Finite State Machines and Regular Languages
Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

2,
W/

Wolfgang Schreiner http://www.risc.jku.at 1/63

Motivation %

Behavior of a vending machine that delivers a drink:

1€
@ 50¢ @ 50¢
—|

abort

Infinitely many successful interaction sequences:
1€
50¢ 50¢
50¢ abort 1€
50¢ abort 50¢ abort 1€
50¢ abort 50¢ abort 50¢ 50¢

A finite description of these sequences:
(50¢ abort)*(1€ + 50¢ 50¢)

We will investigate automata and the associated interaction sequences.

Wolfgang Schreiner http:/ /www.risc.jku.at 2/63

1. Deterministic Automata

2. Nondeterministic Automata

3. Determinization of Automata

4. Minimization of Automata

5. Regular Languages

6. Regular Expressions to Automata
7. Automata to Regular Expressions

8. The Expressiveness of Regular Languages

Wolfgang Schreiner http://www.risc.jku.at 3/63

Automaton Model i

sequence of symbols

<—{ 50¢

abort| 50¢ |abort

1€ ‘ tape

automaton) sequence accepted

Automaton is always in one of a finite set of states.
Automaton starts execution in a fixed start state.
Input tape with a finite sequence of symbols (a word).
Tape is only read by the automaton.
Execution proceeds in a sequence of state transitions.
Automata reads one symbol and moves tape head to next symbol.
The symbol read and the current state determine the next state.
When the whole word is read, the automaton terminates.
The automaton signals whether it is in an accepting state.

If the automaton terminates in an accepting state, the word is accepted.
Wolfgang Schreiner http://www.risc.jku.at 4/63

Deterministic Automata N l.

A deterministic finite-state machine (DFSM) M = (Q, %, 3, qo, F):

The state set @, a finite set of states.

©

An input alphabet X, a finite set of input symbols.

The transition function 6 : @ x ¥ = Q.
,x)=¢q ...M reads in state g symbol x and goes to state q'.

The start state gg € Q.

A set of accepting states (final states) F C Q.

Wolfgang Schreiner http://www.risc.jku.at 5/63

L AN
Definition of an Automaton

M=(Q,%,8,q0,F) & | x
Q={...,9,...}

Y={..} q 8(q,x)
F={.}

The transition function § is typically defined by a table.

Wolfgang Schreiner http://www.risc.jku.at 6/63

Example N\ {'

M=(Q,%,8,go,F) & |a b
o | 9a qa qr 4r Qqr

Q:{q0>qa7qr}
Z:{a,b,O,l,?} da | Ga Ga da da 4qr
qr | 9r 4qr 4r d4qr Qr
F={q.}
—> a,b,0,1
a,b,0,1,?

Accepts words of letters and digits starting with a letter.

http://www.risc.jku.at 7/63

Wolfgang Schreiner

The Extended Transition Function N\ {'

The extended transition function 8*: @ x X* — @ of M:

6%(q,€):=q
0*(q,wa) :=98(6"(q,w), a)
> * is the set of all words over .

€€ X" is the empty word.
a € ¥ is an input symbol, w € ¥* a word.

Gn=06"(qo,a1a2...ap) :

q1 = 6(qo,a1)

g2 =6(q1,a2) ' = 1‘_>.

qn = 0%(qo,a1a2. .

9n = 6(qn-1,an)
The generalization of the transition function § to an input word.

Wolfgang Schreiner http://www.risc.jku.at 8/63

The Language of an Automaton N

The automata language L(M) C * of M:
L(M) = {w € T* | §*(qo,w) € F}

All words that drive M from its start state to an accepting state.

Word w is accepted by M, if w € L(M).

Wolfgang Schreiner http://www.risc.jku.at 9/63

Example

M = (Q)zvaaqO)F)
Q = {q03q17q2aq3}

> —{0,1}
F ={qo}

L(M) is the set of bit strings with an even number of '0" and '1".

Wolfgang Schreiner

€p, €1 + true, true
while input stream is not empty do
read input
case input of
0: €y < €
1: e e
default: return false
end case
end while
return ey N\ e1

http://www.risc.jku.at

10/63

1. Deterministic Automata

2. Nondeterministic Automata

3. Determinization of Automata

4. Minimization of Automata

5. Regular Languages

6. Regular Expressions to Automata
7. Automata to Regular Expressions

8. The Expressiveness of Regular Languages

Wolfgang Schreiner http://www.risc.jku.at 11/63

ZA%

Nondeterministic Automata .E {'

A nondeterministic finite-state machine (NFSM) M = (Q,X%,6,S,F):
The state set Q, a finite set of states.
An input alphabet ¥, a finite set of input symbols.

