
Modular Structural Operational Semantics

with Maude MSOS

Eszter Tasi

ISI-student, Hagenberg

Content

� Formal semantics of programming languages

� Structured Operational Semantics

� Modular Structured Operational Semantics

� Defining a programming language with the Maude MSOS
Tool

Formal Semantics

The “classical way” to define a programming language:
writing a compiler which translates a high-level
programming language to a lower level one.

The formal semantics is concerned with the rigorous
mathematical study of the meaning of programming
languages.

� Denotational Semantics

� Operational Semantics

Motivation

Why to use operational semantics for defining
programming languages?

� If we want a non-imperative language, writing a compiler
is difficult.

� We can specify our concepts, behaviors, systems in an
abstract manner, without concerning about how it is
internally realized.

� programming languages,

� verifications,

� specification of concurrent systems.

Denotational vs. Operational Semantics

Denotational semantics Operational Semantics

� each phrase in the language
is translated into a
denotation;

� compilation

� target language is a
mathematical formalism

� Ex.: functional languages →
domain theory

� the execution of the
language is described directly;

� interpretation;

� target language is a
mathematical formalism;

� defines an abstract machine:
gives meaning to phrases by
describing the transitions
they induce on states of the
machine

Operational Semantics

� Describes how a valid program is interpreted as
sequences of computational steps.

� The sequences are the meaning of the programs.

� The result of the last step is the value of the program.

� The concept was used for the first time in defining the
semantics of Algol 68.

� The use of the term with present meaning was
introduced by Dana Scott.

Different Approaches for

Operational Semantics

� Structured Operational Semantics (SOS):

The behavior of a program is defined in terms of the behavior
of its parts, in a syntax oriented way.

Introduced by Gordon D. Plotkin, 1981

� Modular Structured Operational Semantics (MSOS):

The transition rules for each construct are completely
independent of the presence or absence of other constructs in
the described language.

Introduced by Peter D. Mosses,

SOS - Abstract Syntax

Symbols for syntactic sets must be defined:

� Numbers N

� Truth values: T = {true, false}

� Identifiers Id

� Arithmetic expressions Aexp

� Commands Com

� Declarations Dec

Metavariables are ranging over the given sets.

Constructor functions must be defined:

101010 ||||:: aaaaaaXna ×−+=

cbccbccaXc do while| else then if|;|:|skip:: 1010==

10;|:var|const :: ddaXaXd ===

SOS – Computed Values

The SOS of most constructs of programming languages
involves computations which, on termination, result in a
value of some kind.

� Expression values: N»T

� Command values: {nil}

� Declaration values

SOS – Auxiliary Entities

� Locations – independent memory cells

� Storable values – N»T

� Denotable values – N»T»Loc

� Stores – Location Ø Storable value

� Environments (Env) – Id Ø Denotable value

Declaration values: Env

SOS – Configurations

� Configurations: states of transition systems
� Computation of a part of a program: sequence of transitions

between configurations, starting from an initial configuration
and terminating in a final configuration

� Initial configuration : syntax + auxiliary components
� Final configuration : same structure but with computed value

instead of the original syntax
� Value-added syntax: the sets of configurations are generalized

by adding computed values to the syntactic sets:

Γ = (Aexp»Com»Dec) x Env x Store

T = (N»T»{nil} »Env) x Env x Store

Envd ∈= ρρ ,::

Labelled Terminal Transition Systems

(LTTS)

Definition: ‚Γ, A, ö, TÚ

� Γ set of configurations g

� A set of labels a

� ö Œ Γ x A x Γ ternary relation (notation)

� T Œ Γ set of terminal configurations, such that
implies g–T

A computation is a finite or infinite sequence of successive
transitions, such that for the last configuration at the end
of the sequence we have .

γγ α ′→

γγ α ′→

T
n

∈γ

SOS - Rules

SOS rules define the transitions in the LTTS.

Structure: , conditions/conclusion

Example: evaluation of sums

� identifiers are directly bound to constant values, hence stores
omitted;

� when the environment is the same the notation r ¢ is used;

c

cc ...10

SOS – Styles

� Big step rules (usually used for expressions)

� Small step rules (usually used for commands):

Problem

� Extendibility: if we want to introduce stores the store
must be included in configurations and the rules must be
reformulated.

� Reusability: we need to make changes, the existing code
is not reused.

