odular Structural Operational Semantics
with Maude MSOS

A\~ & d \J4

Eszter Tasi
[SI-student, Hagenberg



Content

» Formal semantics of programming languages
» Structured Operational Semantics
» Modular Structured Operational Semantics

» Defining a programming language with the Maude MSOS
Tool



Formal Semantics

The “classical way” to define a programming language:
writing a compiler which translates a high-level
programming language to a lower level one.

The formal semantics is concerned with the rigorous
mathematical study of the meaning of programming
languages.

Denotational Semantics

Operational Semantics



Motivation

Why to use operational semantics for defining
programming languages!?

» If we want a non-imperative language, writing a compiler
is difficult.

» We can specify our concepts, behaviors, systems in an
abstract manner, without concerning about how it is
internally realized.

programming languages,
verifications,

specification of concurrent systems.



Denotational vs. Operational Semantics

each phrase in the language
is translated into a
denotation;

compilation

target language is a
mathematical formalism

Ex.: functional languages —
domain theory

the execution of the
language is described directly;

interpretation;

target language is a
mathematical formalism;

defines an abstract machine:
gives meaning to phrases by
describing the transitions
they induce on states of the
machine



Operational Semantics

» Describes how a valid program is interpreted as
sequences of computational steps.

» The sequences are the meaning of the programs.
» The result of the last step is the value of the program.

» The concept was used for the first time in defining the
semantics of Algol 68.

» The use of the term with present meaning was
introduced by Dana Scott.



Different Approaches for
Operational Semantics

» Structured Operational Semantics (SOS):

The behavior of a program is defined in terms of the behavior
of its parts, in a syntax oriented way.

Introduced by Gordon D. Plotkin, 1981

» Modular Structured Operational Semantics (MSOS):

The transition rules for each construct are completely
independent of the presence or absence of other constructs in
the described language.

Introduced by Peter D. Mosses,



SOS - Abstract Syntax

Symbols for syntactic sets must be defined:
Numbers N

Truth values: T = {true, false}
|dentifiers Id

Arithmetic expressions Aexp
Commands Com

Declarations Dec

vV Vv VvV VvV VvV Vv

Metavariables are ranging over the given sets.

Constructor functions must be defined:
a:=nlXla,+a,la,—a,la,Xa,

d:=const X =alvarX :=ald,;d,

c:=skipl X :=alc,;c 11f bthenc, elsec, | whilebdoc



SOS — Computed Values

The SOS of most constructs of programming languages
involves computations which, on termination, result in a
value of some kind.

» Expression values: NUT
» Command values: {nil}

» Declaration values



SOS — Auxiliary Entities

» Locations — independent memory cells
» Storable values — NUT

» Denotable values - NUTULoc

» Stores — Location — Storable value

» Environments (Env) — Id - Denotable value

Declaration values: Env



SOS — Configurations

» Configurations: states of transition systems

» Computation of a part of a program: sequence of transitions
between configurations, starting from an initial configuration
and terminating in a final configuration

» Initial configuration : syntax + auxiliary components

» Final configuration : same structure but with computed value
instead of the original syntax

» Value-added syntax: the sets of configurations are generalized
by adding computed values to the syntactic sets:

d:=p,pe Env

[ = (AexpUComUDec) x Env x Store
T = (NUTU{nil} UEnv) x Env x Store



Labelled Terminal Transition Systems
(LTTS)

Definition: (I, A, —, T)
[ set of configurations y
A set of labels «
— C I x A xT ternary relation (notation y——7 )

T C T set of terminal configurations, such that 7——7
implies y&T

A computation is a finite or infinite sequence of successive
transitions, such that for the last configuration at the end
of the sequence we have 7,€7 .



SOS - Rules

SOS rules define the transitions in the LTTS.
Structure: % , conditions/conclusion

Example: evaluation of sums

identifiers are directly bound to constant values, hence stores
omitted;

when the environment is the same the notation p I is used;

pre —ng phe —n,

p|_80+81 _)n0+n1

p(x) = con

p Fx — con



SOS — Styles

» Big step rules (usually used for expressions)
» Small step rules (usually used for commands):

!/
P e — e

pl_eo‘l‘el —>80,+81

!/
pre —e

pkFnt+e —n+te

n=nyg+n

prEng+n — n



Problem

» Extendibility: if we want to introduce stores the store
must be included in configurations and the rules must be
reformulated.