The transition function § : @ x ¥ — P(Q).

P(Q) ...the set of all subsets (the powerset) of Q.
0(q,x)={q},...,q,} ... M reads in state g symbol x and goes to one
of the states q1,...,q,.

The set of start states S C Q.
A set of accepting states (final states) F C Q.
A DFSM is essentially just a special case of a NFSM.

Wolfgang Schreiner http://www.risc.jku.at 12/63

Example

M=(Q,%,3,5,F)
Q=1{q0,91,92,93,94}

¥ — (0,1}
5={q}

F= {Q27CI4}

1) 0 1
do | {90,93} {q0,q1}
a1 0 {g2}
9@ | {9} {92}
g3 | {qs} 0
qs | {qa} {qa}

Accepts bit strings that contain '00" or '11".

Wolfgang Schreiner

http://www.risc.jku.at

13/63

Interpretation of Nondeterminism '% {'

0,1 0,1

-G=@D@) | o

Automaton splits itself into
multiple copies that investigate
all paths in parallel. 0

Input is accepted, if at least

one copy reaches final state. . e e

A certain form of parallel search. @

Wolfgang Schreiner http://www.risc.jku.at 14/63

The Language of a Nondet. Automaton

The extended transition function 8*: Q x £* — P(Q) of M:

6°(q,€) :={q}
6"(q,wa) :={q" | 3¢' € 6"(q,w) : ¢" € 6(¢',a)}

gn € 0*(qo,a1a2..

q1 € 6(qo,a1)
g2 € 6(q1,a2)

dn € 6(Qn717 an)

050504 1050

Gn € 0*(qo,a1az..

The automata language L(M) C X* of M:

L(

Wolfgang Schreiner

M):={weX"|3geS:5"(q,w)NF #0}

http://www.risc.jku.at

15/63

Example \ {'

A NFSM may be easier to construct than a DFSM.

0,1

2O Oz O~
1

1

0,1

The language of both automata is the set of all bit strings that contain
'00" or '11', but this is much easier to see in the NFSM.

Wolfgang Schreiner http://www.risc.jku.at 16/63

Application of Nondeterministic Automata

A%

clientServer.txt

Spin Version 6.2.2 - 6 June 2012 :: ISpin Version 1.1.0 - 7 June 2012

miype = { MESSAGE };

chan request[2] = [1] of { mtype };
chan answer [2] = [1] of { mtype }

proctype diient(byte ic)
{

do i true ->

request[id-1] | MESSAGE;

W: answer[id-1] ? MESSAGE;
G skip;

request]
od;

1

[id-1] | MESSAGE

proctype server()
{

unsigned given
unsigned waiting
unsigned sender :2;
do i true ->
R:if
request(o] ? MESSAGE ->
S1:sender =1
request(1] ? MESSAGE ->
52: sender = 2
-

Spin Version 6.2.2 6 June 2012
ISpin Version 1.1.0 -7 June 2012
TciTk Version 8.4/8.4

Modeling and verification of concurrent systems.

Wolfgang Schreiner http://www.risc.jku.at

17/63

1. Deterministic Automata

2. Nondeterministic Automata

3. Determinization of Automata

4. Minimization of Automata

5. Regular Languages

6. Regular Expressions to Automata
7. Automata to Regular Expressions

8. The Expressiveness of Regular Languages

Wolfgang Schreiner http://www.risc.jku.at 18/63

I8

Determinization of Automata E {

Every language accepted by some DFSM is also accepted by some NFSM,
but does also the converse hold?

Theorem (Subset Construction): Let M =(Q,%,8,S,F) be a NFSM. Then
L(M') = L(M) for the DFSM M’ = (Q',%,8’,qp, F') defined as follows:

Q@ =P(Q)
"(d,a)=J 8(q,a)
qeq’

=S5

F'={d €Q | dnF#0}

States of M’ are sets of states of M.

