Modeling Concurrent Systems

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

- System of one server and two clients.
- Three concurrently executing system components
- Server manages a resource.
- An object that only one system component may use at any time.
- Clients request resource and, having received an answer, use it.
- Server ensures that not both clients use resource simultaneously.
- Server eventually answers every request.

Set of system requirements.

1. A Client/Server System

2. Modeling Concurrent Systems
3. A Model of the Client/Server System
4. Summary

System Implementation

Server
local given, waiting, sender
begin
given := 0; waiting := 0
loop
sender := receiveRequest()
if sender = given then
if waiting $=0$ then
given := 0
else
given := waiting; waiting := 0 sendAnswer(given) endif
elsif given $=0$ then
given := sender sendAnswer(given) else waiting := sender
endloop
end Server

Client(ident):
param ident begin

loop

sendRequest()
receiveAnswer()
.. // critical region
sendRequest()
endloop
end Client

- Property: mutual exclusion.
- At no time, both clients are in critical region.
- Critical region: program region after receiving resource from server and before returning resource to server.
- The system shall only reach states, in which mutual exclusion holds.
- Property: no starvation.
- Always when a client requests the resource, it eventually receives it.
- Always when the system reaches a state, in which a client has requested a resource, it shall later reach a state, in which the client receives the resource.
- Problem: each system component executes its own program.
- Multiple program states exist at each moment in time.
- Total system state is combination of individual program states.
- Not easy to see which system states are possible.

How can we verify that the system has the desired properties?
Wolfgang Schreiner
http://www.risc.jku.at

System States

At each moment in time, a system is in a particular state.

- A state $s: V a r \rightarrow V a l$
- A state s is a mapping of every system variable x to its value $s(x)$.
- Typical notation: $s=[x=0, y=1, \ldots]=[0,1, \ldots]$.
- Var . . . the set of system variables
- Program variables, program counters, ...
- Val ...the set of variable values.
- The state space State $=\{s \mid s: V a r \rightarrow$ Val $\}$
- The state space is the set of possible states.
- The system variables can be viewed as the coordinates of this space.
- The state space may (or may not) be finite.
- If $|\operatorname{Var}|=n$ and $|V a l|=m$, then \mid State $\mid=m^{n}$.
- A word of $\log _{2} m^{n}$ bits can represent every state.

A system execution can be described by a path $s_{0} \rightarrow s_{1} \rightarrow s_{2} \rightarrow \ldots$ in the state space.

1. A Client/Server System

2. Modeling Concurrent Systems

3. A Model of the Client/Server System
4. Summary

Wolfgang Schreiner

Deterministic Systems

In a sequential system, each state typically determines its successor state.

- The system is deterministic.
- We have a (possibly not total) transition function F on states.
- $s_{1}=F\left(s_{0}\right)$ means " s_{1} is the successor of s_{0} ".
- Given an initial state s_{0}, the execution is thus determined.
- $s_{0} \rightarrow s_{1}=F\left(s_{0}\right) \rightarrow s_{2}=F\left(s_{1}\right) \rightarrow \ldots$
- A deterministic system (model) is a pair $\langle I, F\rangle$.
- A set of initial states $I \subseteq$ State
- Initial state condition $I(s): \Leftrightarrow s \in I$
- A transition function $F:$ State $\xrightarrow{\text { partial }}$ State.
- A run of a deterministic system $\langle I, F\rangle$ is a (finite or infinite) sequence $s_{0} \rightarrow s_{1} \rightarrow \ldots$ of states such that
- $s_{0} \in I$ (respectively $I\left(s_{0}\right)$).
- $s_{i+1}=F\left(s_{i}\right)$ (for all sequence indices i)
- If s ends in a state s_{n}, then F is not defined on s_{n}.

Nondeterministic Systems

In a concurrent system, each component may change its local state, thus the successor state is not uniquely determined.