» Reusability: we need to make changes, the existing code
is not reused.

Solution: MSOS



MSOS - Configurations

» I': restricted to value-added syntax, no auxiliary
components

= AexpUComUDec

» T: restricted to computed values
T = NUTU{nil} UEnv



Generalized Transition Systems (GTS)

Definition: (I', A, —, T)
A is a category with morphisms A such that (I', A, —, T) is an
LTTS.
Category: an abstract way to describe mathematical entities and
their relationships.

It consists of:
a set of objects O,
a set of morphisms (arrows) A, whose source and target are objects,
a partial function for composing morphisms (A x A - A),
a function giving an identity morphism for each object (O — A).
A computation in the GTS is a computation in the underlying

LTTS, such that the consecutive transition labels must be
composable in A.



MSOS - Configurations and Labels

Configuration

the part of the program which remains to be executed.

Labels on transitions

The state of processed information at the beginning (first part)
and at the end of transition (second part).

Stores the information contained by auxiliary components.



MSOS - Types of Labels
Read-only

Holds an information , which does not change in a transition.
Ex.: environments

Read-write
The information can be inspected and changed.
Declared as pairs: information before and dfter the transition.
Ex.: stores

Write-only

Can be updated in the transition but cannot be inspected by
subsequent transitions.

Refer to information after the transition.
Ex.: output signals



Example of Label

The category which models Env:
object set = Env
morphisms = Env
A single identity morphism for each object.
Composable if they are equal.
The category which models Store:
object set = Store
morphisms = Store x Store
|ldentity morphism’s form: (o, o)

Composable if the target of the first morphism equals with the source of the
second one.

The labels of a GTS can be composed from different types of labels.

Example:
object set C Env x Store
morphism set C Env x Store x Store



MSOS - Rules

(p,o,0",t)

yl

14

corresponds to

r
p =y, o)y—=<(y', o)

More examples and notations later.



The Maude Framework

» Developed by Stanford Research Institute (SRI)
International.

Highly extensible.
Based on rewriting logic.

Supports the work with formalisms.

v vV VvV v

Used to create executable environments for different
logics, theorem provers, languages and models of
computation.



The MSOS Maude Tool

» Execution environment for MSOS specifications.
» Developed by Fabricio Chalub and Christiano Braga.

» Specification of programming language semantics and
concurrent systems.

» Is an implementation based on mapping from MSOS to
rewriting logic.

» The Modular SOS Definition Formalism (MSDF)
specification language is supported:

extended-BNF notation for the definition of abstract grammar,

a textual representation for MSOS transitions



()

Example — Defining MINI-LANGUAG!

Everything is encapsulated in separate modules:
» EXPRESSIONS:

Defines the evaluation of arithmetical expressions.
No auxiliary entities needed.

» IDENTIFIERS:

Introduces the “let-in-end” expression.
The use of environments is needed.

» COMMANDS:
Introduces commands.

» ASSIGNMENTS:
Variable declarations and assignments.
Stores are needed.

» MINI-LANGUAGE:

Uses the defined modules to define a small programming language.



EXPRESSIONS
(msos EXPRESSIONS is

ExXp .
Op .
Op ::= sum
| sub .
Exp ::= Exp Op EXxp
| Int .

--- transition rules ---
sosm)



EXPRESSIONS — Rules

Intl + Int2

(Intl Op Int2) : Exp --> Int3 .

Op := sum, Int3 :

Op := sub, Int3 := Intl - Int2

(Intl Op Int2) : Exp --> Int3 .



IDENTIFI]

LRSS

(msos IDENTIFIERS is

Id .

Env = (Id, Int) Map .

Exp ::
Id .

Label

Env' := (Id |->

let Id = Int in Exp end

{ env : Env, ... } .

Int) / Env,

Exp -{env = Env', ...}-> Exp

(let Id = Int in Exp end) : Exp -{env = Env,

(let Id = Int in

(let Id

Exp' end) .

