Turing Machines

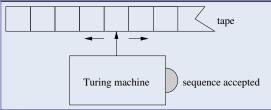
Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at

1. Turing Machines

- 2. Recognizing Languages
- 3. Generating Languages
- 4. Computing Functions
- 5. The Church-Turing Thesis

Turing Machine Model



- The machine is always in one of a finite set of states.
 - The machine starts its execution in a fixed start state.
- An infinite tape holds at its beginning the input word.
 - Tape is read and written and arbitrarily moved by the machine.
- The machine proceeds in a sequence of state transitions.
 - Machine reads symbol, overwrites it, and moves tape head left or right.
 - The symbol read and the current state determine the symbol written, the move direction, and the next state.
- If the machine cannot make another transition, it terminates.

■ The machine signals whether it is in an accepting state. If the machine terminates in an accepting state, the word is *accepted*.

Turing Machines

Turing Machine $M = (Q, \Gamma, \sqcup, \Sigma, \delta, q_0, F)$:

- The state set *Q*, a fine set of states.
- A tape alphabet Γ, a finite set of tape symbols.
- The blank symbol $\Box \in \Gamma$.
- An input alphabet $\Sigma \subseteq \Gamma \setminus \{ \sqcup \}$.
- The (partial) transition function $\delta : Q \times \Gamma \rightarrow_{p} Q \times \Gamma \times \{ L', R' \}$,
 - δ(q,x) = (q',x','L'/'R') ... M reads in state q symbol x, goes to state q', writes symbol x', and moves the tape head left/right.
- The start state $q_0 \in Q$
- A set of accepting states (final states) $F \subseteq Q$.

The crucial difference to an automaton is the infinite tape that can be arbitrarily moved and written.

Example

$$M = (Q, \Gamma, \sqcup, \Sigma, \delta, q_0, F)$$

$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\Gamma = \{\sqcup, 0, 1, X, Y\}$$

$$\Sigma = \{0, 1\}$$

$$F = \{q_4\}$$

δ	Ц	0	1	Х	Y
q_0	—	(q_1, X, R)	_	-	(q_3, Y, R)
q_1	_	$(q_1, 0, R)$	(q_2, Y, L)	_	(q_1, Y, R)
q_2	_	$(q_2, 0, L)$	_	(q_0, X, R)	(q_2, Y, L)
q_3	(q_4, \sqcup, R)	_	_	_	(q_3, Y, R)
q_4	—	—	—	_	—

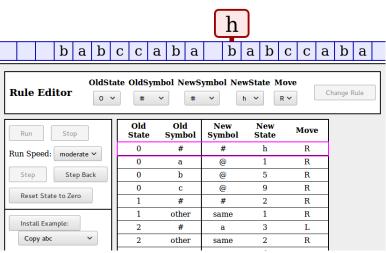
Machine accepts every word of form $0^n 1^n$ (replacing it by $X^n Y^n$).

Wolfgang Schreiner

http://www.risc.jku.at

Turing Machine Simulator

http://math.hws.edu/eck/js/turing-machine/TM.html



Wolfgang Schreiner

Generalized Turing Machines

- Infinite tape in both directions.
 - Can be simulated by a machine whose tape is infinite in one direction.
- Multiple tapes.
 - Can be simulated by a machine with a single tape.
- Nondeterministic transitions.
 - We can simulate a nondeterministic M by a deterministic M'.
 - Let r be the maximum number of "choices" that M can make.
 - *M*′ operates with 3 tapes.
 - Tape 1 holds the input (tape is only read).
 - M' writes to tape 2 all finite sequences of numbers $1, \ldots, r$.
 - First all sequences of length 1, then all of length 2, etc.
 - After writing sequence $s_1 s_2 \dots s_n$ to tape 2, M' simulates M on tape 3.
 - M' copies the input to tape 3 and performs at most *n* transitions.
 - In transition *i*, *M* attempts to perform choice s_i .
 - If choice i is not possible or M terminates after n transitions in a non-accepting state, M' continues with next sequence.
 - If M terminates in accepting state, M' accepts the input.

Every generalized Turing machine can be simulated by the core form.