- The system is nondeterministic.
- We have a transition relation R on states.
- $R\left(s_{0}, s_{1}\right)$ means " s_{1} is a (possible) successor of s_{0} ".
- Given an initial state s_{0}, the execution is not uniquely determined.

$$
\text { Both } s_{0} \rightarrow s_{1} \rightarrow \ldots \text { and } s_{0} \rightarrow s_{1}^{\prime} \rightarrow \ldots \text { are possible. }
$$

- A non-deterministic system (model) is a pair $\langle I, R\rangle$.
- A set of initial states (initial state condition) $I \subseteq$ State.
- A transition relation $R \subseteq$ State \times State.
- A run s of a nondeterministic system $\langle I, R\rangle$ is a (finite or infinite) sequence $s_{0} \rightarrow s_{1} \rightarrow s_{2} \ldots$ of states such that
- $s_{0} \in I$ (respectively $I\left(s_{0}\right)$).
- $R\left(s_{i}, s_{i+1}\right)$ (for all sequence indices i).
- If s ends in a state s_{n}, then there is no state t such that $R\left(s_{n}, t\right)$.

Wolfgang Schreiner
http://www.risc.jku.at

The transitions of a system can be visualized by a graph.

The nodes of the graph are the reachable states of the system.

- Successor and predecessor:
- State t is a (direct) successor of state s, if $R(s, t)$.
- State s is then a predecessor of t.
- A finite run $s_{0} \rightarrow \ldots \rightarrow s_{n}$ ends in a state which has no successor.
- Reachability:
- A state t is reachable, if there exists some run $s_{0} \rightarrow s_{1} \rightarrow s_{2} \rightarrow \ldots$ such that $t=s_{i}$ (for some i).
- A state t is unreachable, if it is not reachable.

Not all states are reachable (typically most are unreachable).

Examples

Fig. 1.1. A model of a watch
of $\mathcal{A}_{\mathrm{c} 3}$ correspond to the possible counter values. Its transitions reflect the
ossible actions on the counter. In this example we restrict our operations to porst (ind decrements (dec)

Fig. 1.2. $\mathcal{A}_{c 3}:$ a modulo 3 counter
B.Berard et al: "Systems and Software Verification", 2001

Examples

- A deterministic system $W=\left(I_{W}, F_{W}\right)$ ("watch").
- State $:=\mathbb{N}_{24} \times \mathbb{N}_{60}$.

$$
\mathbb{\mathbb { N } _ { n }}:=\{i \in \mathbb{N}: i<n\} .
$$

- $I_{W}(h, m): \Leftrightarrow h=0 \wedge m=0$.
$\square I_{w}:=\{\langle h, m\rangle: h=0 \wedge m=0\}=\{\langle 0,0\rangle\}$.
- $F_{W}(h, m):=$
if $m<59$ then $\langle h, m+1\rangle$
else if $h<23$ then $\langle h+1,0\rangle$
else $\langle 0,0\rangle$.
- A nondeterministic system $C=\left(I_{C}, R_{C}\right)$ (modulo 3 "counter").
(- State $:=\mathbb{N}_{3}$.
$-I_{C}(i): \Leftrightarrow i=0$.
$=R_{C}\left(i, i^{\prime}\right): \Leftrightarrow \operatorname{inc}\left(i, i^{\prime}\right) \vee \operatorname{dec}\left(i, i^{\prime}\right)$.
- inc $\left(i, i^{\prime}\right): \Leftrightarrow$ if $i<2$ then $i^{\prime}=i+1$ else $i^{\prime}=0$.
- $\operatorname{dec}\left(i, i^{\prime}\right): \Leftrightarrow$ if $i>0$ then $i^{\prime}=i-1$ else $i^{\prime}=2$.

What are the initial states $/$ of the composed system?

- Set $I:=I_{0} \times \ldots \times I_{n-1}$.
- I_{i} is the set of initial states of component i.
- Set of initial states is Cartesian product of the sets of initial states of the individual components.
- Predicate $I\left(s_{0}, \ldots, s_{n-1}\right): \Leftrightarrow I_{0}\left(s_{0}\right) \wedge \ldots \wedge I_{n-1}\left(s_{n-1}\right)$.
- I_{i} is the initial state condition of component i.
- Initial state condition is conjunction of the initial state conditions of the components on the corresponding projection of the state.
Size of initial state set is the product of the sizes of the initial state sets of the individual components.

Composing Systems

Compose n components S_{i} to a concurrent system S.

- State space State $:=$ State $_{0} \times \ldots \times$ State $_{n-1}$.
- State $_{i}$ is the state space of component i.
- State space is Cartesian product of component state spaces.
- Size of state space is product of the sizes of the component spaces.
- Example: three counters with state spaces \mathbb{N}_{2} and \mathbb{N}_{3} and \mathbb{N}_{4}.

