

Examples

Terms and formulas may appear in various syntactic forms.

Terms: exp(x) $a \cdot b + 1$ $a[i] \cdot b$ $\sqrt{\frac{x^2 + 2x + 1}{(y+1)^2}}$ Formulas: $a^2 + b^2 = c^2$ $n \mid 2n$ $\forall x \in \mathbb{N} : x \ge 0$ $\forall x \in \mathbb{N} : 2|x \lor 2|(x+1)$ $\forall x \in \mathbb{N}, y \in \mathbb{N} : x < y \Rightarrow$ $\exists z \in \mathbb{N} : x + z = y$

Terms and formulas may be nested arbitrarily deeply.

Wolfgang Schreiner

http://www.risc.jku.at

5/67

Example

We assume the domain of natural numbers and the "classical" interpretation of constants 1, 2, +, =, <.

- 1+1=2
- True.
- $1 + 1 = 2 \lor 2 + 2 = 2$

$$1 + 1 = 2 \land 2 + 2 = 2$$

$$\blacksquare 1+1=2 \Rightarrow 2=1+1$$

$$1+1=1 \Rightarrow 2+2=2$$

$$1+1=2 \Rightarrow 2+2=2$$

$$1 + 1 = 1 \Leftrightarrow 2 + 2 = 2$$

Wolfgang Schreiner

The Meaning of Formulas

 True if th Negation ¬F True if an Conjunction F True if an Disjunction F True if an Implication F; False if an Equivalence F True if an 	la $p(T_1,, T_n)$ e predicate denoted by p holds for the values of $T_1,$ d only if F is false. $F_1 \land F_2$ (" F_1 and F_2 ") id only if F_1 and F_2 are both true. $f_1 \lor F_2$ (" F_1 or F_2 ") id only if at least one of F_1 or F_2 is true. $f_1 \Rightarrow F_2$ ("if F_1 , then F_2 ") ind only if F_1 is true and F_2 is false. $F_1 \Leftrightarrow F_2$ ("if F_1 , then F_2 , and vice versa") id only if F_1 and F_2 are both true or both false. intification $\forall x : F$ ("for all x, F ")	
	d only if F is true for every possible value assignment of F is true for every possible value assignment of F	of <i>x</i> .
	antification $\exists x : F$ ("for some x, F") d only if F is true for at least one value assignment of z	х.
Wolfgang Schreiner	http://www.risc.jku.at	6/67
		-

Example

- x + 1 = 1 + x
 True, for every assignment of a number *a* to variable *x*.
- $\forall x: x+1 = 1+x$
 - True (because for every assignment a to x, x + 1 = 1 + x is true).
- *x* + 1 = 2
 - If x is assigned "one", the formula is true.
 - If x is assigned "two", the formula is false.
- $\exists x : x + 1 = 2$
 - True (because x + 1 = 2 is true for assignment "one" to x).
- $\forall x: x + 1 = 2$
 - False (because x + 1 = 2 is false for assignment "two" to x).
- $\forall x : \exists y : x < y$
 - True (because for every assignment a to x, there exists the assignment a + 1 to y which makes x < y true).</p>
- $\exists y : \forall x : x < y$
 - False (because for every assignment a to y, there is the assignment a + 1 to x which makes x < y false).

http://www.risc.jku.at

Wolfgang Schreiner

7/67

Formula Equivalences

Formulas may be replaced by equivalent formulas.

- $\blacksquare \neg \neg F_1 \iff F_1$
- $\neg (F_1 \land F_2) \nleftrightarrow \neg F_1 \lor \neg F_2$
- $\neg (F_1 \lor F_2) \nleftrightarrow \neg F_1 \land \neg F_2$
- $\blacksquare \neg (F_1 \Rightarrow F_2) \nleftrightarrow F_1 \land \neg F_2$
- $\neg \forall x : F \iff \exists x : \neg F$
- $\neg \exists x : F \longleftrightarrow \forall x : \neg F$

$$\bullet F_1 \Rightarrow F_2 \nleftrightarrow \neg F_2 \Rightarrow \neg F_1$$

$$\bullet F_1 \Rightarrow F_2 \nleftrightarrow \neg F_1 \lor F_2$$

- $\blacksquare F_1 \Leftrightarrow F_2 \nleftrightarrow \neg F_1 \Leftrightarrow \neg F_2$
- • •

Familiarity with manipulation of formulas is important.

```
Wolfgang Schreiner
```

http://www.risc.jku.at

The Usage of Formulas

Precise formulation of statements describing object relationships.

Statement:

If x and y are natural numbers and y is not zero, then q is the truncated quotient of x divided by y.

Formula:

```
 \begin{aligned} x \in \mathbb{N} \land y \in \mathbb{N} \land y \neq \mathbf{0} \Rightarrow \\ q \in \mathbb{N} \land \exists r \in \mathbb{N} : x = y \cdot q + r \land r < y \end{aligned}
```

Problem specification:

Given natural numbers x and y such that y is not zero, compute the truncated quotient q of x divided by y.

- Inputs: x, y
- Input condition: $x \in \mathbb{N} \land y \in \mathbb{N} \land y \neq 0$
- Output: q
- Output condition: $q \in \mathbb{N} \land \exists r \in \mathbb{N} : x = y \cdot q + r \land r < y$

"All swans are white or black."
∀x : swan(x) ⇒ white(x) ∨ black(x)
"There exists a black swan."
∃x : swan(x) ∧ black(x).
"A swan is white, unless it is black."
∀x : swan(x) ∧ ¬black(x) ⇒ white(x)
∀x : swan(x) ∧ ¬white(x) ⇒ black(x)
∀x : swan(x) ∧ ¬white(x) ⇒ black(x)
∀x : swan(x) ⇒ white(x) ∨ black(x)
∀x : swan(x) ⇒ white(x) ∨ black(x)
"Not everything that is white or black is a swan."
¬∀x : white(x) ∨ black(x) ⇒ swan(x).
∃x : (white(x) ∨ black(x)) ∧ ¬swan(x).
"Black swans have at least one black parent".
∀x : swan(x) ∧ black(x) ⇒ ∃y : swan(y) ∧ black(y) ∧ parent(y,x)

It is important to recognize the logical structure of an informal sentence in its various equivalent forms.

