 0 ∨ rbuffer(i) = 0)) ∧

(pc(i) = S ⇒
(sbuffer(i) = 1 ∨ answer(i) = 1⇒

request(i) = 0 ∧ rbuffer(i) = 0 ∧ sender 6= i) ∧
(i 6= given⇒

request(i) = 0 ∨ rbuffer(i) = 0)) ∧
(pc(i) = C ⇒

request(i) = 0 ∧ rbuffer(i) = 0 ∧ sender 6= i ∧
sbuffer(i) = 0 ∧ answer(i) = 0) ∧

. . .
Wolfgang Schreiner http://www.risc.jku.at 52/65



The Verification Task (Contd)

. . .
(sender = 0 ∧ (request(i) = 1 ∨ rbuffer(i) = 1)⇒

sbuffer(i) = 0 ∧ answer(i) = 0) ∧
(sender = i ⇒

(waiting 6= i) ∧
(sender = given ∧ pc(i) = R ⇒

request(i) = 0 ∧ rbuffer(i) = 0) ∧
(pc(i) = S ∧ i 6= given⇒

request(i) = 0 ∧ rbuffer(i) = 0) ∧
(pc(i) = S ∧ i = given⇒

request(i) = 0 ∨ rbuffer(i) = 0)) ∧
(waiting = i ⇒

given 6= i ∧ pc i = S ∧ request i = 0 ∧ rbuffer(i) = 0 ∧
sbuffer i = 0 ∧ answer(i) = 0) ∧

(sbuffer(i) = 1⇒
answer(i) = 0 ∧ request(i) = 0 ∧ rbuffer(i) = 0)

As usual, the invariant has been elaborated in the course of the proof.

Wolfgang Schreiner http://www.risc.jku.at 53/65

The RISC ProofNavigator Theory

newcontext "clientServer";

Index: TYPE = SUBTYPE(LAMBDA(x:INT): x=1 OR x=2);

Index0: TYPE = SUBTYPE(LAMBDA(x:INT): x=0 OR x=1 OR x=2);

% program counter type

PCBASE: TYPE;

R: PCBASE; S: PCBASE; C: PCBASE;

PC: TYPE = SUBTYPE(LAMBDA(x:PCBASE): x=R OR x=S OR x=C);

PCs: AXIOM R /= S AND R /= C AND S /= C;

% client states

pc: Index->PC; pc0: Index->PC;

request: Index->BOOLEAN; request0: Index->BOOLEAN;

answer: Index->BOOLEAN; answer0: Index->BOOLEAN;

% server state

given: Index0; given0: Index0;

waiting: Index0; waiting0: Index0;

sender: Index0; sender0: Index0;

rbuffer: Index -> BOOLEAN; rbuffer0: Index -> BOOLEAN;

sbuffer: Index -> BOOLEAN; sbuffer0: Index -> BOOLEAN;

Wolfgang Schreiner http://www.risc.jku.at 54/65

The RISC ProofNavigator Theory (Contd)

% -------------------------------------------------------------------

% initial state condition

% -------------------------------------------------------------------

IC: (PC, BOOLEAN, BOOLEAN) -> BOOLEAN =

LAMBDA(pc: PC, request: BOOLEAN, answer: BOOLEAN):

pc = R AND (request <=> FALSE) AND (answer <=> FALSE);

IS: (Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN) -> BOOLEAN =

LAMBDA(given: Index0, waiting: Index0, sender: Index0,

rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN):

given = 0 AND waiting = 0 AND sender = 0 AND

(FORALL(i:Index): (rbuffer(i)<=>FALSE) AND (sbuffer(i)<=>FALSE));

Initial: BOOLEAN =

(FORALL(i:Index): IC(pc(i), request(i), answer(i))) AND

IS(given, waiting, sender, rbuffer, sbuffer);

Wolfgang Schreiner http://www.risc.jku.at 55/65

The RISC ProofNavigator Theory (Contd’2)

% -------------------------------------------------------------------

% transition relation

% -------------------------------------------------------------------

RC: (PC, BOOLEAN, BOOLEAN, PC, BOOLEAN, BOOLEAN)->BOOLEAN =

LAMBDA(pc: PC, request: BOOLEAN, answer: BOOLEAN,

pc0: PC, request0: BOOLEAN, answer0: BOOLEAN):