B.Berard et al: "Systems and Software Verification", 2001.

Transitions of Composed System

Which transitions can the composed system perform?

- Synchronized composition.
- At each step, every component must perform a transition.
- R_{i} is the transition relation of component i.

$$
\begin{aligned}
& R\left(\left\langle s_{0}, \ldots, s_{n-1}\right\rangle,\left\langle s_{o}^{\prime}, \ldots, s_{n-1}^{\prime}\right\rangle\right): \Leftrightarrow \\
& R_{0}\left(s_{0}, s_{0}^{\prime}\right) \wedge \ldots \wedge R_{n-1}\left(s_{n-1}, s_{n-1}^{\prime}\right) .
\end{aligned}
$$

- Asynchronous composition.
- At each moment, every component may perform a transition.
- At least one component performs a transition.
- Multiple simultaneous transitions are possible
- With n components, $2^{n}-1$ possibilities of (combined) transitions
$R\left(\left\langle s_{0}, \ldots, s_{n-1}\right\rangle,\left\langle s_{0}^{\prime}, \ldots, s_{n-1}^{\prime}\right\rangle\right): \Leftrightarrow$
$\left(R_{0}\left(s_{0}, s_{0}^{\prime}\right) \wedge \ldots \wedge s_{n-1}=s_{n-1}^{\prime}\right) \vee$
$\left(s_{0}=s_{0}^{\prime} \wedge \ldots \wedge R_{n-1}\left(s_{n-1}, s_{n-1}^{\prime}\right)\right) \vee$
$\left(R_{0}\left(s_{0}, s_{0}^{\prime}\right) \wedge \ldots \wedge R_{n-1}\left(s_{n-1}, s_{n-1}^{\prime}\right)\right)$.

Example

System of three counters with state space \mathbb{N}_{2} each.

- Synchronous composition:

$$
[0,0,0] \leftrightarrows[1,1,1]
$$

- Asynchronous composition:

B.Berard et al: "Systems and Software Verification", 2001.

System of three counters with state space \mathbb{N}_{2} each.

Concurrent Software

Asynchronous composition of software components with shared variables.

P:: 1_{0} : while true do $N C_{0}$: wait turn $=0$ $C R_{0}$: turn := 1
end

Concurrent Software

Figure 2.2
2.2 .2

Edmund Clarke et al: "Model Checking", 1999.
Model guarantees mutual exclusion.
Wolfgang Schreiner
http://www.risc.jku.at
22/40

Modeling Commands

Transition relations are typically described in a particular form.
■ $R\left(s, s^{\prime}\right): \Leftrightarrow P(s) \wedge s^{\prime}=F(s)$.

- Guard condition P on state in which transition can be performed. - If $P(s)$ holds, then there exists some s^{\prime} such that $R\left(s, s^{\prime}\right)$.
- Transition function F that determines the successor of s.

$$
\text { - } F \text { is defined for all states for which } s \text { holds: }
$$

$$
F:\{s \in \text { State }: P(s)\} \rightarrow \text { State } .
$$

. Examples:

- Assignment: $I: x:=e ; m: \ldots$

■ $R\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right): \Leftrightarrow p c=I \wedge\left(x^{\prime}=e \wedge y^{\prime}=y \wedge p c^{\prime}=m\right)$.

- Wait statement: $I:$ wait $P(x, y) ; m: \ldots$
$=R\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right): \Leftrightarrow$

$$
p c=I \wedge P(x, y) \wedge\left(x^{\prime}=x \wedge y^{\prime}=y \wedge p c^{\prime}=m\right) .
$$

- Guarded assignment: $I: P(x, y) \rightarrow x:=e ; m: \ldots$
- $R\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right): \Leftrightarrow$

$$
p c=I \wedge P(x, y) \wedge\left(x^{\prime}=e \wedge y^{\prime}=y \wedge p c^{\prime}=m\right) .
$$

Most programming language commands can be translated into this form.

Modelling Message Passing Systems

How to model an asynchronous system without shared variables where the components communicate/synchronize by exchanging messages?