Solution: MSOS

MSOS - Configurations

� Γ: restricted to value-added syntax, no auxiliary
components

Γ = Aexp»Com»Dec

� T: restricted to computed values

T = N»T»{nil} »Env

Generalized Transition Systems (GTS)

Definition: ‚Γ, �, ö, TÚ

� is a category with morphisms A such that ‚Γ, A, ö, TÚ is an
LTTS.

Category: an abstract way to describe mathematical entities and
their relationships.

It consists of:

� a set of objects O,

� a set of morphisms (arrows) A, whose source and target are objects,

� a partial function for composing morphisms (A x A Ø A),

� a function giving an identity morphism for each object (O Ø A).

A computation in the GTS is a computation in the underlying
LTTS, such that the consecutive transition labels must be
composable in �.

MSOS – Configurations and Labels

Configuration

� the part of the program which remains to be executed.

Labels on transitions

� The state of processed information at the beginning (first part)
and at the end of transition (second part).

� Stores the information contained by auxiliary components.

MSOS – Types of Labels

Read-only
� Holds an information , which does not change in a transition.

� Ex.: environments

Read-write
� The information can be inspected and changed.

� Declared as pairs: information before and after the transition.

� Ex.: stores

Write-only
� Can be updated in the transition but cannot be inspected by

subsequent transitions.

� Refer to information after the transition.

� Ex.: output signals

Example of Label
The category which models Env:

� object set = Env

� morphisms = Env

� A single identity morphism for each object.

� Composable if they are equal.

The category which models Store:
� object set = Store

� morphisms = Store x Store

� Identity morphism’s form: ‚s, sÚ
� Composable if the target of the first morphism equals with the source of the

second one.

The labels of a GTS can be composed from different types of labels.

Example:
� object set Œ Env x Store

� morphism set Œ Env x Store x Store

MSOS - Rules

corresponds to

More examples and notations later.

The Maude Framework

� Developed by Stanford Research Institute (SRI)
International.

� Highly extensible.

� Based on rewriting logic.

� Supports the work with formalisms.

� Used to create executable environments for different
logics, theorem provers, languages and models of
computation.

The MSOS Maude Tool

� Execution environment for MSOS specifications.

� Developed by Fabricio Chalub and Christiano Braga.

� Specification of programming language semantics and
concurrent systems.

� Is an implementation based on mapping from MSOS to
rewriting logic.

� The Modular SOS Definition Formalism (MSDF)
specification language is supported:

� extended-BNF notation for the definition of abstract grammar,

� a textual representation for MSOS transitions

Example – Defining MINI-LANGUAGE

Everything is encapsulated in separate modules:

� EXPRESSIONS:
� Defines the evaluation of arithmetical expressions.
� No auxiliary entities needed.

� IDENTIFIERS:
� Introduces the “let-in-end“ expression.
� The use of environments is needed.

� COMMANDS:
� Introduces commands.

� ASSIGNMENTS:
� Variable declarations and assignments.
� Stores are needed.

� MINI-LANGUAGE:
� Uses the defined modules to define a small programming language.

EXPRESSIONS

(msos EXPRESSIONS is

Exp .

Op .

Op ::= sum

| sub .

Exp ::= Exp Op Exp

| Int .

--- transition rules ---

sosm)

EXPRESSIONS – Rules
Exp1 -{...}-> Exp'1

-- --

(Exp1 Op Exp2) : Exp -{...}-> Exp'1 Op Exp2 .

Exp2 -{...}-> Exp'2

-- --

(Int Op Exp2) : Exp -{...}-> Int Op Exp'2 .

Op := sum, Int3 := Int1 + Int2

-- --------------------------------------

(Int1 Op Int2) : Exp --> Int3 .

Op := sub, Int3 := Int1 - Int2

-- --------------------------------------

(Int1 Op Int2) : Exp --> Int3 .

IDENTIFIERS
(msos IDENTIFIERS is

Id .

Env = (Id, Int) Map .

Exp ::= let Id = Int in Exp end

| Id .

Label = { env : Env, ... } .

Env' := (Id |-> Int) / Env,

Exp -{env = Env', ...}-> Exp'

-- --

(let Id = Int in Exp end) : Exp -{env = Env, ...}->

(let Id = Int in Exp' end) .

(let Id = Int in Int' end) : Exp --> Int' .

Int := lookup (Id, Env)

-- -----------------------------

Id : Exp -{env = Env, -}-> Int .

sosm)

MINI-LANGUAGE, ver.1
(msos MINI-LANGUAGE is

see EXPRESSIONS, IDENTIFIERS .

sosm)

The Test module:

(mod TEST is

including MINI-LANGUAGE .

ops x y z : -> Id .

endm)

Execution of a simple program:

(rew < (let x = 5 in

let y = 6 in

let z = 8 in

x sub (y sum z)

end

end

end) ::: 'Exp, { env = void } > .)