(pc = R AND (request <=> FALSE) AND

pc0 = S AND (request0 <=> TRUE) AND (answer0 <=> answer)) OR

(pc = S AND (answer <=> TRUE) AND

pc0 = C AND (request0 <=> request) AND (answer0 <=> FALSE)) OR

(pc = C AND (request <=> FALSE) AND

pc0 = R AND (request0 <=> TRUE) AND (answer0 <=> answer));

RS: (Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN,

Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN)->BOOLEAN =

LAMBDA(given: Index0, waiting: Index0, sender: Index0,

rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN,

given0: Index0, waiting0: Index0, sender0: Index0,

rbuffer0: Index->BOOLEAN, sbuffer0: Index->BOOLEAN):

Wolfgang Schreiner http://www.risc.jku.at 56/65



The RISC ProofNavigator Theory (Contd’3)

(EXISTS(i:Index):

sender = 0 AND (rbuffer(i) <=> TRUE) AND

sender0 = i AND (rbuffer0(i) <=> FALSE) AND

given = given0 AND waiting = waiting0 AND sbuffer = sbuffer0 AND

(FORALL(j:Index): j /= i => (rbuffer(j) <=> rbuffer0(j)))) OR

(sender /= 0 AND sender = given AND waiting = 0 AND

given0 = 0 AND sender0 = 0 AND

waiting = waiting0 AND rbuffer = rbuffer0 AND sbuffer = sbuffer0) OR

(sender /= 0 AND

sender = given AND waiting /= 0 AND

(sbuffer(waiting) <=> FALSE) AND

given0 = waiting AND waiting0 = 0 AND

(sbuffer0(waiting)<=>TRUE) AND (sender0 = 0) AND

(rbuffer = rbuffer0) AND

(FORALL(j:Index): j /= waiting => (sbuffer(j) <=> sbuffer0(j)))) OR

(sender /= 0 AND (sbuffer(sender) <=> FALSE) AND

sender /= given AND given = 0 AND given0 = sender AND

(sbuffer0(sender)<=>TRUE) AND sender0=0 AND

(waiting=waiting0) AND (rbuffer=rbuffer0) AND

(FORALL(j:Index): j/= sender => (sbuffer(j) <=> sbuffer0(j)))) OR

(sender /= 0 AND sender /= given AND given /= 0 AND

waiting0 = sender AND sender0 = 0 AND

given = given0 AND rbuffer = rbuffer0 AND sbuffer = sbuffer0);
Wolfgang Schreiner http://www.risc.jku.at 57/65

The RISC ProofNavigator Theory (Contd’4)

External: (Index, PC, BOOLEAN, BOOLEAN, PC, BOOLEAN, BOOLEAN,

Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN,

Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN)->BOOLEAN =

LAMBDA(i:Index,

pc: PC, request: BOOLEAN, answer: BOOLEAN,

pc0: PC, request0: BOOLEAN, answer0: BOOLEAN,

given: Index0, waiting: Index0, sender: Index0,

rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN,

given0: Index0, waiting0: Index0, sender0: Index0,

rbuffer0: Index->BOOLEAN, sbuffer0: Index->BOOLEAN):

((request <=> TRUE) AND

pc0 = pc AND (request0 <=> FALSE) AND (answer0 <=> answer) AND

(rbuffer0(i) <=> TRUE) AND given = given0 AND waiting = waiting0

AND sender = sender0 AND sbuffer = sbuffer0 AND

(FORALL (j: Index): j /= i => (rbuffer(j) <=> rbuffer0(j)))) OR

(pc0 = pc AND (request0 <=> request) AND (answer0 <=> TRUE) AND

(sbuffer(i) <=> TRUE) AND (sbuffer0(i) <=> FALSE) AND

given = given0 AND waiting = waiting0 AND sender = sender0 AND

rbuffer = rbuffer0 AND

(FORALL (j: Index): j /= i => (sbuffer(j) <=> sbuffer0(j))));

Wolfgang Schreiner http://www.risc.jku.at 58/65

The RISC ProofNavigator Theory (Contd’5)

Next: BOOLEAN =

((EXISTS (i: Index):

RC(pc(i), request(i), answer(i),

pc0(i), request0(i), answer0(i)) AND

(FORALL (j: Index): j /= i =>

pc(j) = pc0(j) AND (request(j) <=> request0(j)) AND

(answer(j) <=> answer0(j)))) AND

given = given0 AND waiting = waiting0 AND sender = sender0 AND

rbuffer = rbuffer0 AND sbuffer = sbuffer0) OR

(RS(given, waiting, sender, rbuffer, sbuffer,

given0, waiting0, sender0, rbuffer0, sbuffer0) AND

(FORALL (j:Index): pc(j) = pc0(j) AND (request(j) <=> request0(j)) AND

(answer(j) <=> answer0(j)))) OR

(EXISTS (i: Index):