Wolfgang Schreiner

9/67

Example

http://www.risc.jku.at

10/67

Problem Specifications

- **The specification** of a computation problem:
 - Input: variables $x_1 \in S_1, \ldots, x_n \in S_n$
 - Input condition ("precondition"): formula $I(x_1, \ldots, x_n)$.
 - Output: variables $y_1 \in T_1, \ldots, y_m \in T_n$
 - Output condition ("postcondition"): $O(x_1, \ldots, x_n, y_1, \ldots, y_m)$.
 - $F(x_1,\ldots,x_n)$: only x_1,\ldots,x_n are free in formula F.
 - x is free in F, if not every occurrence of x is inside the scope of a quantifier (such as ∀ or ∃) that binds x.
- An implementation of the specification:
 - A function (program) $f: S_1 \times \ldots \times S_n \to T_1 \times \ldots \times T_m$ such that

$$x_1 \in S_1, \dots, x_n \in S_n : I(x_1, \dots, x_n) \Rightarrow$$

let $(y_1, \dots, y_m) = f(x_1, \dots, x_n)$ in

- $O(x_1,\ldots,x_n,y_1,\ldots,y_m)$
- For all arguments that satisfy the input condition, f must compute results that satisfy the output condition.

Basis of all specification formalisms.

Wolfgang Schreiner

Example: A Problem Specification

Given an integer array a, a position p in a, and a length l, return the array b derived from a by removing $a[p], \ldots, a[p+l-1]$.

- Input: $a \in \mathbb{Z}^*$, $p \in \mathbb{N}$, $l \in \mathbb{N}$
- Input condition:
 - $p + l \leq \text{length}(a)$
- Output: $b \in \mathbb{Z}^*$
- Output condition:
 - let n = length(a) in length $(b) = n - l \land$ $(\forall i \in \mathbb{N} : i$ $<math>(\forall i \in \mathbb{N} : p \le i < n - l \Rightarrow b[i] = a[i + l])$
- Mathematical theory:

```
T^* := \bigcup_{i \in \mathbb{N}} T^i, T^i := \mathbb{N}_i \to T, \mathbb{N}_i := \{n \in \mathbb{N} : n < i\}
length : T^* \to \mathbb{N}, length(a) = such i \in \mathbb{N} : a \in T^i
```

Wolfgang Schreiner

http://www.risc.jku.at

13/67

- 1. The Language of Logic
- 2. The RISC Algorithm Language
- 3. The Art of Proving
- 4. The RISC ProofNavigator

Do formal input condition I(x) and output condition O(x, y) really capture our informal intentions? Do concrete inputs/output satisfy/violate these conditions? $I(a_1), \neg I(a_2), O(a_1, b_1), \neg O(a_1, b_2).$ Is input condition satisfiable? $\exists x : I(x).$ Is input condition not trivial? $\exists x : \neg I(x).$ Is output condition satisfiable for every input? $\forall x: I(x) \Rightarrow \exists y: O(x, y).$ Is output condition for all (at least some) inputs not trivial? $\forall x: I(x) \Rightarrow \exists y: \neg O(x, y).$ $\exists x : I(x) \land \exists y : \neg O(x, y).$ Is for every legal input at most one output legal? $\forall x: I(x) \Rightarrow \forall y_1, y_2: O(x, y_1) \land O(x, y_2) \Rightarrow y_1 = y_2.$ Validate specification to increase our confidence in its meaning! Wolfgang Schreiner http://www.risc.jku.at 14/67 The RISC Algorithm Language (RISCAL A system for formally specifying and checking algorithms.

- Research Institute for Symbolic Computation (RISC), 2016–. http://www.risc.jku.at/research/formal/software/RISCAL.
- Implemented in Java with SWT library for the GUI.
 Tested under Linux only; freely available as open source (GPL3).
- A language for the defining mathematical theories and algorithms.
 - A static type system with only finite types (of parameterized sizes).
 - Predicates, explicitly (also recursively) and implicitly def.d functions.
 - Theorems (universally quantified predicates expected to be true).
 - Procedures (also recursively defined).
 - Pre- and post-conditions, invariants, termination measures.
- A framework for evaluating/executing all definitions.
 - Model checking: predicates, functions, theorems, procedures, annotations may be evaluated/executed for all possible inputs.
 - All paths of a non-deterministic execution may be elaborated.
 - The execution/evaluation may be visualized.

Validating algorithms by automatically verifying finite approximations.

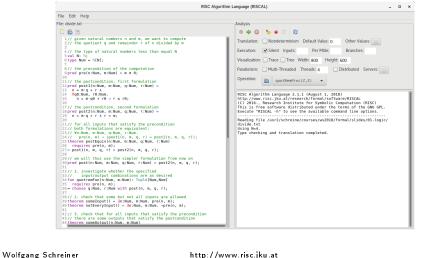
15/67

Wolfgang Schreiner

http://www.risc.jku.at

The RISC Algorithm Language (RISCAL

RISCAL divide.txt &



Wolfgang Schreiner

http://www.risc.jku.at

17/67

Typing Mathematical Symbols

ASC	II String	Unicode Character	ASCII String	Unicode Character
Int		Z	~=	<i>≠</i>
Nat		\mathbb{N}	<=	\leq
:=		:=	>=	\geq
true		Т	*	•
fals	e	\perp	times	×
~		-	{}	Ø
\wedge		\wedge	intersect	\cap
$\backslash/$		\vee	union	U
=>		\Rightarrow	Intersect	\cap
<=>		\Leftrightarrow	Union	U
fora	11	\forall	isin	E
exis	ts	Ξ	subseteq	\subseteq
sum		\sum	<<	<
prod	uct	Π	>>	>

Type the ASCII string and press <Ctrl>-# to get the Unicode character.