Wolfgang Schreiner

- 1. Turing Machines
- 2. Recognizing Languages
- 3. Generating Languages
- 4. Computing Functions
- 5. The Church-Turing Thesis

Turing Machine Configurations

- **Configuration** $a_1 \dots a_k q a_{k+1} \dots a_m$:
 - *q*: the current state of *M*.
 - a_{k+1} : the symbol currently under the tape head.
 - $a_1 \dots a_k$: the portion of the tape left to the tape head.
 - $a_{k+2} \dots a_m$: the portion right to the head (followed by \dots).
- Move relation: a₁... a_k q a_{k+1}... a_m ⊢ b₁... b_l p b_{l+1}... b_m If M is a situation described by the left configuration, it can make a transition to the situation described by the right configuration.
 - $a_i = b_i$ for all $i \neq k+1$ and one of the following:

$$I = k + 1 \text{ and } \delta(q, a_{k+1}) = (p, b_l, R),$$

$$I = k - 1 \text{ and } \delta(q, a_{k+1}) = (p, b_{l+2}, L).$$

• Extended move relation: $c_1 \vdash^* c_2$

M can make in an arbitrary number of moves a transition from the situation described by configuration c_1 to the one described by c_2 .

$$c_1 \vdash^0 c_2 :\Leftrightarrow c_1 = c_2$$
$$c_1 \vdash^{i+1} c_2 :\Leftrightarrow \exists c : c_1 \vdash^i c \land c \vdash c_2$$
$$c_1 \vdash^* c_2 :\Leftrightarrow \exists i \in \mathbb{N} : c_1 \vdash^i c_2$$

http://www.risc.jku.at

The language L(M) of Turing machine M = (Q, Γ, ⊥, Σ, δ, q₀, F): The set of all inputs that drive M from its initial configuration to a configuration with an accepting state such that from this configuration no further move is possible:

$$L(M) := \left\{ w \in \Sigma^* \mid \exists a, b \in \Gamma^*, q \in Q : q_0 \ w \vdash^* a \ q \ b \land q \in F \\ \land \neg \exists a', b' \in \Gamma^*, q' \in Q : a \ q \ b \ \vdash a' \ q' \ b' \right\}$$

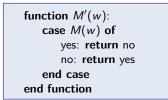
- L is a recursively enumerable language:
 - There exists a Turing machine M such that L = L(M).
- *L* is a recursive language:
 - There exists a Turing machine M such that L = L(M) and M terminates for every possible input.

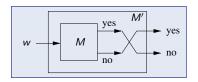
Every recursive language is recursively enumerable; as we will see, the converse does not hold.

Theorem: *L* is recursive, if and only if both *L* and its complement \overline{L} are recursively enumerable.

Proof \Rightarrow : Let *L* be a recursive. Since by definition *L* is recursively enumerable, it remains to be shown that also \overline{L} is recursively enumerable.

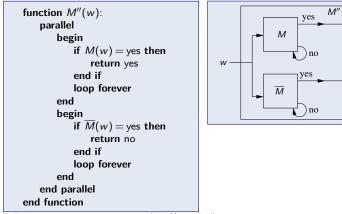
Since *L* is recursive, there exists a Turing machine *M* such that *M* halts for every input *w*: if $w \in L$, then *M* accepts *w*; if $w \notin L$, then *M* does not accept *w*. With the help of *M*, we can construct the following *M'* with $L(M') = \overline{L}$:





Recursiv. Enumerable/Recursive Languages

Proof \Leftarrow : Let *L* be such that both *L* and \overline{L} are recursively enumerable. We show that *L* is recursive. Since *L* is r.e., there exists *M* such that L = L(M) and *M* halts for $w \in L$ with M(w) = yes. Since \overline{L} is r.e., there exists \overline{M} with $\overline{L} = L(\overline{M})$ and \overline{M} halts for $w \in \overline{L}$ with $\overline{M}(w) =$ yes. We can thus construct M'' with L(M'') = L that always halts:



Wolfgang Schreiner

yes

no

Closure of Recursive Languages

Let L, L_1, L_2 be recursive languages. Then also

- the complement \overline{L} ,
- the union $L_1 \cup L_2$,
- the intersection $L_1 \cap L_2$

are recursive languages.

Proof by construction of the corresponding Turing machines.

- 1. Turing Machines
- 2. Recognizing Languages
- 3. Generating Languages
- 4. Computing Functions
- 5. The Church-Turing Thesis

Enumerators

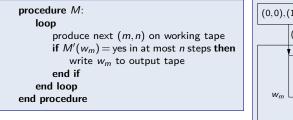
Turing machine $M = (Q, \Gamma, \cup, \emptyset, \delta, q_0, F)$ with special symbol $\# \in \Gamma$.