External(i, pc(i), request(i), answer(i),

pc0(i), request0(i), answer0(i),

given, waiting, sender, rbuffer, sbuffer,

given0, waiting0, sender0, rbuffer0, sbuffer0) AND

(FORALL (j: Index): j /= i =>

pc(j) = pc0(j) AND (request(j) <=> request0(j)) AND

(answer(j) <=> answer0(j))));

Wolfgang Schreiner http://www.risc.jku.at 59/65

The RISC ProofNavigator Theory (Contd’6)

% ----------------------------------------------------------------------------

% invariant

% ----------------------------------------------------------------------------

Invariant: (Index->PC, Index->BOOLEAN, Index->BOOLEAN,

Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN) -> BOOLEAN =

LAMBDA(pc: Index->PC, request: Index->BOOLEAN, answer: Index->BOOLEAN,

given: Index0, waiting: Index0, sender: Index0,

rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN):

FORALL (i: Index):

(pc(i) = C OR (sbuffer(i) <=> TRUE) OR (answer(i) <=> TRUE) =>

given = i AND

(FORALL (j: Index): j /= i =>

pc(j) /= C AND

(sbuffer(j) <=> FALSE) AND (answer(j) <=> FALSE))) AND

(pc(i) = R =>

(sbuffer(i) <=> FALSE) AND (answer(i) <=> FALSE) AND

(i /= given =>

(request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE) AND sender /= i)

AND

(i = given =>

(request(i) <=> TRUE) OR (rbuffer(i) <=> TRUE) OR sender = i) AND

((request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND

Wolfgang Schreiner http://www.risc.jku.at 60/65



The RISC ProofNavigator Theory (Contd’7)

(pc(i) = S =>

((sbuffer(i) <=> TRUE) OR (answer(i) <=> TRUE) =>

(request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE) AND sender /= i)

AND

(i /= given =>

(request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND

(pc(i) = C =>

(request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE) AND sender /= i AND

(sbuffer(i) <=> FALSE) AND (answer(i) <=> FALSE)) AND

(sender = 0 AND ((request(i) <=> TRUE) OR (rbuffer(i) <=> TRUE)) =>

(sbuffer(i) <=> FALSE) AND (answer(i) <=> FALSE)) AND

(sender = i =>

(sender = given AND pc(i) = R =>

(request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE)) AND

waiting /= i AND

(pc(i) = S AND i /= given =>

(request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE)) AND

(pc(i) = S AND i = given =>

(request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND

Wolfgang Schreiner http://www.risc.jku.at 61/65

The RISC ProofNavigator Theory (Contd’8)

(waiting = i =>

given /= i AND

pc(waiting) = S AND

(request(waiting) <=> FALSE) AND (rbuffer(waiting) <=> FALSE) AND

(sbuffer(waiting) <=> FALSE) AND (answer(waiting) <=> FALSE)) AND

((sbuffer(i) <=> TRUE) =>

(answer(i) <=> FALSE) AND (request(i) <=> FALSE) AND

(rbuffer(i) <=> FALSE));

Wolfgang Schreiner http://www.risc.jku.at 62/65

The RISC ProofNavigator Theory (Contd’9)

% ---------------------------------------------------------------------------

% mutual exclusion proof

% ---------------------------------------------------------------------------

MutEx: FORMULA

Invariant(pc, request, answer, given, waiting, sender, rbuffer, sbuffer) =>

NOT(pc(1) = C AND pc(2) = C);

% ---------------------------------------------------------------------------

% invariance proof

% ---------------------------------------------------------------------------

Inv1: FORMULA

Initial =>

Invariant(pc, request, answer, given, waiting, sender, rbuffer, sbuffer);

Inv2: FORMULA

Invariant(pc, request, answer, given, waiting, sender,

rbuffer, sbuffer) AND Next =>

Invariant(pc0, request0, answer0, given0, waiting0, sender0,

rbuffer0, sbuffer0);

Wolfgang Schreiner http://www.risc.jku.at 63/65

The Proofs: MutEx and Inv1

[z3f]: expand Invariant, IC, IS

[nhn]: scatter

[znj]: auto

[n1u]: proved (CVCL)

Single application
of autostar.