Using RISCAL

See also the (printed/online) "Tutorial and Reference Manual".

- Press button i (or <Ctrl>-s) to save specification.
 - Automatically processes (parses and type-checks) specification.
 - Press button [®] to re-process specification.
- Choose values for undefined constants in specification.
 - Natural number for val const: \mathbb{N} .
 - Default Value: used if no other value is specified.
 - Other Values: specific values for individual constants.
- Select Operation from menu and then press button
 - Executes operation for chosen constant values and all possible inputs.
 - Option Silent: result of operation is not printed.
 - Option *Nondeterminism*: all execution paths are taken.
 - Option *Multi-threaded*: multiple threads execute different inputs.
 - Press buttton ¹ to abort execution.

During evaluation all annotations (pre/postconditions, etc.) are checked.

http://www.risc.jku.at

Example: Quotient and Remainder

Given natural numbers n and m, we want to compute the quotient q and remainder r of n divided by m.

// the type of natural numbers less than equal N val N: \mathbb{N} ; type Num = $\mathbb{N}[\mathbb{N}];$

// the precondition of the computation pred pre(n:Num, m:Num) \Leftrightarrow m \neq 0;

// the postcondition, first formulation pred post1(n:Num, m:Num, q:Num, r:Num) ⇔ $n = m \cdot q + r \wedge$ ∀a0:Num, r0:Num. $n = m \cdot q0 + r0 \Rightarrow r < r0;$

 $\ensuremath{{//}}$ the postcondition, second formulation pred post2(n:Num, m:Num, q:Num, r:Num) \Leftrightarrow $n = m \cdot q + r \wedge r < m;$

We will investigate this specification.

Wolfgang Schreiner

Wolfgang Schreiner

Example: Quotient and Remainder

// for all inputs that satisfy the precondition // both formulations are equivalent: // ∀n:Num, m:Num, q:Num, r:Num. // pre(n, m) ⇒ (post1(n, m, q, r) ⇔ post2(n, m, q, r)); theorem postEquiv(n:Num, m:Num, q:Num, r:Num) requires pre(n, m); ⇔ post1(n, m, q, r) ⇔ post2(n, m, q, r);

// we will thus use the simpler formulation from now on pred post(n:Num, m:Num, q:Num, r:Num) \Leftrightarrow post2(n, m, q, r);

Check equivalence for all values that satisfy the precondition.

Wolfgang Schreiner

http://www.risc.jku.at

21/67

Example: Quotient and Remainder

Drop precondition from theorem.

theorem postEquiv(n:Num, m:Num, q:Num, r:Num) ⇔
 // requires pre(n, m);
 post1(n, m, q, r) ⇔ post2(n, m, q, r);

Executing postEquiv(Z,Z,Z,Z) with all 1296 inputs. Run 0 of deterministic function postEquiv(0,0,0,0): ERROR in execution of postEquiv(0,0,0,0): evaluation of postEquiv at line 25 in file divide.txt: theorem is not true ERROR encountered in execution.

For n = 0, m = 0, q = 0, r = 0, the modified theorem is not true.

Example: Quotient and Remainder

Choose e.g. value 5 for N.

Switch option Silent off:

Executing postEquiv(Z,Z,Z,Z) with all 1296 inputs. Ignoring inadmissible inputs... Run 6 of deterministic function postEquiv(0,1,0,0): Result (0 ms): true Run 7 of deterministic function postEquiv(1,1,0,0): Result (0 ms): true ... Run 1295 of deterministic function postEquiv(5,5,5,5):

Result (0 ms): true

Execution completed for ALL inputs (6314 ms, 1080 checked, 216 inadmissible).

Switch option Silent on:

Executing postEquiv($\mathbb{Z},\mathbb{Z},\mathbb{Z},\mathbb{Z}$) with all 1296 inputs. Execution completed for ALL inputs (244 ms, 1080 checked, 216 inadmissible).

If theorem is false for some input, an error message is displayed.

Wolfgang Schreiner

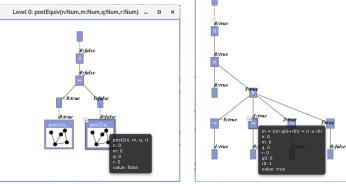
http://www.risc.jku.at

22/67

Visualizing the Formula Evaluation

Level 1: post1(n, m, q, r) 💶 🗖

Select N = 1 and visualization option "Tree".



Investigate the (pruned) evaluation tree to determine how the truth value of a formula was derived (double click to zoom into/out of predicates).

Example: Quotient and Remainder

Switch option "Nondeterminism" on.

// 1. investigate whether the specified input/output combinations are as desired fun quotremFun(n:Num, m:Num): Tuple[Num,Num] requires pre(n, m);

= choose q:Num, r:Num with post(n, m, q, r);

Executing quotremFun(\mathbb{Z},\mathbb{Z}) with all 36 inputs. Ignoring inadmissible inputs... Branch 0:6 of nondeterministic function quotremFun(0,1): Result (0 ms): [0,0] Branch 1:6 of nondeterministic function quotremFun(0,1): No more results (8 ms).

Branch 0:35 of nondeterministic function quotremFun(5,5): Result (0 ms): [1,0] Branch 1:35 of nondeterministic function quotremFun(5,5): No more results (14 ms). Execution completed for ALL inputs (413 ms, 30 checked, 6 inadmissible).