Successor of state g’ of M’ is the set of successors in M of all states in ¢'.
The start state of M’ is the set of all start states of M.

Accepting states of M’ are all those states containing accepting states of M.

NFSMs and DFSMs accept the same set of languages.

Wolfgang Schreiner http://www.risc.jku.at 19/63

Example A4

0,1

SOSX OO
1

1

0,1

The DFSM accepts the same language but is not necessarily minimal.

Wolfgang Schreiner http:/ /www.risc.jku.at 20/63

Correctness Proof v i

Proof that L(M) = L(M'), i.e., w € L(M) < w € L(M).
Assume w = ajay...a, € L(M).

Then there exists a sequence of states qo,q1,q2,...,q, with go € S and
dn € F and q1 € 6(q0,a1),92 € 6(q1,32),---,9n € (qn-1,an).
Take the sequence of state sets (g, Q1, @2,..., @y with Qo = S,
Q1 =06"(Qo,a1), Q2 =08"(Q1,a2), ..., Qn=20"(Qn-1,an)-
We know gg € S = Qp; according to the definition of &', we thus have
g1 € 6(qo0,31) C 8'(Qo,a1) = Q1; we thus have
G2 € 6(q1,32) C8'(Q1,a2) = Qa; . ..; we thus have
an € 5(Qn—1,3n) C 6/(Qn—17an) = @n.
Since g, € Qpn and gp € F, we have Q,NF # 0 and thus w € L(M').

Analogous (see lecture notes).

Wolfgang Schreiner http://www.risc.jku.at 21/63

1. Deterministic Automata

2. Nondeterministic Automata

3. Determinization of Automata

4. Minimization of Automata

5. Regular Languages

6. Regular Expressions to Automata
7. Automata to Regular Expressions

8. The Expressiveness of Regular Languages

Wolfgang Schreiner http://www.risc.jku.at 22/63

Minimization of Deterministic Automata N

Let M =(Q,%,d,qo,F) be a DFSM.

Binary relation ~j on Q:

g~ (eEFeq@eF)
g1 ~k+1 G2 = Vae X :8(qr,a) ~k 6(q,)
g1 ~k g2: starting with both states, the same words of length k are
accepted.

Bisimulation relation ~:
g~ qeVkeN: gL~ g

g1 ~ @2 starting with both states, the same words are accepted.

If g1 ~ qo, then g1 and g, are state equivalent; they can be merged into a
single state without changing the language of M.

Wolfgang Schreiner http://www.risc.jku.at 23/63

Minimization of Deterministic Automata N

Idea for a minimization algorithm.
Construct a sequence of partitionings Py, P1,...,P, of Q.
Each Py is a decomposition of Q into disjoint subsets.
Py consists of those partitions whose elements are related by ~y.

The states in each partition of Py cannot be distinguished by any word
of length k.

The algorithm starts with Py := {F, Q\F}.
All states in F (respectively Q\F) are in relation ~q.
The algorithm terminates when ~,=r~.

The states in each partition of P, cannot be distinguished by any word
of arbitrary length; thus they can be merged into a single state.

One can show that n < |Q)|, i.e., the algorithm is guarantueed to
terminate.

The partitions of P, represent the states of the minimized automaton.

Wolfgang Schreiner http://www.risc.jku.at 24/63

Minimization of Deterministic Automata N

We construct Py,1 from Py by “breaking up” partitions.

State partition [s]g ={tep|VacX,qgeS:0(t,a)ecq<o(s,a)eq}
S = Py is the current decomposition, p is a partition in S, s is a state in p.

[s]f, consists of all those states t in p from which every transition yields the
same partition in S as the transition yields from state s.

Partition p € S is broken up into the partition set {[s]g | s € p}.

Wolfgang Schreiner http://www.risc.jku.at 25/63

I8

Minimization of Deterministic Automata % {

function PARTITION(Q, X, 8, qo, F)
P« {F,Q\F}
repeat
S« P
P+0
for pe S do
P+ PU{[s]3 | s€p}
end for
until P=S5
return P
end function

function MINIMIZE(Q, X, 8, qo, F)

Q+{qeQ|3Iwexr":6%(q w)=gq}
Q' < PARTITION(Q, X, 8, qo, F)
for ¢ € Q,ac ¥ do
set 8'(q’,a) to that partition " of Q'
where Vg € ¢’ : 6(q,a) € q”
end for
let gq be that partition of Q" where go € q;
F'+{qe @ :qNF #0}
return (Q,%,68,q, F')

end function

PARTITION partitions the state set of an automaton, MINIMIZE
transforms the partitioning into the minimized automaton.