- Given a label set Label $=\operatorname{Int} \cup E x t \cup \overline{E x t}$.
- Disjoint sets Int and Ext of internal and external labels.
- "Anonymous" label _ $\in \operatorname{Int}$.
- Complementary label set $\bar{L}:=\{\bar{I}: I \in L\}$.
- A labeled system is a pair $\langle I, R\rangle$.
- Initial state condition $I \subseteq$ State.
- Labeled transition relation $R \subseteq$ Label \times State \times State .
- A run of a labeled system $\langle I, R\rangle$ is a (finite or infinite) sequence $s_{0} \xrightarrow{I_{0}} s_{1} \xrightarrow{I_{1}} \ldots$ of states such that
$-s_{0} \in I$.
$=R\left(I_{i}, s_{i}, s_{i+1}\right)$ (for all sequence indices i).
- If s ends in a state s_{n}, there is no label I and state t s.t. $R\left(I, s_{n}, t\right)$.

0 :: loop
$a_{0}: \operatorname{send}(i)$
$a_{1}: i:=$ receive()
$a_{2}: i:=i+1$
end

$$
\begin{aligned}
& 1:: \text { loop } \\
& \quad b_{0}: j:=\text { receive }() \\
& b_{1}: j:=j+1 \\
& b_{2}: \operatorname{send}(\mathrm{j}) \\
& \\
& \text { end }
\end{aligned}
$$

- Two labeled systems $\left\langle I_{0}, R_{0}\right\rangle$ and $\left\langle I_{1}, R_{1}\right\rangle$.

State $_{0}=$ State $_{1}=P C \times \mathbb{N}$, Internal $:=\{A, B\}$, External $:=\{M, N\}$.
$I_{0}(p, i): \Leftrightarrow p=a_{0} \wedge i \in \mathbb{N} ; I_{1}(q, j): \Leftrightarrow q=b_{0}$.
$R_{0}\left(I,\langle p, i\rangle,\left\langle p^{\prime}, i^{\prime}\right\rangle\right): \Leftrightarrow$

$$
\begin{aligned}
& \left(I=\bar{M} \wedge p=a_{0} \wedge p^{\prime}=a_{1} \wedge i^{\prime}=i\right) \vee \\
& \left(I=N \wedge p=a_{1} \wedge p^{\prime}=a_{2} \wedge i^{\prime}=j\right) \vee / / \text { illegal! }
\end{aligned}
$$

$$
\left(I=A \wedge p=a_{2} \wedge p^{\prime}=a_{0} \wedge i^{\prime}=i+1\right)
$$

$R_{1}\left(I,\langle q, j\rangle,\left\langle q^{\prime}, j^{\prime}\right\rangle\right): \Leftrightarrow$
$\left(I=M \wedge q=b_{0} \wedge q^{\prime}=b_{1} \wedge j^{\prime}=i\right) \vee / /$ illegal!
$\left(I=B \wedge q=b_{1} \wedge q^{\prime}=b_{2} \wedge j^{\prime}=j+1\right) \vee$

$$
\left(I=\bar{N} \wedge q=b_{2} \wedge q^{\prime}=b_{0} \wedge j^{\prime}=j\right)
$$

Synchronization by Message Passing

Compose a set of n labeled systems $\left\langle I_{i}, R_{i}\right\rangle$ to a system $\langle I, R\rangle$.

- State space State $:=$ State $_{0} \times \ldots \times$ State $_{n-1}$.
- Initial states $I:=I_{0} \times \ldots \times I_{n-1}$.

$$
■ I\left(s_{0}, \ldots, s_{n-1}\right): \Leftrightarrow I_{0}\left(s_{0}\right) \wedge \ldots \wedge I_{n-1}\left(s_{n-1}\right) .
$$

- Transition relation

$$
\begin{aligned}
& R\left(I,\left\langle s_{i}\right\rangle_{i \in \mathbb{N}_{n}},\left\langle s_{i}^{\prime}\right\rangle_{i \in \mathbb{N}_{n}}\right) \Leftrightarrow \\
& \quad\left(I \in \operatorname{Int} \wedge \exists i \in \mathbb{N}_{n}:\right. \\
& \left.\quad R_{i}\left(I, s_{i}, s_{i}^{\prime}\right) \wedge \forall k \in \mathbb{N}_{n} \backslash\{i\}: s_{k}=s_{k}^{\prime}\right) \vee \\
& \quad\left(I=-\wedge \exists I \in E x t, i \in \mathbb{N}_{n}, j \in \mathbb{N}_{n}:\right. \\
& \left.\quad R_{i}\left(I, s_{i}, s_{i}^{\prime}\right) \wedge R_{j}\left(\bar{l}, s_{j}, s_{j}^{\prime}\right) \wedge \forall k \in \mathbb{N}_{n} \backslash\{i, j\}: s_{k}=s_{k}^{\prime}\right) .
\end{aligned}
$$

Either a component performs an internal transition or two components
simultaneously perform an external transition with complementary labels.

