

Turing Machines 1. Turing Machines Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at 2. Recognizing Languages Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria 3. Generating Languages http://www.risc.jku.at http://www.risc.jku.at 1/28Wolfgang Schreiner **Turing Machine Model Turing Machines** tape Turing machine sequence accepted The machine is always in one of a finite set of states. The machine starts its execution in a fixed start state. An infinite tape holds at its beginning the input word.

- Tape is read and written and arbitrarily moved by the machine.
- The machine proceeds in a sequence of state transitions.
 - Machine reads symbol, overwrites it, and moves tape head left or right.
 - The symbol read and the current state determine the symbol written, the move direction, and the next state.
- If the machine cannot make another transition, it terminates.
- The machine signals whether it is in an accepting state. If the machine terminates in an accepting state, the word is accepted.

- 4. Computing Functions
- 5. The Church-Turing Thesis

http://www.risc.jku.at

Turing Machine $M = (Q, \Gamma, \mu, \Sigma, \delta, q_0, F)$:

- The state set Q, a fine set of states.
- A tape alphabet Γ , a finite set of tape symbols.
- **The blank symbol** $\Box \in \Gamma$.
- An input alphabet $\Sigma \subseteq \Gamma \setminus \{ \sqcup \}$.
- The (partial) transition function $\delta : Q \times \Gamma \rightarrow_{p} Q \times \Gamma \times \{L', R'\},$
 - $\delta(q, x) = (q', x', L'/R') \dots M$ reads in state q symbol x, goes to state q', writes symbol x', and moves the tape head left/right.
- The start state $q_0 \in Q$

Wolfgang Schreiner

• A set of accepting states (final states) $F \subseteq Q$.

The crucial difference to an automaton is the infinite tape that can be arbitrarily moved and written.

Wolfgang Schreiner

2/28

Example

 IVIachine accepts every word of form U''1'' (replacing it by X''Y''

 Wolfgang Schreiner

 http://www.risc.jku.at

Generalized Turing Machines

5/28

7/28

- Infinite tape in both directions.
 - Can be simulated by a machine whose tape is infinite in one direction.
- Multiple tapes.
 - Can be simulated by a machine with a single tape.
- Nondeterministic transitions.
 - We can simulate a nondeterministic M by a deterministic M'.
 - Let r be the maximum number of "choices" that M can make.
 - *M'* operates with 3 tapes.
 - Tape 1 holds the input (tape is only read).
 - M' writes to tape 2 all finite sequences of numbers $1, \ldots, r$.
 - First all sequences of length 1, then all of length 2, etc.
 - After writing sequence $s_1 s_2 \dots s_n$ to tape 2, M' simulates M on tape 3.
 - M' copies the input to tape 3 and performs at most n transitions.
 - In transition *i*, *M* attempts to perform choice s_i .
 - If choice i is not possible or M terminates after n transitions in a non-accepting state, M' continues with next sequence.
 - If M terminates in accepting state, M' accepts the input.

Every generalized Turing machine can be simulated by the core form.

Wolfgang Schreiner

Turing Machine Simulator

http://math.hws.edu/eck/js/turing-machine/TM.html h b a b c c a b a caba b a b c OldState OldSymbol NewSymbol NewState Move **Rule Editor** Change Rule 0 ~ h ¥ R 🗸 ± × \sim Old Old New New Move Run Stop State Symbol Symbol State 0 # # h R Run Speed: moderate ~ 0 a @ 1 R Step Step Back 0 b @ 5 R 0 С @ 9 R Reset State to Zero 2 1 # # R 1 R other same 1 Install Example: 2 3 L # a Copy abc 2 other 2 R same http://www.risc.jku.at Wolfgang Schreiner

6/28

1. Turing Machines

2. Recognizing Languages

- 3. Generating Languages
- 4. Computing Functions
- 5. The Church-Turing Thesis

Turing Machine Configurations

- Configuration $a_1 \dots a_k q a_{k+1} \dots a_m$:
 - q: the current state of M.
 - a_{k+1} : the symbol currently under the tape head.
 - $a_1 \dots a_k$: the portion of the tape left to the tape head.
 - $a_{k+2} \dots a_m$: the portion right to the head (followed by $\square \dots$).
- Move relation: $a_1 \dots a_k \ q \ a_{k+1} \dots a_m \vdash b_1 \dots b_l \ p \ b_{l+1} \dots b_m$ If *M* is a situation described by the left configuration, it can make a transition to the situation described by the right configuration.
 - $a_i = b_i$ for all $i \neq k+1$ and one of the following:
 - l = k+1 and $\delta(q, a_{k+1}) = (p, b_l, R)$,
 - l = k 1 and $\delta(q, a_{k+1}) = (p, b_{l+2}, L)$.
- **Extended** move relation: $c_1 \vdash^* c_2$

M can make in an arbitrary number of moves a transition from the situation described by configuration c_1 to the one described by c_2 .

$$c_1 \vdash^0 c_2 :\Leftrightarrow c_1 = c_2$$
$$c_1 \vdash^{i+1} c_2 :\Leftrightarrow \exists c : c_1 \vdash^i c \land c \vdash c_2$$
$$c_1 \vdash^* c_2 :\Leftrightarrow \exists i \in \mathbb{N} : c_1 \vdash^i c_2$$

Wolfgang Schreiner

http://www.risc.jku.at

9/28

Recursiv. Enumerable/Recursive Languages

Theorem: *L* is recursive, if and only if both *L* and its complement \overline{L} are recursively enumerable.