Wolfgang Schreiner http:/ /www.risc.jku.at

26/63

Example A4

Q = {q07 d1,492,43,44,35,46, 47, q8}

Po :={po,p3}
po :=1{q0,91.92} = Q\F
p3 :=1{43,94,95,q6,97, 98} = F

All transitions from p3 lead to p3.
p3 need not be partitioned further.
po has to be partitioned further.
6(q0,0) = g1 € po,

6(q1,0) = g3 € p3.
6(qo,1) = g2 € po,
0(q2,1) = q4 € p3.
6(q1,0) = g3 € p3,
6(92,0) = q1 € po.

qo, 91, g2 must be separated.

Wolfgang Schreiner http://www.risc.jku.at 27/63

Example A4

Pl = {P07P17P27P3}
po:=1{qo}, pr:={a1}, p2:= {qz},
P3 = {q37"'7q8}

P, := Ps.
No further split is possible.
Minimal DFSM whose language is the set of
all bit strings that contain '00" or '11".

Wolfgang Schreiner http://www.risc.jku.at 28/63

1. Deterministic Automata

2. Nondeterministic Automata

3. Determinization of Automata

4. Minimization of Automata

5. Regular Languages

6. Regular Expressions to Automata
7. Automata to Regular Expressions

8. The Expressiveness of Regular Languages

Wolfgang Schreiner http://www.risc.jku.at 29/63

Regular Expressions .% {.

The set of regular expressions Reg(X) over ¥ ={ai,...,an}:
0 € Reg(X) and € € Reg(X).
a1 € Reg(X),...,an € Reg(X).
If ri,r € Reg(X), then (r1-r2) € Reg(X) and (r1+r2) € Reg(X).
If r € Reg(X), then (r*) € Reg(X).
re=0)€lar|...lan|(r-r)|(r+r)|(rF)

Syntactic Conventions:

* binds stronger than - which binds stronger than +.
- is often omitted.

(a+(b-(c")))
atb-c
a+ bc*

Regular expressions denote languages (sets of words).

Wolfgang Schreiner http://www.risc.jku.at 30/63

The Shell Command grep .E {'
°
NAME
grep, egrep, fgrep, rgrep - print lines matching a pattern
SYNOPSIS

grep [options] PATTERN [FILE...]

REGULAR EXPRESSIONS
A regular expression is a pattern that describes a set of strings.

The fundamental building blocks are the regular expressions that match
a single character. Most characters, including all letters and digits,
are regular expressions that match themselves.

A regular expression may be followed by the repetition operator *;
the preceding item will be matched zero or more times.

Two regular expressions may be concatenated; the resulting regular
expression matches any string formed by concatenating two substrings
that respectively match the concatenated subexpressions.

Two regular expressions may be joined by the infix operator |[|; the
resulting expression matches any string matching either subexpression.

Wolfgang Schreiner http://www.risc.jku.at 31/63

Regular Languages .E {'
Regular expression language L(r) C X*:
L(0) :=0.
L(g) = {e}.
L(a) :={a}.

L(ri-rn):=L(n)oL(r).
L(rn+nr):=Ln)UL(r).
L(r*):= L(r)*.
Concatenation: LyoLy:={wy-wyr | wg € LiAws € Lo}
Finite Closure: L* := 7, L'=1%ululL?u...
L°:={e}
LF=Lol
Syntactic Simplification: r+s+t, r-s-t
L((r+s)+t)=L(r+(s+1))
L((r-s)-t)=L(r-(s-t))
A language L is regular, if there is a regular expression r with L(r) = L.
Wolfgang Schreiner http://www.risc.jku.at 32/63

Examples K *
W
Language of identifiers
(a+b)(a+b+0+1)*
Language of bit strings containing '00" or '11’
(0+1)*(00+11)(0+1)*

Language of vending machine
(50¢ abort)* (1€ + 50¢ 50¢)

Regular language
£+1(0+1(0+1)*0)*

Is the language of every automaton regular? Is every regular language the

language of some automaton?
Wolfgang Schreiner http:/ /www.risc.jku.at 33/63

I

Regular Expressions and Automata N

1. For every regular expression r over ¥, there exists an automaton M
with input alphabet ¥ such that L(M) = L(r).
Proof by construction of automaton M from arbitrary regular
expression r.
2. For every automaton M with input alphabet ¥, there exists a regular
expression r over ¥ such that L(r) = L(M).
Proof by construction of regular expression r from arbitrary
automaton M.