Example (Continued)

Composition of $\left\langle I_{0}, R_{0}\right\rangle$ and $\left\langle I_{1}, R_{1}\right\rangle$ to $\langle I, R\rangle$.

$$
\text { State }=(P C \times \mathbb{N}) \times(P C \times \mathbb{N})
$$

$$
I(p, i, q, j): \Leftrightarrow p=a_{0} \wedge i \in \mathbb{N} \wedge q=b_{0} .
$$

$$
\begin{aligned}
& R\left(I,\langle p, i, q, j\rangle,\left\langle p^{\prime}, i^{\prime}, q^{\prime}, j^{\prime}\right\rangle\right): \Leftrightarrow \\
& \quad\left(I=A \wedge\left(p=a_{2} \wedge p^{\prime}=a_{0} \wedge i^{\prime}=i+1\right) \wedge\left(q^{\prime}=q \wedge j^{\prime}=j\right)\right) \vee \\
& \left(I=B \wedge\left(p^{\prime}=p \wedge i^{\prime}=i\right) \wedge\left(q=b_{1} \wedge q^{\prime}=b_{2} \wedge j^{\prime}=j+1\right)\right) \vee \\
& \left(I=-\wedge\left(p=a_{0} \wedge p^{\prime}=a_{1} \wedge i^{\prime}=i\right) \wedge\left(q=b_{0} \wedge q^{\prime}=b_{1} \wedge j^{\prime}=i\right)\right) \vee \\
& \left(I=-\wedge\left(p=a_{1} \wedge p^{\prime}=a_{2} \wedge i^{\prime}=j\right) \wedge\left(q=b_{2} \wedge q^{\prime}=b_{0} \wedge j^{\prime}=j\right)\right) .
\end{aligned}
$$

Problem: state relation of each component refers to local variable of other component (variables are shared).

Example (Revised)

$0::$ loop
$a_{0}: \operatorname{send}(i)$
$a_{1}: i:=$ receive(
$a_{2}: i:=i+1$
end

1 :: loop
 $b_{0}: j:=$ receive()
 $b_{1}: j:=j+1$
 $b_{2}: \operatorname{send}(\mathrm{j})$
 end

- Two labeled systems $\left\langle I_{0}, R_{0}\right\rangle$ and $\left\langle I_{1}, R_{1}\right\rangle$.

$$
\begin{aligned}
& \text { External }:=\left\{M_{k}: k \in \mathbb{N}\right\} \cup\left\{N_{k}: k \in \mathbb{N}\right\} \\
& R_{0}\left(I,\langle p, i\rangle,\left\langle p^{\prime}, i^{\prime}\right\rangle\right): \Leftrightarrow \\
& \quad\left(I=\overline{M_{i}} \wedge p=a_{0} \wedge p^{\prime}=a_{1} \wedge i^{\prime}=i\right) \vee \\
& \quad\left(\exists k \in \mathbb{N}: I=N_{k} \wedge p=a_{1} \wedge p^{\prime}=a_{2} \wedge i^{\prime}=k\right) \vee \\
& \quad\left(I=A \wedge p=a_{2} \wedge p^{\prime}=a_{0} \wedge i^{\prime}=i+1\right) . \\
& R_{1}\left(I,\langle q, j\rangle,\left\langle q^{\prime}, j^{\prime}\right\rangle\right): \Leftrightarrow \\
& \quad\left(\exists k \in \mathbb{N}: I=M_{k} \wedge q=b_{0} \wedge q^{\prime}=b_{1} \wedge j^{\prime}=k\right) \vee \\
& \quad\left(I=B \wedge q=b_{1} \wedge q^{\prime}=b_{2} \wedge j^{\prime}=j+1\right) \vee \\
& \quad\left(I=\overline{N_{j}} \wedge q=b_{2} \wedge q^{\prime}=b_{0} \wedge j^{\prime}=j\right) .
\end{aligned}
$$

Encode message value in label.

The Client/Server System

Asynchronous composition of three components Client $_{1}$, Client ${ }_{2}$, Server.