Int in Int' end) : Exp --> Int'



MINI-LANGUAGE, ver.1

(msos MINI-LANGUAGE is
see EXPRESSIONS, IDENTIFIERS .
sosm)

The Test module:
(mod TEST is
including MINI-LANGUAGE .

ops Xy z : -> Id .
endm)

Execution of a simple program:
(rew < (let x = 5 in

let y = 6 in
let z = 8 in
X sub (y sum z)
end
end

end ) ::: "Exp, { env = void } > .)



IDENTIFIERS - modified

(msos IDENTIFIERS is

Id .
Denotable .
Env = (Id, Denotable) Map .
Denotable ::= Int .
Exp ::= let Id = Int in Exp end
| Id .
Label = { env : Env, ... } .
Denotable := Int, Env' := (Id |-> Denotable) / Env,

Exp -{env = Env', ...}-> Exp'

(let Id = Int in Exp end) : Exp -{env = Env, ...}->
(let Id = Int in Exp' end) .

(let Id = Int in Int' end) : Exp --> Int'

Denotable := Int, Denotable := lookup (Id, Env)



COMMANDS

(msos COMMANDS is
Cmd .
Cmd ::= skip

| Cmd ; Cmd .

(Cmdl ; Cmd2) : Cmd -{...}-> Cmd'1l ; Cmd2 .

(Cmdo ; Cmdl) : Cmd -{...}-> Cmdl .

sosm)



ASSIGNMENTS

(msos ASSIGNMENTS is
Loc .
Store = (Loc, Int) Map .
Denotable ::= Loc
Cmd ::= Id = Exp
| var Loc Id = Exp .

Label = { st : Store, st' : Store, ... }

--- transition rules for simple assignments
--- transition rules for declaration and assignment

sosm)



ASSIGNMENTS —
Rules for declarations and assignments

Exp® -{...}-> Exp'®

(var Loc Id = Exp@) : Cmd -{...}->
var Loc Id = Exp'@ .

Env' := (Id |-> Loc) / Env,
Store' := (Loc |-> Int) / Store

(var Loc Id = Int) : Cmd -{env = Env',
st = Store, st' = Store', -}-> skip .



ASSIGNMENTS -
Rules for simple assignment

Exp® -{...}-> Exp'®

Loc := lookup (Id, Env),
Store' := (Loc |-> Int) / Store

(Id = Int) : Cmd -{env = Env,
st = Store, st' = Store', -}-> skip .



ASSIGNMENTS

Loc := lookup (Id, Env),
Int := lookup (Loc, Store)

Id : Exp -{env = Env,

st = Store, st' = Store, -}-> Int .



MINI-LANGUAG]

(msos MINI-LANGUAGE is

see EXPRESSIONS, IDENTIFIERS
see COMMANDS, ASSIGNMENTS .
sosm)

The Test module:

(mod TEST is
including MINI-LANGUAGE
ops al a2 a3 : -> Loc .
ops sqr xyz: ->1d
endm)

Execution of a simple program:
(rew < ( var al s = 7 sum 8;
var a2 q =

let x = 5 in

let y = 6 in
X sub (y sum s)

end
end;

= s sub q

s
) ::: ‘Cmd, { env = void, st = void, st’ =

+, — ver.2

void } >

-)



Maude MSOS Tool Case Studies

» Specification of a subset of ML and a subset of Java
language using Constructive MSOS (every construct of a
language must be in a separate module).

» Specification of a pure functional programming language
called Mini-Freja.

» Specification and verification of distributed algorithms.



Conclusions

MSOS is a powerful framework for formal definition of
programming languages.

Maude MSQOS is an implementation of MSOS => tool for
teaching operational semantics.

Advanced users can make real use of the power of Maude
MSOS:

easily define domain specific languages by reusing existing modules;

specifying concurrent systemes.
BUT:

Not enough examples and the existing ones are not clearly
explained => difficulties for beginners.



Resources

>
>
>
>
>

>

Glynn Winskel
The Formal Semantics of Programming Languages,
MIT Press, 1993

Peter D. Mosses

Modular Structural Operational Semantics,
BRICS Report Series, 2005

Fabricio Chalub, Christiano Braga
Maude MSOS Tool, 2005



Questions!



Thank You!