Automata and regular expressions describe the same sets of languages.

Wolfgang Schreiner http://www.risc.jku.at 34/63

I

Generation of Lexical Analyzers N

Various tools for the generation of lexical analyzers (lexers, scanners).

Input: a regular expression.
IDENT: LETTER (LETTER | DIGIT)* ;

Output: an automaton (implemented by a program).
public final void mIDENT(...) throws ... {

mLETTER() ;
_loop271: do {
switch (LA(1)) {

case ’a’: ... case ’z’: { mLETTER(); break; }
case ’0’: ... case ’9’: { mDIGIT(); break; }
default: { break _loop271; }

}

} while (true);

Wolfgang Schreiner http://www.risc.jku.at 35/63

1. Deterministic Automata

2. Nondeterministic Automata

3. Determinization of Automata

4. Minimization of Automata

5. Regular Languages

6. Regular Expressions to Automata
7. Automata to Regular Expressions

8. The Expressiveness of Regular Languages

Wolfgang Schreiner http://www.risc.jku.at 36/63

M N\,
Base Cases % {

We construct from r a NFSM M’ with a single start state and arbitrarily
many accepting states (one of which may be the start state).

Case r =0:
~O
M
Caser=c¢:
M @
Case r=a:

Wolfgang Schreiner http://www.risc.jku.at 37/63

Concatenation N

Case r=ry -rp:

My

Wolfgang Schreiner http://www.risc.jku.at 38/63

Union N\

Case r=ry +rp:

My

M

Wolfgang Schreiner http://www.risc.jku.at 39/63

Finite Closure

Case r=rj:

My

Wolfgang Schreiner

We may remove qx,qy,q;, if
they do not lead to acceptance.

M cannot (yet) serve as M, in
case ri-rp or as My, My in case
r + r» due to the transitions
back to qo.

http://www.risc.jku.at

40/63

I

Removal of Back Transitions N\

We can construct another automaton without transitions back to qg.

M and M’ accept the same language.

Wolfgang Schreiner http:/ /www.risc.jku.at 41/63

Example A4

We construct an automaton for (04 1)*(00+11)(0+1)*.

(0+1)* = Q

Wolfgang Schreiner http://www.risc.jku.at 42/63

Example (Contd) %

0,1

(0+1)* ,éﬂ@

(041)* @0'1
(0+1)* 0'1

Wolfgang Schreiner http://www.risc.jku.at 43/63

Example (Contd) %

o OO0 |, -O-O+0

00+11

Wolfgang Schreiner http:/ /www.risc.jku.at 44/63

Example (Contd) N

(0+1)*(00+11)

(0+1)*(00411)(0+ 1)*

Wolfgang Schreiner http://www.risc.jku.at 45/63

Example (Contd) N2

(0+1)*(00+11)(0+ 1)*

Simplification after every step yields smaller automata.

Wolfgang Schreiner http://www.risc.jku.at 46/63

1. Deterministic Automata

2. Nondeterministic Automata
3. Determinization of Automata
4. Minimization of Automata

5. Regular Languages

Regular Expressions to Automata

Noe

Automata to Regular Expressions

8. The Expressiveness of Regular Languages

Wolfgang Schreiner http://www.risc.jku.at 47/63

Automata to Regular Expressions %

DFSM M =(Q,0,0,qo, F) to regular expression r with L(r) = L(M).
Let Ry p be the set of words that drive M from q to p:

Rep:={weX" | 6"(q,w)=p}
L(M) is the set of words that drive M from go to some end state:
L(M) = Rgo,p, U-- .U Req,p,

where F ={p1,...,pn}
Assume we can construct regular expression rq , such that

L(rgp) = Ra,p

(for arbitrary q,p).
Then we can construct r:

ri=rgo.p 1 -+ fq0.pn

It remains to show how to define rq .