- Client ${ }_{i}$: State $:=P C \times \mathbb{N}_{2} \times \mathbb{N}_{2}$.
- Three variables $p c$, request, answer
- pc represents the program counter.
- request is the buffer for outgoing requests.
- Filled by client, when a request is to be sent to server.
- answer is the buffer for incoming answers.
- Checked by client, when it waits for an answer from the server.
- Server: State $:=\left(\mathbb{N}_{3}\right)^{3} \times\left(\{1,2\} \rightarrow \mathbb{N}_{2}\right)^{2}$.
- Variables given, waiting, sender, rbuffer, sbuffer.
- No program counter.
- We use the value of sender to check whether server waits for a request (sender $=0$) or answers a request (sender $\neq 0$).
- Variables given, waiting, sender as in program.
- rbuffer (i) is the buffer for incoming requests from client i.
- sbuffer (i) is the buffer for outgoing answers to client i.

Example (Continued)

Composition of $\left\langle I_{0}, R_{0}\right\rangle$ and $\left\langle I_{1}, R_{1}\right\rangle$ to $\langle I, R\rangle$.

$$
\begin{aligned}
& \text { State }=(P C \times \mathbb{N}) \times(P C \times \mathbb{N}) . \\
& I(p, i, q, j): \Leftrightarrow p=a_{0} \wedge i \in \mathbb{N} \wedge q=b_{0} . \\
& R\left(I,\langle p, i, q, j\rangle,\left\langle p^{\prime}, i^{\prime}, q^{\prime}, j^{\prime}\right\rangle\right): \Leftrightarrow \\
& \quad\left(I=A \wedge\left(p=a_{2} \wedge p^{\prime}=a_{0} \wedge i^{\prime}=i+1\right) \wedge\left(q^{\prime}=q \wedge j^{\prime}=j\right)\right) \vee \\
& \left(I=B \wedge\left(p^{\prime}=p \wedge i^{\prime}=i\right) \wedge\left(q=b_{1} \wedge q^{\prime}=b_{2} \wedge j^{\prime}=j+1\right)\right) \vee \\
& (I=-\wedge \exists k \in \mathbb{N}: k=i \wedge \\
& \left.\quad\left(p=a_{0} \wedge p^{\prime}=a_{1} \wedge i^{\prime}=i\right) \wedge\left(q=b_{0} \wedge q^{\prime}=b_{1} \wedge j^{\prime}=k\right)\right) \vee \\
& \left(I=_\wedge \exists k \in \mathbb{N}: k=j \wedge\right. \\
& \left.\quad\left(p=a_{1} \wedge p^{\prime}=a_{2} \wedge i^{\prime}=k\right) \wedge\left(q=b_{2} \wedge q^{\prime}=b_{0} \wedge j^{\prime}=j\right)\right) .
\end{aligned}
$$

Logically equivalent to previous definition of transition relation.

External Transitions

- Ext $:=\left\{R E Q_{1}, R E Q_{2}, A N S_{1}, A N S_{2}\right\}$.
- Transition labeled $R E Q_{i}$ transmits a request from client i to server.
- Enabled when request $\neq 0$ in client i.
- Effect in client i : request ${ }^{\prime}=0$.
- Effect in server: rbuffer' $(i)=1$.
- Transition labeled $A N S_{i}$ transmits an answer from server to client i
- Enabled when sbuffer $(i) \neq 0$.
- Effect in server: sbuffer ${ }^{\prime}(i)=0$.
- Effect in client i : answer ${ }^{\prime}=1$.

The external transitions correspond to system-level actions of the communication subsystem (rather than to the user-level actions of the client/server program).