First validation by inspecting the values determined by output condition (nondeterminism may produce for some inputs multiple outputs). Wolfgang Schreiner http://www.risc.jku.at 25/67

Example: Quotient and Remainder

// 3. check whether for all inputs that satisfy the precondition
// there are some outputs that satisfy the postcondition
theorem someOutput(n:Num, m:Num)
requires pre(n, m);
⇔ ∃q:Num, r:Num. post(n, m, q, r);

// 4. check that not every output satisfies the postcondition theorem notEveryOutput(n:Num, m:Num) requires pre(n, m); ⇔ ∃q:Num, r:Num. ¬post(n, m, q, r);

Executing someOutput(\mathbb{Z},\mathbb{Z}) with all 36 inputs. Execution completed for ALL inputs (5 ms, 30 checked, 6 inadmissible). Executing notEveryOutput(\mathbb{Z},\mathbb{Z}) with all 36 inputs. Execution completed for ALL inputs (5 ms, 30 checked, 6 inadmissible).

A very rough validation of the output condition.

Example: Quotient and Remainder

// 2. check that some but not all inputs are allowed theorem someInput() $\Leftrightarrow \exists n: \text{Num}, m: \text{Num. pre}(n, m);$ theorem notEveryInput() $\Leftrightarrow \exists n: \text{Num}, m: \text{Num. } \neg \text{pre}(n, m);$

Executing someInput(). Execution completed (0 ms). Executing notEveryInput(). Execution completed (0 ms).

A very rough validation of the input condition.

Wolfgang Schreiner

http://www.risc.jku.at

26/67

Example: Quotient and Remainder

Executing uniqueOutput(\mathbb{Z},\mathbb{Z}) with all 36 inputs. Execution completed for ALL inputs (18 ms, 30 checked, 6 inadmissible).

The output condition indeed determines the outputs uniquely.

Example: Quotient and Remainder

// 6. check whether the algorithm satisfies the specification
proc quotRemProc(n:Num, m:Num): Tuple[Num,Num]
 requires pre(n, m);
 ensures let q=result.1, r=result.2 in post(n, m, q, r);
{
 var q: Num = 0;
 var r: Num = n;
 while r ≥ m do
 {
 r := r-m;
 q := q+1;
 }
 return \q,r\;
}

Check whether the algorithm satisfies the specification.

Wolfgang Schreiner

http://www.risc.jku.at

29/67

31/67

Example: Quotient and Remainder


```
proc quotRemProc(n:Num, m:Num): Tuple[Num,Num]
  requires pre(n, m);
  ensures post(n, m, result.1, result.2);
{
    var q: Num = 0;
    var r: Num = n;
    while r > m do // error!
    {
        r := r-m;
        q := q+1;
    }
    return \darkappa,r\;
}
Executing quotRemProc(Z,Z) with all 36 inputs.
```

```
ERROR in execution of quotRemProc(1,1): evaluation of
ensures let q = result.1, r = result.2 in post(n, m, q, r);
at line 65 in file divide.txt:
postcondition is violated by result [0,1]
ERROR encountered in execution.
```

A falsificaton of an incorrect algorithm.

Wolfgang Schreiner

http://www.risc.jku.at

Executing quotRemProc(\mathbb{Z},\mathbb{Z}) with all 36 inputs. Ignoring inadmissible inputs... Run 6 of deterministic function guotRemProc(0,1): Result (0 ms): [0.0] Run 7 of deterministic function quotRemProc(1,1): Result (0 ms): [1.0] Run 31 of deterministic function guotRemProc(1,5): Result (1 ms): [0,1] Run 32 of deterministic function quotRemProc(2,5): Result (0 ms): [0.2] Run 33 of deterministic function quotRemProc(3,5): Result (0 ms): [0,3] Run 34 of deterministic function quotRemProc(4,5): Result (0 ms): [0,4] Run 35 of deterministic function guotRemProc(5,5): Result (1 ms): [1,0] Execution completed for ALL inputs (161 ms, 30 checked, 6 inadmissible).

A verification of the algorithm by checking all possible executions.

```
Wolfgang Schreiner
```

http://www.risc.jku.at

30/67

Example: Sorting an Array


```
val N:Nat; val M:Nat;
type nat = Nat[M]; type array = Array[N,nat]; type index = Nat[N-1];
```

```
proc sort(a:array): array
  ensures \forall i: nat, i < N-1 \Rightarrow result[i] < result[i+1]:
  ensures \exists p: Array[N, index].
              (\forall i: index, j: index. i \neq j \Rightarrow p[i] \neq p[j]) \land
              (\forall i: index. a[i] = result[p[i]]);
{
  var b:arrav = a:
  for var i:Nat[N]:=1: i<N: i:=i+1 do {
    var x:nat := b[i];
    var j:Int[-1,N] := i-1;
    while j \ge 0 \land b[j] > x do \{
      b[i+1] := b[i];
       j := j - 1;
    }
    b[j+1] := x;
  3
  return b;
}
```

Example: Sorting an Array

Using N=5. Using M=5. Type checking and translation completed. Executing sort(Array[\mathbb{Z}]) with all 7776 inputs. 1223 inputs (1223 checked, 0 inadmissible, 0 ignored)... 2026 inputs (2026 checked, 0 inadmissible, 0 ignored)... 5114 inputs (5114 checked, 0 inadmissible, 0 ignored)... 5467 inputs (5467 checked, 0 inadmissible, 0 ignored)... 5792 inputs (5792 checked, 0 inadmissible, 0 ignored)... 6118 inputs (6118 checked, 0 inadmissible, 0 ignored)... 6500 inputs (6500 checked, 0 inadmissible, 0 ignored)... 6788 inputs (6788 checked, 0 inadmissible, 0 ignored)... 7070 inputs (7070 checked, 0 inadmissible, 0 ignored)... 7354 inputs (7354 checked, 0 inadmissible, 0 ignored)... 7634 inputs (7634 checked, 0 inadmissible, 0 ignored)... Execution completed for ALL inputs (32606 ms, 7776 checked, 0 inadmissible). Not all nondeterministic branches may have been considered.