Wolfgang Schreiner http://www.risc.jku.at 48/63

17\

Automata to Regular Expressions (Contd) %\, *

We define for 0 < j < |Q| the following set R, , of words:

Rg_’p: those words of length zero or one that drive M from q to p.

RO . {a1,...,an}, ifg#p
aP {ala"'7an78}7 Ifq:p

ai,...,an € X: those symbols that drive M from ¢ to p:
6(g,aj)=pfor1<i<n
R{:;l: those words that drive M from g to p through states in Qjy1:

R{;ﬁ,l ={weERyp | V1< k<|w|:8"(q,wlk)eE Qjt1}

Qj+1: the subset of the first j+ 1 symbols in Q:
Qj+1={q0,---,4}
w | k: the prefix of w with length k.

Wolfgang Schreiner http:/ /www.risc.jku.at 49/63

Automata to Regular Expressions (Contd)

Assume we can construct regular expression ry , with

L(rgp) = Rap

We can then define regular expression rq , as

Q|
fq.p

fgp =

We know: Rgp = RC‘,%‘.

It remains to show how to define r{,_p.

Wolfgang Schreiner http://www.risc.jku.at

50/63

Automata to Regular Expressions (Contd) %\, *

We define rj , by induction on j:

0, ifg#£pAn=0
rgﬂp:: ai+...+an, ifg£pAn>1
a+...+a,+¢e, ifg=p
1 . S
r{LP = réyijrimj ’ (r{lj»qj) 'r{ljvp

0 _ pO
We have to show L(rg ,) = Ry ,.
Follows from definition.
We have to show L(r/H!) = RILE.
Core of the proof.
- j+1 j+1
It remains to show L(rjp) = RS .

Wolfgang Schreiner http://www.risc.jku.at 51/63

7\

Automata to Regular Expressions (Contd) %\, *

By the definition of r{ﬁl, it suffices to show

J] J YV oRl — Ritl
R‘“’ J R‘Wf ° (quj) © RquP - qu

We show for arbitrary word w
j j J * o R j+1
we quP U Rqaqj © (R‘U«,qj) © quvp S we Rq,p

If w drives M from state p to state g via states in Qj41,
it either drives M from p to q only via states in Q,
or we have an occurrence of state g; € Qj+1\Q; along the path:

R{LQJ (R{Ijsqj)* Ri’?j,P
In second case, w consists of
prefix that drives M from g to first occurrence of g; via states in Q;,
part that drives M repeatedly from one g; to the next via states in Q;
suffix that drives M from last occurrence of g; to p via states in Q.

Wolfgang Schreiner http://www.risc.jku.at 52/63

I8

Alternative Construction % {

The construction in the previous proof is difficult to perform manually.
Arden’'s Lemma: Let L, U,V be regular languages with € ¢ U. Then

L=UolUV&L=UoV

We can solve regular expression equation /=u-/+vas/=u"-v.

Core of a simpler construction of a regular expression from a NFSM.

Wolfgang Schreiner http://www.risc.jku.at 53/63

For every state g; construct an equation:

X,':(31—|—...—|—an)'Xi+b]_‘X]_+---+bm'Xm

If g is accepting: Xi=(a1+...+ap) - Xi+b1-X1+...4+bm - Xm+e
In resulting equation system, solve equation for some X;:

Xi=(ar+...+an) - (b1-Xi+...4+ bmXm)

If g is accepting: Xi=(a1+...+ap)" - (b1-X1+...4+bm-Xm+€)
Substitute the result, simplify, repeat with another equation.
Each substitution removes one variable from the system.
Solution for Xj is the regular expression for the language of the automaton.
Wolfgang Schreiner http://www.risc.jku.at 54/63

Alternative Construction (Contd) N

Some language-preserving regular expression transformations:

ae=a

€-a=a
a-(b+c)=a-b+a-c
(a+b)-c=a-c+b-c

After every step, simplify the result to get an equation to which Arden’s
lemma can be applied.

Wolfgang Schreiner http://www.risc.jku.at 55/63

Example W {'

Xo=a-Xo+b-X,
Xa=b-Xs+a-Xo+¢

Xo=b"-(a-Xo+e¢)

Xo=a - Xo+b-b"-(a-Xo+¢)
=a-Xo+b-b*-a-Xg+b-b"-¢
=(a+b-b"-a)-Xo+b-b*

Xo=(a+b-b"-a)*-b-b*

Regular expression (a+b-b*-a)*-b- b*.

