
Turing Machines

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner http://www.risc.jku.at 1/28

1. Turing Machines

2. Recognizing Languages

3. Generating Languages

4. Computing Functions

5. The Church-Turing Thesis

Wolfgang Schreiner http://www.risc.jku.at 2/28

Turing Machine Model

tape

Turing machine sequence accepted

The machine is always in one of a finite set of states.
The machine starts its execution in a fixed start state.

An infinite tape holds at its beginning the input word.
Tape is read and written and arbitrarily moved by the machine.

The machine proceeds in a sequence of state transitions.
Machine reads symbol, overwrites it, and moves tape head left or right.
The symbol read and the current state determine the symbol written,
the move direction, and the next state.

If the machine cannot make another transition, it terminates.
The machine signals whether it is in an accepting state.

If the machine terminates in an accepting state, the word is accepted.
Wolfgang Schreiner http://www.risc.jku.at 3/28

Turing Machines

Turing Machine M = (Q,Γ,␣,Σ,δ ,q0,F ):
The state set Q, a fine set of states.
A tape alphabet Γ, a finite set of tape symbols.
The blank symbol ␣ ∈ Γ.
An input alphabet Σ⊆ Γ\{␣}.
The (partial) transition function δ : Q×Γ→p Q×Γ×{‘L’, ‘R’},

δ (q,x) = (q′,x ′, ’L’/’R’) . . .M reads in state q symbol x , goes to
state q′, writes symbol x ′, and moves the tape head left/right.

The start state q0 ∈ Q
A set of accepting states (final states) F ⊆ Q.

The crucial difference to an automaton is the infinite tape that can be
arbitrarily moved and written.

Wolfgang Schreiner http://www.risc.jku.at 4/28



Example

M = (Q,Γ,␣,Σ,δ ,q0,F )
Q = {q0,q1,q2,q3,q4}
Γ = {␣,0,1,X ,Y }
Σ = {0,1}
F = {q4}

q0

q1 q3

q2 q4

0
Y

1

0,Y Y
X

0,Y

␣

Y

δ ␣ 0 1 X Y
q0 − (q1,X ,R) − − (q3,Y ,R)
q1 − (q1,0,R) (q2,Y ,L) − (q1,Y ,R)
q2 − (q2,0,L) − (q0,X ,R) (q2,Y ,L)
q3 (q4,␣,R) − − − (q3,Y ,R)
q4 − − − − −

Machine accepts every word of form 0n1n (replacing it by XnY n).
Wolfgang Schreiner http://www.risc.jku.at 5/28

Turing Machine Simulator

http://math.hws.edu/eck/js/turing-machine/TM.html

Wolfgang Schreiner http://www.risc.jku.at 6/28

Generalized Turing Machines

Infinite tape in both directions.
Can be simulated by a machine whose tape is infinite in one direction.

Multiple tapes.
Can be simulated by a machine with a single tape.

Nondeterministic transitions.
We can simulate a nondeterministic M by a deterministic M ′.

Let r be the maximum number of “choices” that M can make.
M ′ operates with 3 tapes.

Tape 1 holds the input (tape is only read).
M ′ writes to tape 2 all finite sequences of numbers 1, . . . , r .

First all sequences of length 1, then all of length 2, etc.
After writing sequence s1s2 . . .sn to tape 2, M ′ simulates M on tape 3.

M ′ copies the input to tape 3 and performs at most n transitions.
In transition i , M attempts to perform choice si .
If choice i is not possible or M terminates after n transitions in a
non-accepting state, M ′ continues with next sequence.
If M terminates in accepting state, M ′ accepts the input.

Every generalized Turing machine can be simulated by the core form.
Wolfgang Schreiner http://www.risc.jku.at 7/28

1. Turing Machines

2. Recognizing Languages

3. Generating Languages

4. Computing Functions

5. The Church-Turing Thesis

Wolfgang Schreiner http://www.risc.jku.at 8/28



Turing Machine Configurations

Configuration a1 . . .ak q ak+1 . . .am:
q: the current state of M.
ak+1: the symbol currently under the tape head.
a1 . . .ak : the portion of the tape left to the tape head.
ak+2 . . .am: the portion right to the head (followed by ␣ . . .).