Also this algorithm can be automatically checked.

Wolfgang Schreiner

http://www.risc.jku.at

33/67

35/67

Example: Sorting an Array

Right-click to print definition of a formula, double-click to check it.

For every input, is postcondition true for only one output?

Using N=3. Using M=3. Type checking and translation completed. Executing _sort_0_PostUnique(Array[Z]) with all 64 inputs. Execution completed for ALL inputs (529 ms, 64 checked, 0 inadmissible).

The output is indeed uniquely defined by the output condition.

http://www.risc.jku.at

Example: Sorting an Array

ls result correct

Verify iteration and re

Als loop measure decreased

Is loop measure non-negativ

S loop measure decreased

Verify implementation precondit
 Sindex value legal?

Is index value legal
Is index value legal

Is index value legal
Is assigned value legal

A ls index value lenal

Select operation sort and press the button 🛅 "Show/Hide Tasks". RISC Algorithm Language (RISCAL) File Edit Help File: /usr2/schrei 3 🖺 🖄 a 📥 🙆 📐 🖕 🗆 🗖 sort(Array[ℤ]) CExecute operation // // Sorting arrays by the Insertion Sort Algorith Nondeterminism Default Value: Validate specification No precondition 5 val N:N; 6 val M:N; Execute specification 7 8type elem = N[M]; 9type array = Array[N,elem]; 10type index = N[N-1]; Is postcondition a Is postcondition alway sort(Array[Z]) proc sort(a:array): array converse Vicindex. i < N-1 -> result[i] ≤ result[i+1]; Is postcondition some Is result uniquely determine ensures 3p.Array[N,index]. (Vi:index,j:index. i ≠ j → p[i] ≠ p[j]) ∧ (Vi:index. a[i] = result[p[i]]); Verify specification prec Als index value legal (result[i] ≤ result[i+1])
(i ≠ j) → (p[i] ≠ p[j]))
array with let result = var b:array = a; for var i:N[N]=1; i<N; i=i+1 do derreases N.i; Verify correctness of resul

Automatically generated formulas to validate procedure specifications.

Wolfgang Schreiner

var x:elem = b[i]; var j:Z[-1,N] = i-1; while j ≥ 0 A b[j] > x do

(
 b[j+1] = b[j];
 i = j-1;

bliell = x:

roc main(): Uni

eturn b;

http://www.risc.jku.at

34/67

Model Checking versus Proving

Two fundamental techniques for the verification of computer programs.

Checking Program Executions

- Enumeration of all possible executions and evaluation of formulas (e.g. postconditions) on the resulting states.
- **Fully automatic**, no human interaction is required.
- Only possible if there are only finitely many executions (and finitely many values for the quantified variables in the formulas).
- State space explosion: "finitely many" means "not too many".
- Proving Verification Conditions
 - Logic formulas that are valid if and only if program is correct with respect to its specification.
 - Also possible if there are infinitely many excutions and infinitely many values for the quantified variables.
 - Many conditions can be automatically proved (automated reasoners); in general interaction with human is required (proof assistants).

General verification requires the proving of logic formulas.

1. The Language of Logic

2. The RISC Algorithm Language

3. The Art of Proving

4. The RISC ProofNavigator

Wolfgang Schreiner

http://www.risc.jku.at

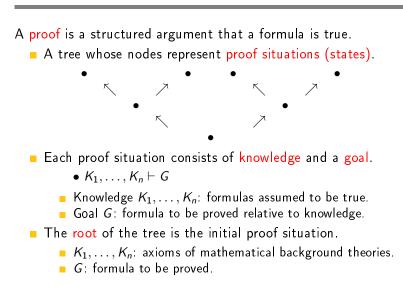
Proof Rules

A proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{\ldots\vdash\ldots}{K_1,\ldots,K_n\vdash G}$$

- Rule may or may not close the (sub)proof:
 - Zero subsituations: G has been proved, (sub)proof is closed.
 - One or more subsituations: *G* is proved, if all subgoals are proved.
- **Top-down rules**: focus on *G*.
 - G is decomposed into simpler goals G_1, G_2, \ldots
- **Bottom-up rules**: focus on K_1, \ldots, K_n .
 - Knowledge is extended to $K_1, \ldots, K_n, K_{n+1}$.

In each proof situation, we aim at showing that the goal is "apparently" true with respect to the given knowledge.



Wolfgang Schreiner

Proofs

http://www.risc.jku.at

38/67

Conjunction $F_1 \wedge F_2$

$$\frac{\mathsf{K}\vdash\mathsf{G}_1\quad\mathsf{K}\vdash\mathsf{G}_2}{\mathsf{K}\vdash\mathsf{G}_1\wedge\mathsf{G}_2}\qquad \frac{\ldots,\mathsf{K}_1\wedge\mathsf{K}_2,\mathsf{K}_1,\mathsf{K}_2\vdash\mathsf{G}_2}{\ldots,\mathsf{K}_1\wedge\mathsf{K}_2\vdash\mathsf{G}_2}$$

- Goal $G_1 \wedge G_2$.
 - Create two subsituations with goals G_1 and G_2 . We have to show $G_1 \wedge G_2$.
 - We show G₁: ... (proof continues with goal G₁)
 - We show G_2 : ... (proof continues with goal G_2)
- Knowledge $K_1 \wedge K_2$.