Wolfgang Schreiner http://www.risc.jku.at 56/63

1. Deterministic Automata

2. Nondeterministic Automata

3. Determinization of Automata

4. Minimization of Automata

5. Regular Languages

6. Regular Expressions to Automata
7. Automata to Regular Expressions

8. The Expressiveness of Regular Languages

Wolfgang Schreiner http://www.risc.jku.at 57/63

7Y
Closure Properties of Regular Languages .E {'

Let L,L;,L, be regular. Then also the following languages are also regular:
the complement L ={x € ¥* | x & L};
Proof: construction of complement automaton.
the union LijUL, ={xeX* | xeli1VxEeE L},
Proof: construction of regular expression r; + r>.
the intersection LiNLy ={x € X* | x€ Ly Ax € Ly};
Proof: LiNLy = EUTQ
the concatenation L0 Ly;
Proof: construction of regular expression ry - rp.

the finite closure L*.
Proof: construction of regular expression r*.

Regular languages can be composed in quite a flexible way.

Wolfgang Schreiner http://www.risc.jku.at 58/63

The Pumping Lemma \

Let L be a regular language.
Pumping Lemma: there exists a natural number n
the pumping length of L
such that every word w € L with |w| > n can be decomposed into
three substrings x,y,z, i.e.

W = xyz

with |y| > 1 and |xy| < n,
such that also the word with an arbitrarily number of repetitions of
the middle part is in the language:

kaz el

(for every k > 0).
Every sufficiently long word of a regular language can be “pumped” to an

arbitrarily long word of the language.
Wolfgang Schreiner http://www.risc.jku.at 59/63

_ N\,
Proof of the Pumping Lemma & {

Regular language L, DFSM M with L= L(M), number n of states of M.
Let w=aj1a>...am € L with m> n.
Let po,p1,...,Pm be the states that M passes when accepting w.
Since m > n, p; = pj for some i # j:

= aj+1-
O ~¥ G
X = al zZ= aj+1
We can define
X dal aj

such that w = xyz and, for every k, also xy*z € L.

Wolfgang Schreiner http://www.risc.jku.at 60/63

o7\
Example '& {'

The Pumping Lemma can be used to show that a language is not regular.
Assume L= {071 | i € N} = {¢£,01,0011,000111,...} is regular.
Let n be the pumping length of L.
Take word w :=0"1" € L with |w| > n. Then w = xyz with

xyz=0"1",|y| > 1,|xy| <n
We thus know x =0™, y =072, z=0™1™ such that
ni+np+n3=ng,np>1
By the Pumping Lemma, we know xy?z € L, which implies
ni+2np4n3=ng
But this contradicts
m+2m+n3=(n+nm+n)t+m=n+n>n+1>nm

Thus L is not regular.

Wolfgang Schreiner http://www.risc.jku.at 61/63

N\,
Example % {

The Pumping Lemma can be used to show that a language is not regular.

Assume L = {0” | i € N} = {&,0,0000,000000000, ...} is regular.
Let n be the pumping length of L.

Take word w := 0" € L with |w| > n. Then w = xyz with
xyz=0"|y| > 1,|xy| <n

By the Pumping Lemma, we know xy°z € L.
Ixy?z| = |xyz| +|y| = n® +|y| is a square number.
But we know

P <n?4+1<n’+|y|<n’+n<n®4+2n+1=(n+1)>

But this contradicts n? + |y| is a square number.

Thus L is not regular.

Wolfgang Schreiner http://www.risc.jku.at 62/63

Example N\ {'

Regular languages are too weak to capture general arithmetic.
But some languages defined by arithmetic are regular.
L:={0" | iis even} = {£,00,0000,000000,...}
L= L((00)*)
Finite languages are always regular.
L= {O"2 | ie NAi <3} ={e 0,0000,000000000}
L = L(e+ 040000+ 000000000)
More powerful models are needed to capture general computations.

Wolfgang Schreiner http://www.risc.jku.at 63/63

	Deterministic Automata
	Nondeterministic Automata
	Determinization of Automata
	Minimization of Automata
	Regular Languages
	Regular Expressions to Automata
	Automata to Regular Expressions
	The Expressiveness of Regular Languages