Move relation: a1 . . .ak q ak+1 . . .am ` b1 . . .bl p bl+1 . . .bm
If M is a situation described by the left configuration, it can make a
transition to the situation described by the right configuration.
ai = bi for all i 6= k +1 and one of the following:

l = k +1 and δ (q,ak+1) = (p,bl ,R),
l = k−1 and δ (q,ak+1) = (p,bl+2,L).

Extended move relation: c1 `∗ c2
M can make in an arbitrary number of moves a transition from the
situation described by configuration c1 to the one described by c2.

c1 `0 c2 :⇔ c1 = c2
c1 `i+1 c2 :⇔∃c : c1 `i c ∧ c ` c2
c1 `∗ c2 :⇔∃i ∈N : c1 `i c2

Wolfgang Schreiner http://www.risc.jku.at 9/28

The Language of a Turing Machine

The language L(M) of Turing machine M = (Q,Γ,␣,Σ,δ ,q0,F ):
The set of all inputs that drive M from its initial configuration to a
configuration with an accepting state such that from this configuration
no further move is possible:

L(M) :=
{
w ∈ Σ∗

∣∣∣∣
∃a,b ∈ Γ∗,q ∈ Q : q0 w `∗ a q b∧q ∈ F
∧ ¬∃a′,b′ ∈ Γ∗,q′ ∈ Q : a q b ` a′ q′ b′

}

L is a recursively enumerable language:
There exists a Turing machine M such that L = L(M).

L is a recursive language:
There exists a Turing machine M such that L = L(M) and M
terminates for every possible input.

Every recursive language is recursively enumerable; as we will see, the
converse does not hold.

Wolfgang Schreiner http://www.risc.jku.at 10/28

Recursiv. Enumerable/Recursive Languages

Theorem: L is recursive, if and only if both L and its complement L are
recursively enumerable.

Proof ⇒: Let L be a recursive. Since by definition L is recursively enumerable, it
remains to be shown that also L is recursively enumerable.
Since L is recursive, there exists a Turing machine M such that M halts for every
input w : if w ∈ L, then M accepts w ; if w 6∈ L, then M does not accept w . With the
help of M, we can construct the following M ′ with L(M ′) = L:

function M ′(w):
case M(w) of

yes: return no
no: return yes

end case
end function

no

yes
yes

no

Mw

M ′

Wolfgang Schreiner http://www.risc.jku.at 11/28

Recursiv. Enumerable/Recursive Languages

Proof ⇐: Let L be such that both L and L are recursively enumerable. We show that L
is recursive. Since L is r.e., there exists M such that L = L(M) and M halts for w ∈ L
with M(w) = yes. Since L is r.e., there exists M with L = L(M) and M halts for w ∈ L
with M(w) = yes. We can thus construct M ′′ with L(M ′′) = L that always halts:

function M ′′(w):
parallel

begin
if M(w) = yes then

return yes
end if
loop forever

end
begin

if M(w) = yes then
return no

end if
loop forever

end
end parallel

end function

yes
yes

no
yes

no

no

M

M

M ′′

w

Wolfgang Schreiner http://www.risc.jku.at 12/28



Closure of Recursive Languages

Let L,L1,L2 be recursive languages. Then also
the complement L,
the union L1∪L2,
the intersection L1∩L2

are recursive languages.

Proof by construction of the corresponding Turing machines.

Wolfgang Schreiner http://www.risc.jku.at 13/28

1. Turing Machines

2. Recognizing Languages

3. Generating Languages

4. Computing Functions

5. The Church-Turing Thesis

Wolfgang Schreiner http://www.risc.jku.at 14/28

Enumerators

Turing machine M = (Q,Γ,␣, /0,δ ,q0,F ) with special symbol # ∈ Γ.
M is an enumerator, if M has an additional output tape on which

M moves its tape head only to the right, and
M writes only symbols different from ␣.

The generated language Gen(M) of enumerator M is the set of all
words that M eventually writes on its output tape.

The end of each word is marked by a trailing #.
M may run forever and thus Gen(M) may be infinite.