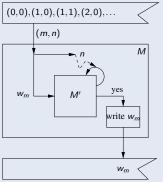
- *M* is an enumerator, if *M* has an additional output tape on which
 - M moves its tape head only to the right, and
 - *M* writes only symbols different from ⊔.
- The generated language Gen(M) of enumerator M is the set of all words that M eventually writes on its output tape.
 - The end of each word is marked by a trailing #.

M may run forever and thus Gen(M) may be infinite.

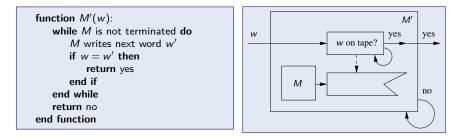
Theorem: *L* is recursively enumerable, if and only if there exists some enumerator *M* such that L = Gen(M).

Proof \Rightarrow : Let *L* be recursively enumerable, i.e., L = L(M') for some *M'*. We construct enumerator *M* such that L = Gen(M).





Proof \Leftarrow : Let *L* be such that L = Gen(M) for some enumerator *M*. We show that there exists some Turing machine *M'* such that L = L(M').



Recognizing is possible, if and only if generating is possible.

- 1. Turing Machines
- 2. Recognizing Languages
- 3. Generating Languages
- 4. Computing Functions
- 5. The Church-Turing Thesis

Functions

Take binary relation $f \subseteq A \times B$.

• $f : A \rightarrow B$: f is a total function from A to B.

For every $a \in A$, there is exactly one $b \in B$ such that $(a, b) \in f$.

• $f : A \rightarrow_p B$: f is a partial function from A to B.

(

For every $a \in A$, there is at most one $b \in B$ such that $(a, b) \in f$.

Auxiliary notions:

$$\begin{aligned} \mathsf{domain}(f) &:= \{ a \mid \exists b : (a,b) \in f \} \\ \mathsf{range}(f) &:= \{ b \mid \exists a : (a,b) \in f \} \\ f(a) &:= \mathsf{such} \ b : (a,b) \in f \end{aligned}$$

Every total function $f : A \to B$ is a partial function $f : A \to_p B$; every partial function $f : A \to_p B$ is a total function $f : domain(f) \to B$.

Functions

- Let $f: \Sigma^* \to_p \Gamma^*$ where $\sqcup \notin \Sigma \cup \Gamma$.
 - *f* is a function over words in some alphabets.
- *f* is Turing computable, if there exists a Turing machine *M* such that
 - for input w (i.e. initial tape content $w_{\sqcup}...$), M terminates in an accepting state, if and only if $w \in domain(f)$;
 - for input w, M terminates in an accepting state with output w' (i.e. final tape content $w'_{\sqcup}...$), if and only if w' = f(w).
- Not every function $f : \Sigma^* \rightarrow_p \Gamma^*$ is Turing computable:
 - The set of all Turing machines is countably infinite: all machines can be ordered in a single list (in the alphabetic order of their definitions).
 - The set of all functions $\Sigma^* \rightarrow_p \Gamma^*$ is more than countably infinite (Cantor's diagonalization argument).
 - Consequently, there are more functions than Turing machines.

M computes f, if M terminates for arguments in the domain of f with output f(a) and does not terminate for arguments outside the domain.

Example

We show that natural number subtraction is Turing computable.

Subtraction \ominus on \mathbb{N} :

$$m \ominus n := \left\{ \begin{array}{cc} m-n & \text{if } m \ge n \\ 0 & \text{else} \end{array} \right.$$

• Unary representation of $n \in \mathbb{N}$:

$$\underbrace{000\ldots0}_{n \text{ times}} \in L(0^*)$$

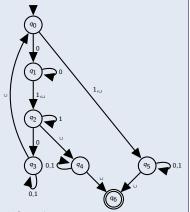
■ Input
$$00_{\sqcup}0$$
 shall lead to output 0.
■ $2 \ominus 1 = 1$.

Idea: replace every pair of 0 in m and n by \Box .

Example (Contd)

$M = (Q, \Gamma, \sqcup, \Sigma, \delta, q_0, F)$
$Q = \{q_0, \ldots, q_6\}$
$\Sigma = \{0\}, \Gamma = \{0, 1, {}_{\sqcup}\}, F = \{q_6$

δ	0	1	Ц
q_0	(q_1, \sqcup, R)	(q_5, \sqcup, R)	(q_5, \sqcup, R)
q_1	$(q_1, 0, R)$	$(q_2, 1, R)$	$(q_2, 1, R)$
q 2	$(q_3, 1, L)$	$(q_2, 1, R)$	(q_4, \sqcup, L)
q 3	$(q_3, 0, L)$	$(q_3, 1, L)$	(q_0, \sqcup, R)
q_4	$(q_4, 0, L)$	(q_4, \sqcup, L)	$(q_6, 0, R)$
q_5	(q_5, \sqcup, R)	(q_5, \sqcup, R)	(q_6, \sqcup, R)
q 6	-	_	_