IDENTIFIERS - modified
(msos IDENTIFIERS is

Id .

Denotable .

Env = (Id, Denotable) Map .

Denotable ::= Int .

Exp ::= let Id = Int in Exp end

| Id .

Label = { env : Env, ... } .

Denotable := Int, Env' := (Id |-> Denotable) / Env,

Exp -{env = Env', ...}-> Exp'

-- --

(let Id = Int in Exp end) : Exp -{env = Env, ...}->

(let Id = Int in Exp' end) .

(let Id = Int in Int' end) : Exp --> Int' .

Denotable := Int, Denotable := lookup (Id, Env)

-- ---

Id : Exp -{env = Env}-> Int .

sosm)

COMMANDS
(msos COMMANDS is
Cmd .
Cmd ::= skip

| Cmd ; Cmd .

Cmd1 -{...}-> Cmd'1
-- ---
(Cmd1 ; Cmd2) : Cmd -{...}-> Cmd'1 ; Cmd2 .

Cmd0 -{...}-> skip
-- ----------------------------------
(Cmd0 ; Cmd1) : Cmd -{...}-> Cmd1 .

sosm)

ASSIGNMENTS

(msos ASSIGNMENTS is

Loc .

Store = (Loc, Int) Map .

Denotable ::= Loc .

Cmd ::= Id = Exp

| var Loc Id = Exp .

Label = { st : Store, st' : Store, ... } .

--- transition rules for simple assignments

--- transition rules for declaration and assignment

sosm)

ASSIGNMENTS –

Rules for declarations and assignments

Exp0 -{...}-> Exp'0

-- ---

(var Loc Id = Exp0) : Cmd -{...}->

var Loc Id = Exp'0 .

Env' := (Id |-> Loc) / Env,

Store' := (Loc |-> Int) / Store

-- ---

(var Loc Id = Int) : Cmd -{env = Env',

st = Store, st' = Store', -}-> skip .

ASSIGNMENTS -

Rules for simple assignment

Exp0 -{...}-> Exp'0

-- --

(Id = Exp0) : Cmd -{...}-> Id = Exp'0 .

Loc := lookup (Id, Env),

Store' := (Loc |-> Int) / Store

-- ---

(Id = Int) : Cmd -{env = Env,

st = Store, st' = Store', -}-> skip .

ASSIGNMENTS

Loc := lookup (Id, Env),

Int := lookup (Loc, Store)

-- ---

Id : Exp -{env = Env,

st = Store, st' = Store, -}-> Int .

MINI-LANGUAGE – ver.2
(msos MINI-LANGUAGE is

see EXPRESSIONS, IDENTIFIERS .

see COMMANDS, ASSIGNMENTS .

sosm)

The Test module:

(mod TEST is

including MINI-LANGUAGE .

ops a1 a2 a3 : -> Loc .

ops s q r x y z : -> Id .

endm)

Execution of a simple program:

(rew < (var a1 s = 7 sum 8;

var a2 q =

let x = 5 in

let y = 6 in

x sub (y sum s)

end

end;

s = s sub q

) ::: ‘Cmd, { env = void, st = void, st’ = void } > .)

Maude MSOS Tool Case Studies

� Specification of a subset of ML and a subset of Java
language using Constructive MSOS (every construct of a
language must be in a separate module).

� Specification of a pure functional programming language
called Mini-Freja.

� Specification and verification of distributed algorithms.

Conclusions

MSOS is a powerful framework for formal definition of
programming languages.

Maude MSOS is an implementation of MSOS => tool for
teaching operational semantics.

Advanced users can make real use of the power of Maude
MSOS:

� easily define domain specific languages by reusing existing modules;

� specifying concurrent systems.

BUT:

Not enough examples and the existing ones are not clearly
explained => difficulties for beginners.

Resources

� http://en.wikipedia.org

� http://maude.cs.uiuc.edu/

� http://maude-msos-tool.sourceforge.net/

� Glynn Winskel

The Formal Semantics of Programming Languages,

MIT Press, 1993

� Peter D. Mosses

Modular Structural Operational Semantics,

BRICS Report Series, 2005
http://www.brics.dk/RS/05/7/index.html

� Fabricio Chalub, Christiano Braga

Maude MSOS Tool, 2005

http://maude-msos-tool.sourceforge.net/mmt-manual.pdf

Questions?

Thank You!