Proof \Rightarrow : Let *L* be a recursive. Since by definition *L* is recursively enumerable, it remains to be shown that also \overline{L} is recursively enumerable.

Since *L* is recursive, there exists a Turing machine *M* such that *M* halts for every input *w*: if $w \in L$, then *M* accepts *w*; if $w \notin L$, then *M* does not accept *w*. With the help of *M*, we can construct the following *M'* with $L(M') = \overline{L}$:

The Language of a Turing Machine

The language L(M) of Turing machine M = (Q, Γ, ,, Σ, δ, q₀, F): The set of all inputs that drive M from its initial configuration to a configuration with an accepting state such that from this configuration no further move is possible:

$$\mathcal{L}(M) := \left\{ w \in \Sigma^* \ \Big| \ \exists a, b \in \Gamma^*, q \in Q : q_0 \ w \vdash^* a \ q \ b \land q \in F \\ \land \neg \exists a', b' \in \Gamma^*, q' \in Q : a \ q \ b \ \vdash a' \ q' \ b'
ight\}$$

- L is a recursively enumerable language:
 - There exists a Turing machine M such that L = L(M).
- *L* is a recursive language:
 - There exists a Turing machine M such that L = L(M) and M terminates for every possible input.

Every recursive language is recursively enumerable; as we will see, the converse does not hold.

Wolfgang Schreiner

http://www.risc.jku.at

10/28

Recursiv. Enumerable/Recursive Languages

ves

Proof \Leftarrow : Let *L* be such that both *L* and \overline{L} are recursively enumerable. We show that *L* is recursive. Since *L* is r.e., there exists *M* such that L = L(M) and *M* halts for $w \in L$ with M(w) = yes. Since \overline{L} is r.e., there exists \overline{M} with $\overline{L} = L(\overline{M})$ and \overline{M} halts for $w \in \overline{L}$ with $\overline{M}(w) =$ yes. We can thus construct M'' with L(M'') = L that always halts:

11/28

Wolfgang Schreiner

Closure of Recursive Languages

- the complement \overline{L} ,
- the union $L_1 \cup L_2$,
- the intersection $L_1 \cap L_2$
- are recursive languages.

Proof by construction of the corresponding Turing machines.

Wolfgang Schreiner

http://www.risc.jku.at

13/28

Enumerators

Turing machine $M = (Q, \Gamma, \cup, \emptyset, \delta, q_0, F)$ with special symbol $\# \in \Gamma$.

- *M* is an enumerator, if *M* has an additional output tape on which
 - M moves its tape head only to the right, and
 - *M* writes only symbols different from \Box .
- The generated language Gen(M) of enumerator M is the set of all words that M eventually writes on its output tape.
 - The end of each word is marked by a trailing #.

M may run forever and thus Gen(M) may be infinite.

1. Turing Machines
 2. Recognizing Languages
 3. Generating Languages
 4. Computing Functions
 5. The Church-Turing Thesis

Recognizing versus Generating Languages

14/28

Theorem: *L* is recursively enumerable, if and only if there exists some enumerator *M* such that L = Gen(M).

Proof \Rightarrow : Let *L* be recursively enumerable, i.e., L = L(M') for some *M'*. We construct enumerator *M* such that L = Gen(M).

Recognizing versus Generating Languages

Proof \Leftarrow : Let L be such that L = Gen(M) for some enumerator M. We show that there exists some Turing machine M' such that L = L(M').

Recognizing is possible, if and only if generating is possible.

Wolfgang Schreiner

http://www.risc.jku.at

17/28

Functions

Take binary relation $f \subseteq A \times B$.

- $f: A \rightarrow B$: f is a total function from A to B.
 - For every $a \in A$, there is exactly one $b \in B$ such that $(a, b) \in f$.
- $f : A \rightarrow_p B$: f is a partial function from A to B.
 - For every $a \in A$, there is at most one $b \in B$ such that $(a, b) \in f$.
- Auxiliary notions:

 $domain(f) := \{a \mid \exists b : (a, b) \in f\}$ $range(f) := \{b \mid \exists a : (a, b) \in f\}$ $f(a) := \text{ such } b : (a, b) \in f$

Every total function $f : A \to B$ is a partial function $f : A \to_p B$; every partial function $f : A \to_p B$ is a total function $f : domain(f) \to B$.