Wolfgang Schreiner

 Create one subsituation with K₁ and K₂ in knowledge. We know K₁ ∧ K₂. We thus also know K₁ and K₂. (proof continues with current goal and additional knowledge K₁ and K₂)

Disjunction $F_1 \vee F_2$

$$\frac{K, \neg G_1 \vdash G_2}{K \vdash G_1 \lor G_2} \qquad \frac{\ldots, K_1 \vdash G \quad \ldots, K_2 \vdash G}{\ldots, K_1 \lor K_2 \vdash G}$$

• Goal $G_1 \vee G_2$.

- Create one subsituation where G_2 is proved under the assumption that G_1 does not hold (or vice versa):
 - We have to show $G_1 \vee G_2$. We assume $\neg G_1$ and show G_2 . (proof continues with goal G_2 and additional knowledge $\neg G_1$)

• Knowledge $K_1 \vee K_2$.

- Create two subsituations, one with K_1 and one with K_2 in knowledge. We know $K_1 \vee K_2$. We thus proceed by case distinction:
 - Case K₁: ... (proof continues with current goal and additional knowledge K₁).
 - Case K₂: ... (proof continues with current goal and additional knowledge K₂).

Wolfgang Schreiner

http://www.risc.jku.at

41/67

Equivalence $F_1 \Leftrightarrow F_2$

$$\frac{K \vdash G_1 \Rightarrow G_2 \quad K \vdash G_2 \Rightarrow G_1}{K \vdash G_1 \Leftrightarrow G_2} \qquad \frac{\ldots \vdash (\neg)K_1 \quad \ldots, (\neg)K_2 \vdash G}{\ldots, K_1 \Leftrightarrow K_2 \vdash G}$$

• Goal $G_1 \Leftrightarrow G_2$

- Create two subsituations with implications in both directions as goals: We have to show $G_1 \Leftrightarrow G_2$.
 - We show $G_1 \Rightarrow G_2$: ... (proof continues with goal $G_1 \Rightarrow G_2$)
 - We show $G_2 \Rightarrow G_1: \dots$ (proof continues with goal $G_2 \Rightarrow G_1$)
- Knowledge $K_1 \Leftrightarrow K_2$
 - Create two subsituations, one with goal $(\neg)K_1$ and one with knowledge $(\neg)K_2$.
 - We know $K_1 \Leftrightarrow K_2$.
 - We show $(\neg)K_1$: ... (proof continues with goal $(\neg)K_1$)
 - We know (¬)K₂: ... (proof continues with current goal and additional knowledge (¬)K₂)

Implication $F_1 \Rightarrow F_2$

$$\frac{K, G_1 \vdash G_2}{K \vdash G_1 \Rightarrow G_2} \qquad \frac{\ldots \vdash K_1 \quad \ldots, K_2 \vdash G}{\ldots, K_1 \Rightarrow K_2 \vdash G}$$

• Goal $G_1 \Rightarrow G_2$

• Create one subsituation where G_2 is proved under the assumption that G_1 holds:

We have to show $G_1 \Rightarrow G_2$. We assume G_1 and show G_2 . (proof continues with goal G_2 and additional knowledge G_1)

• Knowledge $K_1 \Rightarrow K_2$

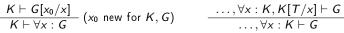
- Create two subsituations, one with goal K₁ and one with knowledge K₂.
 - We know $K_1 \Rightarrow K_2$.
 - We show K₁: ... (proof continues with goal K₁)
 - We know K₂: ... (proof continues with current goal and additional knowledge K₂).

Wolfgang Schreiner

http://www.risc.jku.at

42/67

Universal Quantification $\forall x : F$



• Goal $\forall x : G$

Introduce new (arbitrarily named) constant x_0 and create one subsituation with goal $G[x_0/x]$.

We have to show $\forall x : G$. Take arbitrary x_0 .

- We show $G[x_0/x]$. (proof continues with goal $G[x_0/x]$)
- Knowledge $\forall x : K$

Wolfgang Schreiner

 Choose term T to create one subsituation with formula K[T/x] added to the knowledge.

> We know $\forall x : K$ and thus also K[T/x]. (proof continues with current goal and additional knowledge K[T/x])

Existential Quantification $\exists x : F$

$$\frac{K \vdash G[T/x]}{K \vdash \exists x : G}$$

 $\frac{\ldots, K[x_0/x] \vdash G}{\ldots, \exists x \colon K \vdash G}$ (x₀ new for K, G)

• Goal $\exists x : G$

Choose term T to create one subsituation with goal G[T/x]. We have to show ∃x : G. It suffices to show G[T/x]. (proof continues with goal G[T/x])

• Knowledge $\exists x : K$

Introduce new (arbitrarily named constant) x_0 and create one subsituation with additional knowledge $K[x_0/x]$.

We know $\exists x : K$. Let x_0 be such that $K[x_0/x]$. (proof continues with current goal and additional knowledge $K[x_0/x]$)

Wolfgang Schreiner

http://www.risc.jku.at

45/67

Example

We show

(a) $(\exists x : p(x)) \land (\forall x : p(x) \Rightarrow \exists y : q(x, y)) \Rightarrow (\exists x, y : q(x, y))$

We assume

(1) $(\exists x : p(x)) \land (\forall x : p(x) \Rightarrow \exists y : q(x, y))$

and show

(b) $\exists x, y : q(x, y)$

From (1), we know

(2) $\exists x : p(x)$ (3) $\forall x : p(x) \Rightarrow \exists y : q(x, y)$

From (2) we know for some x_0

(4) $p(x_0)$

Example

We show

(a) $(\exists x : \forall y : P(x, y)) \Rightarrow (\forall y : \exists x : P(x, y))$ We assume (1) $\exists x : \forall y : P(x, y)$ and show (b) $\forall y : \exists x : P(x, y)$ Take arbitrary y_0 . We show (c) $\exists x : P(x, y_0)$ From (1) we know for some x_0 (2) $\forall y : P(x_0, y)$ From (2) we know (3) $P(x_0, y_0)$ From (3), we know (c). QED. Wolfgang Schreiner

Example (Contd)

From (3), we know (5) $p(x_0) \Rightarrow \exists y : q(x_0, y)$ From (4) and (5), we know (6) $\exists y : q(x_0, y)$ From (6), we know for some y_0 (7) $q(x_0, y_0)$ From (7), we know (b). QED.