Wolfgang Schreiner http://www.risc.jku.at 15/28

Recognizing versus Generating Languages

Theorem: L is recursively enumerable, if and only if there exists some
enumerator M such that L = Gen(M).
Proof ⇒: Let L be recursively enumerable, i.e., L = L(M ′) for some M ′. We construct
enumerator M such that L = Gen(M).

procedure M:
loop

produce next (m,n) on working tape
if M ′(wm) = yes in at most n steps then

write wm to output tape
end if

end loop
end procedure

yeswm M ′

(m,n)

M

(0,0),(1,0),(1,1),(2,0), . . .

write wm

n

wm

Wolfgang Schreiner http://www.risc.jku.at 16/28



Recognizing versus Generating Languages

Proof ⇐: Let L be such that L = Gen(M) for some enumerator M. We show that there
exists some Turing machine M ′ such that L = L(M ′).

function M ′(w):
while M is not terminated do

M writes next word w ′
if w = w ′ then

return yes
end if

end while
return no

end function

yes

no

yesw
w on tape?

M ′

M

Recognizing is possible, if and only if generating is possible.

Wolfgang Schreiner http://www.risc.jku.at 17/28

1. Turing Machines

2. Recognizing Languages

3. Generating Languages

4. Computing Functions

5. The Church-Turing Thesis

Wolfgang Schreiner http://www.risc.jku.at 18/28

Functions

Take binary relation f ⊆ A×B.
f : A→ B: f is a total function from A to B.

For every a ∈ A, there is exactly one b ∈ B such that (a,b) ∈ f .
f : A→p B: f is a partial function from A to B.

For every a ∈ A, there is at most one b ∈ B such that (a,b) ∈ f .
Auxiliary notions:

domain(f ) := {a | ∃b : (a,b) ∈ f }
range(f ) := {b | ∃a : (a,b) ∈ f }

f (a) := such b : (a,b) ∈ f

Every total function f : A→ B is a partial function f : A→p B; every
partial function f : A→p B is a total function f : domain(f )→ B.

Wolfgang Schreiner http://www.risc.jku.at 19/28

Functions

Let f : Σ∗→p Γ∗ where ␣ 6∈ Σ∪Γ.
f is a function over words in some alphabets.

f is Turing computable, if there exists a Turing machine M such that
for input w (i.e. initial tape content w␣ . . .), M terminates in an
accepting state, if and only if w ∈ domain(f );
for input w , M terminates in an accepting state with output w ′ (i.e.
final tape content w ′␣ . . .), if and only if w ′ = f (w).

Not every function f : Σ∗→p Γ∗ is Turing computable:
The set of all Turing machines is countably infinite: all machines can
be ordered in a single list (in the alphabetic order of their definitions).
The set of all functions Σ∗→p Γ∗ is more than countably infinite
(Cantor’s diagonalization argument).
Consequently, there are more functions than Turing machines.

M computes f , if M terminates for arguments in the domain of f with
output f (a) and does not terminate for arguments outside the domain.

Wolfgang Schreiner http://www.risc.jku.at 20/28



Example

We show that natural number subtraction is Turing computable.
Subtraction 	 on N:

m	n :=
{

m−n if m ≥ n
0 else

Unary representation of n ∈ N:

000 . . .0︸ ︷︷ ︸
n times

∈ L(0∗)

Input 00␣0 shall lead to output 0.
2	1 = 1.

Idea: replace every pair of 0 in m and n by ␣.

Wolfgang Schreiner http://www.risc.jku.at 21/28

Example (Contd)

M = (Q,Γ,␣,Σ,δ ,q0,F )
Q = {q0, . . . ,q6}
Σ = {0},Γ = {0,1,␣},F = {q6}

δ 0 1 ␣
q0 (q1,␣,R) (q5,␣,R) (q5,␣,R)
q1 (q1,0,R) (q2,1,R) (q2,1,R)
q2 (q3,1,L) (q2,1,R) (q4,␣,L)
q3 (q3,0,L) (q3,1,L) (q0,␣,R)
q4 (q4,0,L) (q4,␣,L) (q6,0,R)
q5 (q5,␣,R) (q5,␣,R) (q6,␣,R)
q6 − − −

q0

q1

q2

q3 q4

q6

q5

0

0

1,␣

1

0

0,1

␣ 1,␣

␣

0,1 0,1
␣

␣

In q0, the leading 0 is replaced by ␣.
In q1, M searches for the next ␣ and replaces it by a 1.
In q2, M searches for the next 0 and replaces it by 1, then moves left.
In q3, M searches for previous ␣, moves right and starts from begin.
In q4, M has found a ␣ instead of 0 and replaces all previous 1 by ␣.
In q5, n is (has become) 0; the rest of the tape is erased.
In q6, the computation successfully terminates.