Client system $C_{i}=\left\langle I C_{i}, R C_{i}\right\rangle$.
State : $=P C \times \mathbb{N}_{2} \times \mathbb{N}_{2}$.
Int $:=\left\{R_{i}, S_{i}, C_{i}\right\}$.
$\mathcal{I C}_{i}(p c$, request, answer) $: \Leftrightarrow$
$p C=R \wedge$ request $=0 \wedge$ answer $=0$.
$R C_{i}(I,\langle p c$, request, answer \rangle,
(pc', request', answer \rangle) : \Leftrightarrow
$\left(I=R_{i} \wedge p c=R \wedge\right.$ request $=0 \wedge$
$p c^{\prime}=S \wedge$ request ${ }^{\prime}=1 \wedge$ answer $=$ answer $) \vee$
$\left(I=S_{i} \wedge p c=S \wedge\right.$ answer $\neq 0 \wedge$
$p c^{\prime}=C \wedge$ request ${ }^{\prime}=$ request \wedge answer $\left.{ }^{\prime}=0\right) \vee$
$\left(I=C_{i} \wedge p c=C \wedge\right.$ request $=0 \wedge$
$p c^{\prime}=R \wedge$ request $^{\prime}=1 \wedge$ answer' $=$ answer $) \vee$
$\left(I=\overline{R E Q_{i}} \wedge\right.$ request $\neq 0 \wedge$
$p c^{\prime}=p c \wedge$ request $^{\prime}=0 \wedge$ answer ${ }^{\prime}=$ answer $) \vee$ ($I=A N S_{i} \wedge$
$p c^{\prime}=p c \wedge$ request $=$ request \wedge answer $\left.{ }^{\prime}=1\right)$.

Client(ident)
param ident
begin
loop
R : sendRequest()
S: receiveAnswer()
C: // critical region
sendRequest()
endloop
end Client

The Server (Contd)

The Server

Server system $S=\langle I S, R S\rangle$.
State $:=\left(\mathbb{N}_{3}\right)^{3} \times\left(\{1,2\} \rightarrow \mathbb{N}_{2}\right)^{2}$
Int $:=\{D 1, D 2, F, A 1, A 2, W\}$.
IS(given, waiting, sender, rbuffer, sbuffer) : \Leftrightarrow given $=$ waiting $=$ sender $=0 \wedge$
rbuffer $(1)=$ rbuffer $(2)=\operatorname{sbuffer}(1)=\operatorname{sbuffer}(2)=0$
$R S(I,\langle$ given, waiting, sender, rbuffer, sbuffer \rangle,
$\left\langle\right.$ given $^{\prime}$, waiting $^{\prime}$, sender ${ }^{\prime}$, rbuffer' ${ }^{\prime}$, sbuffer $\left.\left.{ }^{\prime}\right\rangle\right): \Leftrightarrow$
$\exists i \in\{1,2\}$
($I=D_{i} \wedge$ sender $=0 \wedge$ rbuffer $(i) \neq 0 \wedge$
sender ${ }^{\prime}=i \wedge r_{\text {buffer }}{ }^{\prime}(i)=0 \wedge$
$U($ given, waiting, sbuffer $) \wedge$
$\forall j \in\{1,2\} \backslash\{i\}: U_{j}($ rbuffer $\left.)\right) \vee$
$U\left(x_{1}, \ldots, x_{n}\right): \Leftrightarrow x_{1}^{\prime}=x_{1} \wedge \ldots \wedge x_{n}^{\prime}=x_{n}$
$U_{j}\left(x_{1}, \ldots, x_{n}\right): \Leftrightarrow x_{1}^{\prime}(j)=x_{1}(j) \wedge \ldots \wedge x_{n}^{\prime}(j)=x_{n}(j)$.

Wolfgang Schreiner
http://www.risc.jku.at

Server:
local given, waiting, sender begin
given := 0; waiting := 0
loop
D: sender := receiveRequest() if sender = given then if waiting $=0$ then given := 0 else
A1: given := waiting; waiting := 0 sendAnswer(given) endif
elsif given $=0$ then
A2: given := sender sendAnswer(given) else
W: waiting := sender endif
endloop
end Server

The Server (Contd'2)

Server:
local given, waiting, sender begin
given := 0; waiting :=
loop
D: sender := receiveRequest() if sender = given then if waiting $=0$ then given := 0
else
given := waiting; waiting := 0 sendAnswer (given) endif
elsif given $=0$ then
A2: given := sender sendAnswer(given) else
W : waiting := sender endif endloop
$(I=A 2 \wedge$ sender $\neq 0 \wedge$ sbuffer(sender) $=0 \wedge$ sender \neq given \wedge given $=0 \wedge$
given' $=$ sender \wedge
sbuffer $^{\prime}($ sender $)=1 \wedge$ sender $^{\prime}=0 \wedge$
$U($ waiting , rbuffer $) \wedge$
$\forall j \in\{1,2\} \backslash\{$ sender $\}: U_{j}($ sbuffer $\left.)\right) \vee$