- In q₀, the leading 0 is replaced by □.
- In q_1 , M searches for the next \Box and replaces it by a 1.
- In q_2 , M searches for the next 0 and replaces it by 1, then moves left.
- In q_3 , M searches for previous \Box , moves right and starts from begin.
- In q_4 , M has found a \Box instead of 0 and replaces all previous 1 by \Box .
- In q₅, n is (has become) 0; the rest of the tape is erased.
- In q_6 , the computation successfully terminates.

Wolfgang Schreiner

http://www.risc.jku.at

Example (Contd)

2 \ominus **1**=**1**:

 $\begin{array}{c} q_{0}00_0\vdash _q_{1}0_0\vdash _0q_{1}_0\vdash _01q_{2}0\\ \vdash _0q_{3}11\vdash _q_{3}011\vdash q_{3}_011\vdash _qq_{0}011\\ \vdash __q_{1}11\vdash __1q_{2}1\vdash __11q_{2}\vdash __1q_{4}1\\ \vdash __q_{4}1\vdash _q_{4}\vdash _0q_{6}\end{array}$ $\begin{array}{c} 1\ominus 2=0:\\ q_{0}0_00\vdash _q_{1}_00\vdash _1q_{2}00\vdash _q_{3}110\\ \vdash q_{3}_110\vdash _q_{0}110\vdash __q_{5}0\vdash ___q_{5}0\\ \vdash ____q_{5}\vdash _____q_{6}.\end{array}$

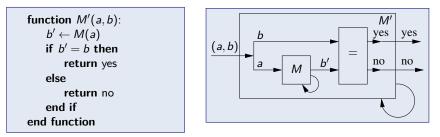
For m > n, leading blanks still have to be removed.

Theorem: $f: \Sigma^* \rightarrow_p \Gamma^*$ is Turing computable, if and only if

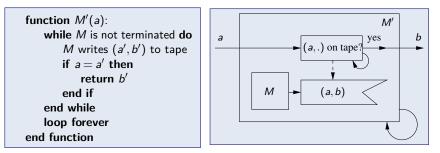
$$L_f := \{(a, b) \in \Sigma^* imes \Gamma^* \mid a \in \mathit{domain}(f) \land b = f(a)\}$$

is recursively enumerable.

Proof \Rightarrow : Since $f : \Sigma^* \rightarrow_p \Gamma^*$ is Turing computable, there exists a Turing machine M which computes f. To show that L_f is r.e., we construct M' with $L(M') = L_f$:



Proof \Leftarrow : Since L_f is recursively enumerable, there exists an enumerator M with $Gen(M) = L_f$. We construct the following Turing machine M' which computes f:



Computing is possible, if and only if recognizing is possible.

- 1. Turing Machines
- 2. Recognizing Languages
- 3. Generating Languages
- 4. Computing Functions

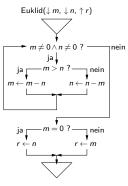
5. The Church-Turing Thesis

Algorithms

Computer science is based on algorithms.

Compute as follows the greatest common divisor of two natural numbers m, n that are not both 0:

- 1. If m = 0, the result is n.
- 2. If n = 0, the result is m.
- 3. If m > n, subtract n from m and continue with step 1.
- Otherwise subtract *m* from *n* and continue with step 1.



Euklid $(\downarrow m, \downarrow n, \uparrow r)$: while $m \neq 0 \land n \neq 0$ do if m > nthen $m \leftarrow m - n$ else $n \leftarrow n - m$ if m = 0then $r \leftarrow n$ else $r \leftarrow m$ end Euklid.

What is an "algorithm" and what is computable by an algorithm?

Church-Turing Thesis: Every problem that is solvable by an algorithm (in an intuitive sense) is solvable by a Turing machine. Thus the set of intuitively computable functions is identical with the set of Turing computable functions.

- Replaces fuzzy notion "algorithm" by precise notion "Turing machine".
- Unprovable thesis, exactly because the notion "algorithm" is fuzzy.
- Substantially validated, because many different computational models have no more computational power than Turing machines.
 - Random access machines, loop programs, recursive functions, goto programs, λ -calculus, rewriting systems, grammars, ...

Turing machines represent the most powerful computational model known, but there are many other equally powerful ("Turing complete") models.