[oas]: expand Initial, Invariant, IC, IS

[eij]: scatter

[5ul]: auto

[uvj]: proved (CVCL)

[6ul]: auto

[2u6]: proved (CVCL)

[avl]: auto

[cuv]: proved (CVCL)

[bvl]: auto

[jtl]: proved (CVCL)

[cvl]: auto

[qsb]: proved (CVCL)

[dvl]: auto

[xrx]: proved (CVCL)

[evl]: auto

[5qn]: proved (CVCL)

[fvl]: auto

[fqd]: proved (CVCL)

[gvl]: auto

[mpz]: proved (CVCL)

[hvl]: proved (CVCL)

[h5h]: auto

[p3z]: proved (CVCL)

[i5h]: auto

[gjb]: proved (CVCL)

[j5h]: auto

[4vi]: proved (CVCL)

[k5h]: auto

[ucq]: proved (CVCL)

[l5h]: auto

[lpx]: proved (CVCL)

[m5h]: proved (CVCL)

[n5h]: proved (CVCL)

[o5h]: proved (CVCL)

[p5h]: proved (CVCL)

[q5h]: proved (CVCL)

[q5i]: proved (CVCL)

[r5i]: proved (CVCL)

[s5i]: proved (CVCL)

[t5i]: proved (CVCL)

[u5i]: auto

[1br]: proved (CVCL)

[v5i]: auto

[roy]: proved (CVCL)

[w5i]: auto

[i26]: proved (CVCL)

[x5i]: proved (CVCL)

[y5i]: auto

[wuo]: proved (CVCL)

[z5i]: auto

[nbw]: proved (CVCL)

[z5j]: auto

[nbn]: proved (CVCL)

[15j]: auto

[eou]: proved (CVCL)

[25j]: proved (CVCL)

[35j]: proved (CVCL)

[45j]: proved (CVCL)

[55j]: proved (CVCL)

[65j]: proved (CVCL)

Wolfgang Schreiner http://www.risc.jku.at 64/65



The Proofs: Inv2

[pas]: scatter

[lbh]: expand Next

[pzi]: split bfv

[leh]: decompose

[pkr]: expand RS

[lpn]: split 5xv

[pt6]: expand Invariant

[lcw]: scatter

[puh]: auto

[l43]: proved (CVCL)

... (20 times)

[tuh]: proved (CVCL)

... (15 times)

[qt6]: expand Invariant

[snq]: scatter

[avi]: auto

[cct]: proved (CVCL)

... (26 times)

[gvi]: proved (CVCL)

... (6 times)

[rt6]: scatter

[zyk]: expand Invariant

[rvj]: scatter

[zgj]: auto

[rhd]: proved (CVCL)

... (31 times)

[2f3]: proved (CVCL)

... (1 times)

[st6]: scatter

[aef]: expand Invariant

[cwk]: scatter

[ql6]: auto

[seg]: proved (CVCL)

... (21 times)

[wl6]: proved (CVCL)

... (12 times)

[tt6]: scatter

[hp6]: expand Invariant

[twl]: scatter

[hqv]: auto

[tbj]: proved (CVCL)

... (27 times)

[nqv]: proved (CVCL)

... (6 times)

[meh]: scatter

[w3z]: expand External

[3rk]: split lhe

[g4b]: scatter

[mdh]: expand Invariant

[wzf]: scatter

[3ys]: auto

[gsh]: proved (CVCL)

... (36 times)

[h4b]: scatter

[tob]: expand Invariant

[h1g]: scatter

[t4i]: auto

[hpk]: proved (CVCL)

... (36 times)

[neh]: scatter

[4oc]: expand RC

[nuh]: split nwz

[4ge]: scatter

[ney]: expand Invariant

[45d]: scatter

[nui]: auto

[4wr]: proved (CVCL)

... (36 times)

[5ge]: scatter

[ups]: expand Invariant

[o6e]: scatter

[ez5]: auto

[5tu]: proved (CVCL)

... (36 times)

[6ge]: scatter

[21m]: expand Invariant

[66f]: scatter

[24u]: auto

[6qx]: proved (CVCL)

... (36 times)

Ten main branches each requiring only single application of autostar.
Wolfgang Schreiner http://www.risc.jku.at 65/65