Server:
local given, waiting, sender
$(I=W \wedge$ sender $\neq 0 \wedge$ sender \neq given \wedge given $\neq 0 \wedge$ waiting ${ }^{\prime}=$ sender \wedge sender ${ }^{\prime}=0 \wedge$
$U($ given, rbuffer, sbuffer $)$)
$\exists i \in\{1,2\}$
$\left(I=R E Q_{i} \wedge\right.$ rbuffer $^{\prime}(i)=1 \wedge$ $U($ given, waiting, sender, sbuffer $) \wedge$ $\forall j \in\{1,2\} \backslash\{i\}: U_{j}($ rbuffer $\left.)\right) \vee$
(I = $\overline{\text { ANS }_{i}} \wedge \operatorname{sbuffer}(i) \neq 0 \wedge$
sbuffer ${ }^{\prime}(i)=0 \wedge$
$U($ given, waiting, sender, rbuffer $) \wedge$ $\forall j \in\{1,2\} \backslash\{i\}: U_{j}($ sbuffer $\left.)\right)$.
begin
given := 0; waiting := 0
loop
D: sender := receiveRequest()
if sender = given then
if waiting $=0$ then given := 0
else
given := waiting; waiting := 0 sendAnswer (given) endif
elsif given $=0$ then
A2: given := sender sendAnswer (given)
else
W: waiting := sender endif
ndloop
end Server

Communication Channels

We also model the communication medium between components.

- Bounded channel Channel $i_{i, j}=\left(I C H\right.$, RCH $\left._{i, j}\right)$.
- Transfers message from component with address i to component j.
- May hold at most N messages at a time (for some N).
- State $:=$ Value*.
- Sequence of values of type Value.
- Ext $:=\left\{S E N D_{i, j}(m): m \in\right.$ Value $\} \cup\left\{\operatorname{RECEIVE}_{i, j}(m): m \in\right.$ Value $\}$.
- By $\operatorname{SEND}_{i, j}(m)$, channel receives from sender i a message m destined for receiver j; by $\operatorname{RECEIVE}_{i, j}(m)$, channel forwards that message.
ICH (queue) : \Leftrightarrow queue $=\langle \rangle$.
RCH $_{i, j}(I$, queue, queue' $): \Leftrightarrow$
$\exists m \in$ Value :

$$
\left(I=\underline{S E N D_{i, j}(m) \wedge|q u e u e|} \mid<N \wedge \text { queue }^{\prime}=q u e u e \circ\langle m\rangle\right) \vee
$$

$$
\left(I=\overline{\operatorname{RECEIVE}}_{i, j}(m) \wedge \mid \text { queue } \mid>0 \wedge \text { queue }=\langle m\rangle \circ \text { queue } e^{\prime}\right) .
$$

1. A Client/Server System
2. Modeling Concurrent Systems
3. A Model of the Client/Server System
4. Summary

Client/Server Example with Channels

- Server receives address 0 .
- Label $R E Q_{i}$ is renamed to $\operatorname{RECEIVE}_{i, 0}(R)$.
- Label $\overline{A N S_{i}}$ is renamed to $\operatorname{SEND}_{0, i}(A)$
- Client i receives address $i(i \in\{1,2\})$.
- Label $\overline{R E Q_{i}}$ is renamed to $\overline{S E N D_{i, 0}(R)}$.
- Label $A N S_{i}$ is renamed to $\operatorname{RECEIVE}_{0, i}(A)$
- System is composed of seven components:
- Server, Client ${ }_{1}$, Client ${ }_{2}$.
- Channel ${ }_{0,1}$, Channel ${ }_{1,0}$.
- Channel ${ }_{0,2}$, Channel $1_{2,0}$.

Also channels are active system components.

Summary

- A system is described by
- its (finite or infinite) state space,
- the initial state condition (set of input states),
- the transition relation on states.
- State space of composed system is product of component spaces.
- Variable shared among components occurs only once in product.
- System composition can be
- synchronous: conjunction of individual transition relations.
- Suitable for digital hardware.
- asynchronous: disjunction of relations.
- Interleaving model: each relation conjoins the transition relation of one component with the identity relations of all other components.
- Suitable for concurrent software.
- Message passing systems may be modeled by using labels:
- Synchronize transitions of sender and receiver.
- Carry values to be transmitted from sender to receiver.