46/67

Wolfgang Schreiner

Indirect Proofs

$$\frac{K, \neg G \vdash \text{false}}{K \vdash G} \qquad \frac{K, \neg G \vdash F \quad K, \neg G \vdash \neg F}{K \vdash G} \qquad \frac{\dots, \neg G \vdash \neg K}{\dots, K \vdash G}$$

- Add $\neg G$ to the knowledge and show a contradiction.
 - Prove that "false" is true.
 - Prove that a formula *F* is true and also prove that it is false.
 - Prove that some knowledge K is false, i.e. that $\neg K$ is true.
 - Switches goal G and knowledge K (negating both).

Sometimes simpler than a direct proof.

Wolfgang Schreiner

http://www.risc.jku.at

49/67

Example

... From (2), we know

(3) $\exists y : \forall x : \neg P(x, y)$

Let y₀ be such that

(4) $\forall x : \neg P(x, y_0)$

From (1) we know for some x_0

(5) $\forall y : P(x_0, y)$

From (5) we know

(6) $P(x_0, y_0)$

From (4), we know

 $(7) \neg P(x_0, y_0)$

From (6) and (7), we have a contradiction. QED.

http://www.risc.jku.at

51/67

We show

Example

(a) $(\exists x : \forall y : P(x, y)) \Rightarrow (\forall y : \exists x : P(x, y))$

We assume

```
(1) \exists x : \forall y : P(x, y)
```

and show

```
(b) \forall y : \exists x : P(x, y)
```

We assume

Wolfgang Schreiner

```
(2) \neg \forall y : \exists x : P(x, y)
```

and show a contradiction.

• • •

http://www.risc.jku.at

- 1. The Language of Logic
- 2. The RISC Algorithm Language
- 3. The Art of Proving
- 4. The RISC ProofNavigator

The RISC ProofNavigator

An interactive proving assistant for program verification.

- Research Institute for Symbolic Computation (RISC), 2005–. http://www.risc.jku.at/research/formal/software/ProofNavigator.
- Development based on prior experience with PVS (SRI, 1993–).
- Kernel and GUI implemented in Java.
- Uses external SMT (satisfiability modulo theories) solver.
 - CVCL (Cooperating Validity Checker Lite) 2.0, CVC3, CVC4 1.4.
- Runs under Linux (only); freely available as open source (GPL).
- A language for the definition of logical theories.
 - Based on a strongly typed higher-order logic (with subtypes).
 - Introduction of types, constants, functions, predicates.
- Computer support for the construction of proofs.
 - Commands for basic inference rules and combinations of such rules.
 - Applied interactively within a sequent calculus framework.
 - Top-down elaboration of proof trees.

Designed for simplicity of use; applied to non-trivial verifications.

Wolfgang Schreiner

http://www.risc.jku.at

Starting the Software

53/67

Starting the software:

module load ProofNavigator (users at RISC)
ProofNavigator &

Command line options:

Usage: ProofNavigator [OPTION]... [FILE] FILE: name of file to be read on startup. OPTION: one of the following options:

- -n, --nogui: use command line interface.
- -c, --context NAME: use subdir NAME to store context.
- --cvcl PATH: PATH refers to executable "cvcl".
- -s, --silent: omit startup message.
- -h, --help: print this message.
- Repository stored in subdirectory of current working directory:

ProofNavigator/

Option -c dir or command newcontext "dir":
 Switches to repository in directory dir.

55/67

Using the Software

For survey, see "Program Verification with the RISC ProofNavigator". For details, see "The RISC ProofNavigator: Tutorial and Manual".

Develop a theory.

- Text file with declarations of types, constants, functions, predicates.
- Axioms (propositions assumed true) and formulas (to be proved).
- Load the theory.
 - File is read; declarations are parsed and type-checked.
 - Type-checking conditions are generated and proved.
- Prove the formulas in the theory.
 - Human-guided top-down elaboration of proof tree.
 - Steps are recorded for later replay of proof.
 - Proof status is recorded as "open" or "completed".

Modify theory and repeat above steps.

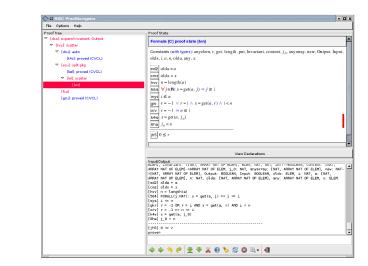
- Software maintains dependencies of declarations and proofs.
- Proofs whose dependencies have changed are tagged as "untrusted".

Wolfgang Schreiner

http://www.risc.jku.at

54/67

The Graphical User Interface



A Theory

% switch repository to "sum" newcontext "sum";

% the recursive definition of the sum from 0 to n sum: NAT->NAT; S1: AXIOM sum(0)=0;S2: AXIOM FORALL(n:NAT): n>0 => sum(n)=n+sum(n-1);

% proof that explicit form is equivalent to recursive definition S: FORMULA FORALL(n:NAT): sum(n) = (n+1)*n/2;

Declarations written with an external editor in a text file.