- 1. Turing Machines
- 2. Recognizing Languages
- 3. Generating Languages
- 4. Computing Functions
- 5. The Church-Turing Thesis

Wolfgang Schreiner

http://www.risc.jku.at

Functions

- Let $f: \Sigma^* \rightarrow_{p} \Gamma^*$ where $\Box \notin \Sigma \cup \Gamma$.
 - *f* is a function over words in some alphabets.
- *f* is Turing computable, if there exists a Turing machine *M* such that
 - for input w (i.e. initial tape content w_⊥...), M terminates in an accepting state, if and only if w ∈ domain(f);
 - for input w, M terminates in an accepting state with output w' (i.e. final tape content $w'_{\perp}...$), if and only if w' = f(w).
- Not every function $f: \Sigma^* \rightarrow_p \Gamma^*$ is Turing computable:
 - The set of all Turing machines is countably infinite: all machines can be ordered in a single list (in the alphabetic order of their definitions).
 - The set of all functions $\Sigma^* \rightarrow_p \Gamma^*$ is more than countably infinite (Cantor's diagonalization argument).
 - Consequently, there are more functions than Turing machines.

M computes f, if M terminates for arguments in the domain of f with output f(a) and does not terminate for arguments outside the domain.

18/28

Example

We show that natural number subtraction is Turing computable.

Subtraction \ominus on \mathbb{N} :

$$m \ominus n := \begin{cases} m-n & \text{if } m \ge n \\ 0 & \text{else} \end{cases}$$

• Unary representation of $n \in \mathbb{N}$:

$$\underbrace{000\ldots0}_{n \text{ times}} \in L(0^*)$$

Input $00_{11}0$ shall lead to output 0.

 $2 \ominus 1 = 1.$

Idea: replace every pair of 0 in m and n by \dots

Wolfgang Schreiner

http://www.risc.jku.at

21/28

Example (Contd)

■ $2 \ominus 1 = 1$:

 $q_0 00_{\sqcup} 0 \vdash {}_{\sqcup} q_1 0_{\sqcup} 0 \vdash {}_{\sqcup} 0 q_1 {}_{\sqcup} 0 \vdash {}_{\sqcup} 01 q_2 0$ $\vdash \Box 0q_311 \vdash \Box q_3011 \vdash q_3 \Box 011 \vdash \Box q_0011$ $\vdash \Box \Box q_1 11 \vdash \Box \Box 1q_2 1 \vdash \Box \Box 11q_2 \vdash \Box \Box 1q_4 1$ $\vdash \Box \Box q_4 1 \vdash \Box q_4 \vdash \Box 0q_6$

■ $1 \ominus 2 = 0$:

 $q_0 0 \cup 00 \vdash \Box q_1 \cup 00 \vdash \Box 1q_2 00 \vdash \Box q_3 110$ $\vdash q_{3} \downarrow 110 \vdash \lrcorner q_0 110 \vdash \lrcorner \lrcorner q_5 10 \vdash \lrcorner \lrcorner \lrcorner q_5 0$ $\vdash \square \square \square q_5 \vdash \square \square \square \square q_6.$

For m > n, leading blanks still have to be removed.

δ

 q_0

 q_1

 q_2

 q_3

 q_4

 q_5

 q_6

Turing Computability

Theorem: $f: \Sigma^* \rightarrow_p \Gamma^*$ is Turing computable, if and only if

$$L_f := \{(a, b) \in \Sigma^* \times \Gamma^* \mid a \in domain(f) \land b = f(a)\}$$

is recursively enumerable.

Proof \Rightarrow : Since $f: \Sigma^* \to_{\mathsf{p}} \Gamma^*$ is Turing computable, there exists a Turing machine M which computes f. To show that L_f is r.e., we construct M' with $L(M') = L_f$:

function M'(a, b): $b' \leftarrow M(a)$ if b' = b then return ves else return no end if end function

Turing Computability

Proof \Leftarrow : Since L_f is recursively enumerable, there exists an enumerator M with $Gen(M) = L_f$. We construct the following Turing machine M' which computes f:

Computing is possible, if and only if recognizing is possible.

Wolfgang Schreiner

http://www.risc.jku.at

25/28

Algorithms

Computer science is based on algorithms.

What is an "algorithm" and what is computable by an algorithm?

- 1. Turing Machines
- 2. Recognizing Languages
- 3. Generating Languages
- 4. Computing Functions

5. The Church-Turing Thesis

Wolfgang Schreiner

http://www.risc.jku.at

26/28

The Church-Turing Thesis

Church-Turing Thesis: Every problem that is solvable by an algorithm (in an intuitive sense) is solvable by a Turing machine. Thus the set of intuitively computable functions is identical with the set of Turing computable functions.

- Replaces fuzzy notion "algorithm" by precise notion "Turing machine".
- Unprovable thesis, exactly because the notion "algorithm" is fuzzy.
- Substantially validated, because many different computational models have no more computational power than Turing machines.
 - Random access machines, loop programs, recursive functions, goto programs, λ-calculus, rewriting systems, grammars, ...

Turing machines represent the most powerful computational model known, but there are many other equally powerful ("Turing complete") models.