Wolfgang Schreiner http://www.risc.jku.at 22/28

Example (Contd)

2	1 = 1:
q000␣0 ` ␣q10␣0 ` ␣0q1␣0 ` ␣01q20
` ␣0q311 ` ␣q3011 ` q3␣011 ` ␣q0011
` ␣␣q111 ` ␣␣1q21 ` ␣␣11q2 ` ␣␣1q41
` ␣␣q41 ` ␣q4 ` ␣0q6

1	2 = 0:
q00␣00 ` ␣q1␣00 ` ␣1q200 ` ␣q3110
` q3␣110 ` ␣q0110 ` ␣␣q510 ` ␣␣␣q50
` ␣␣␣␣q5 ` ␣␣␣␣␣q6.

For m > n, leading blanks still have to be removed.

Wolfgang Schreiner http://www.risc.jku.at 23/28

Turing Computability

Theorem: f : Σ∗→p Γ∗ is Turing computable, if and only if

Lf := {(a,b) ∈ Σ∗×Γ∗ | a ∈ domain(f )∧b = f (a)}

is recursively enumerable.
Proof ⇒: Since f : Σ∗→p Γ∗ is Turing computable, there exists a Turing machine M
which computes f . To show that Lf is r.e., we construct M ′ with L(M ′) = Lf :

function M ′(a,b):
b′←M(a)
if b′ = b then

return yes
else

return no
end if

end function

(a,b)
a

b

M
=

yes

no no

yes
M ′

b′

Wolfgang Schreiner http://www.risc.jku.at 24/28



Turing Computability

Proof ⇐: Since Lf is recursively enumerable, there exists an enumerator M with
Gen(M) = Lf . We construct the following Turing machine M ′ which computes f :

function M ′(a):
while M is not terminated do

M writes (a′,b′) to tape
if a = a′ then

return b′
end if

end while
loop forever

end function

yesa
(a, .) on tape?

M ′

M (a,b)

b

Computing is possible, if and only if recognizing is possible.

Wolfgang Schreiner http://www.risc.jku.at 25/28

1. Turing Machines

2. Recognizing Languages

3. Generating Languages

4. Computing Functions

5. The Church-Turing Thesis

Wolfgang Schreiner http://www.risc.jku.at 26/28

Algorithms

Computer science is based on algorithms.

Compute as follows the greatest
common divisor of two natural
numbers m,n that are not both 0:

1. If m = 0, the result is n.
2. If n = 0, the result is m.
3. If m > n, subtract n from m

and continue with step 1.
4. Otherwise subtract m from

n and continue with step 1.

m > n ?

m 6= 0∧n 6= 0 ?

m←m−n n← n−m

m = 0 ?

r ← n r ←m

Euklid(↓m, ↓ n, ↑ r)

ja nein

nein
ja

ja nein

Euklid(↓m, ↓ n, ↑ r):
while m 6= 0∧n 6= 0 do
if m > n
then m←m−n
else n← n−m

if m = 0
then r ← n
else r ←m

end Euklid.

What is an “algorithm” and what is computable by an algorithm?

Wolfgang Schreiner http://www.risc.jku.at 27/28

The Church-Turing Thesis

Church-Turing Thesis: Every problem that is solvable by an algorithm (in an
intuitive sense) is solvable by a Turing machine. Thus the set of intuitively
computable functions is identical with the set of Turing computable functions.

Replaces fuzzy notion “algorithm” by precise notion “Turing machine”.
Unprovable thesis, exactly because the notion “algorithm” is fuzzy.
Substantially validated, because many different computational models
have no more computational power than Turing machines.

Random access machines, loop programs, recursive functions, goto
programs, λ -calculus, rewriting systems, grammars, . . .

Turing machines represent the most powerful computational model known,
but there are many other equally powerful (“Turing complete”) models.

Wolfgang Schreiner http://www.risc.jku.at 28/28