Wolfgang Schreiner

http://www.risc.jku.at

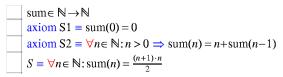
57/67

Proving a Formula

Proof Tree	Proof State	
[tca]	Formula [S] proof state [tca]	
	Constants (with types): sum.	
	$\exists x \in \mathbb{N}: n > 0 \implies \operatorname{sum}(n) = n + \operatorname{sum}(n-1)$	
	<u>d3i</u> sum(0) = 0	
	by $\forall n \in \mathbb{N}$: sum $(n) = \frac{(n+1)\cdot n}{2}$	
	View Declarations	
	read "sum.pn"; Value sum:NAT->NAT,	
	Formula S1.	
	Formula S2.	
	Formula S. File sum pr read.	
	prove S:	
	Proof of formula S.	
	Proof state [tca]	
	Constants: sum: NAT->NAT.	
	[lxe] FORALL(n:NAT): n > 0 => sum(n) = n+sum(n-1)	
	[d3i] sum(0) = 0	
	[byu] FORALL(n:NAT): sum(n) = (n+1)*n/2	
	prove>	

Proving a Formula

When the file is loaded, the declarations are pretty-printed:



The proof of a formula is started by the prove command.

Wolfgang Schreiner

http://www.risc.jku.at

58/67

 A_1

 A_n

Bı

Bm

. . .

 $[L_n]$

 $[L_{n+1}]$

 $[L_{n+m}]$

Proving a Formula

- Constants: $x_0 \in S_0, \ldots$ Proof of formula F is represented as a tree. $[L_1]$
 - Each tree node denotes a proof state (goal).
 - Logical sequent:
 - $A_1, A_2, \ldots \vdash B_1, B_2, \ldots$
 - Interpretation:
 - $(A_1 \wedge A_2 \wedge \ldots) \Rightarrow (B_1 \vee B_2 \vee \ldots)$

Initially single node $Axioms \vdash F$.

- The tree must be expanded to completion.
 - Every leaf must denote an obviously valid formula.

Some A_i is false or some B_i is true.

- A proof step consists of the application of a proving rule to a goal.
 - Either the goal is recognized as true.
 - Or the goal becomes the parent of a number of children (subgoals). The conjunction of the subgoals implies the parent goal.

An Open Proof Tree

▼ [tca]: induction n in byu	Formula [S] proof state [dbj]
[dbj]: proved (CVCL)	Constants (with types): sum.
[ebj]	Ixe $\forall n \in \mathbb{N}: n > 0 \Rightarrow sum(n) = n + sum(n-1)$ d3i sum(0) = 0 nfq sum(0) = $\frac{(0+1) \cdot 0}{2}$
	Parent: [tca]

Closed goals are indicated in blue; goals that are open (or have open subgoals) are indicated in red. The red bar denotes the "current" goal.

Wolfgang Schreiner

http://www.risc.jku.at

61/67

Navigation Commands

Various buttons support navigation in a proof tree.

- 🗕 🧇: prev
 - Go to previous open state in proof tree.
- 🗕 🌳: next
 - Go to next open state in proof tree.
- = 🥱: undo
 - Undo the proof command that was issued in the parent of the current state; this discards the whole proof tree rooted in the parent.
- = 🥐: redo
 - Redo the proof command that was previously issued in the current state but later undone; this restores the discarded proof tree.

Single click on a node in the proof tree displays the corresponding state; double click makes this state the current one.

A Completed Proof Tree

The visual representation of the complete proof structure; by clicking on a node, the corresponding proof state is displayed.

Wolfgang Schreiner

http://www.risc.jku.at

62/67

Proving Commands

The most important proving commands can be also triggered by buttons.

- 🛯 🖢 (scatter)
 - Recursively applies decomposition rules to the current proof state and to all generated child states; attempts to close the generated states by the application of a validity checker.
- 🗕 🖑 (decompose)
 - Like scatter but generates a single child state only (no branching).
- 🛯 💑 (split)
 - Splits current state into multiple children states by applying rule to current goal formula (or a selected formula).
- 3 (auto)

Wolfgang Schreiner

- Attempts to close current state by instantiation of quantified formulas.
- b) (autostar)
 - Attempts to close current state and its siblings by instantiation.

Automatic decomposition of proofs and closing of proof states.

Proving Commands

More commands can be selected from the menus.

- assume
 - Introduce a new assumption in the current state; generates a sibling state where this assumption has to be proved.
- case:
 - Split current state by a formula which is assumed as true in one child state and as false in the other.
- expand:
 - Expand the definitions of denoted constants, functions, or predicates.
- lemma:
 - Introduce another (previously proved) formula as new knowledge.
- instantiate:
 - Instantiate a universal assumption or an existential goal.
- induction:
 - Start an induction proof on a goal formula that is universally quantified over the natural numbers.

Here the creativity of the user is required!

Wolfgang Schreiner

http://www.risc.jku.at

Proving Strategies

65/67

- Initially: semi-automatic proof decomposition.
 - expand expands constant, function, and predicate definitions.
 - scatter aggressively decomposes a proof into subproofs.
 - decompose simplifies a proof state without branching.
 - induction for proofs over the natural numbers.
- Later: critical hints given by user.
 - assume and case cut proof states by conditions.
 - instantiate provide specific formula instantiations.
- Finally: simple proof states are yielded that can be automatically closed by the validity checker.
 - auto and autostar may help to close formulas by the heuristic instantiation of quantified formulas.

Appropriate combination of semi-automatic proof decomposition, critical hints given by the user, and the application of a validity checker is crucial.

Auxiliary Commands

Some buttons have no command counterparts.

- Counterexample
 - Generate a "counterexample" for the current proof state, i.e. an interpretation of the constants that refutes the current goal.
- 🙁
 - Abort current prover activity (proof state simplification or counterexample generation).
- - Show menu that lists all commands and their (optional) arguments.
- --
 - Simplify current state (if automatic simplification is switched off).

More facilities for proof control.

Wolfgang Schreiner

http://www.risc.jku.at