
Spec #: An Overview

Mohamed Aly, BSc(Eng)

Outline

� Motivation

� Overview

� Usage

� Language

� Examples

� References

Outline

�Motivation
� Overview

� Usage

� Language

� Examples

� References

Motivation - History

� Software development is costly and error prone.

� Software engineering aims for the development of
correct and maintainable software.

� Various attempts (1960s – 70s).

� Correctness of programs are to be ensured via
specification and verification.

Motivation - Problem

� Specifications are usually informal in the form of natural
language documentation / standardized library interface
descriptions.

� Programmers assumptions are left unspecified which
complicates program maintenance.

� No guarantee for making sure that the program works
under the assumptions the programmer has in mind or
that the programmer might have overlooked some
assumptions

Motivation – Why Spec#

� A programming language is being adopted widely due to
its support, infrastructure, easiness, editing capabilities
etc.

� Spec# is an superset of the existing programming
language C#

� Based on the Microsoft .NET Framework.

Motivation – Current Applications

� The Microsoft Singularity project.

� Windows Server 2003 helped in discovering 10 - 13% of
bugs in the source code and saved a million of dollars.

� Microsoft is still hiding it !

Outline

� Introduction

� Motivation

�Overview
� Usage and Architecture

� Language

� Examples

� References

Overview: .NET Programs

� Source files (.ssc)

� Several source files collected into projects (.sscproject)

� Projects are collected into solutions (.sln)

� Compiler compiles projects (.exe .dll)

� Each project can use its own language and compiler.

Overview: .NET Framework

VB.NET C# Spec# C++ …

VB.NET
Compiler

C#
Compiler

Spec#
Compiler

C++
Compiler

…

Microsoft Intermediate Language
(MIL)

Common Language Runtime
(CLR) Class Library (API)

Operating System

Overview: What is Spec# ?

� Programming Language: extension of C# with non-null
types, checked exceptions and throws clauses, method
contracts and object invariants.

� Compiler: statically enforces non-null types, emits run-
time checks for method contracts and invariants, and
records the contracts as metadata for consumption by
downstream tools.

� Static Program Verifier: generates logical verification
conditions from a Spec# program. Internally, it uses an
automatic theorem prover that analyzes the verification
conditions to prove the correctness of the program or
find errors in it. (Boogie)

Overview: Verifier

s
ta

ti
c
 v

e
ri
fi
e
r

(B
o
o
g
ie

 t
o
o
l)

MIL (“bytecode”)

SMT solver (Z3)

V.C. generator

Inference engine

Translator

verification condition

Spec# compiler

Spec#

Boogie

language

“correct” or list of errors

Overview: Main Contributions of Spec#

� Extension of a popular language.

� Specification and reasoning about object invariants even
in call backs.

� Dynamic checking and automatic verification.

� Smooth adoption paths to aid programmers profit from
the benefits of specification.

Outline

� Introduction

� Motivation

� Overview

�Usage
� Language

� Examples

� References

Usage: Acquiring Spec#

� Spec# project is hosted at
http://research.microsoft.com/en-us/projects/specsharp

� Lack of documentation

� Channel 9 of the MSDN has a wiki with some samples
(badly maintained as well)

� Latest versions: v1.0.21125 for Visual Studio 2008
(release notes – deadlink)

Usage: Main guidelines

� Write each class with methods and specification in the
same Spec# source file.

� Invariants may also be included.

� Compile

� Run the verifier

Outline

� Introduction

� Motivation

� Overview

� Usage

�Language
� Examples

� References

Language: Non-null

� Many errors occur are in the form of null-dereference.

� Spec# attempts to avoid all such errors.

� A type X is possibly null.

� A type X! cannot be null.

Language: Contracts

� What do we expect? (preconditions)

� What do we guarantee? (postconditions)

� What do we maintain? (invariants)

Language: Contracts, Preconditions

� Precondition is considered to be part of the signature of
a method.

� To use the precondition, we use the requires

keyword.

� A custom exception can be thrown on the failure of the

precondition by using the keyword otherwise.

Language: Contracts, Postconditions

� Postcondition is considered to be part of the signature of
a method.

� To use a postcondition, we use the ensures

keyword.

� The result keyword may be used when referring to

the result of the operation. The old keyword can be

used when referring the value of the parameter at the
beginning of the method.

Language: Contracts, Invariants

� Spec# adds a boolean field called inv to classes which

tells the runtime whether the invariant currently holds.

� If it does hold, then the object is said to be in a
consistent state.

� While the inv field is true, the fields within the object

cannot be modified due to the possibility of breaking any
of the invariants.

Language: Contracts, Invariants

� To declare an invariant we use the invariant

keyword.

� If you need to update any of the invariant fields, Spec#
makes you expose the object inside of an expose

block.

Language: Contracts, Loop Invariants

� This invariant specifies conditions that must hold during
the execution of a loop.

� Checked before the loop conditions are checked.

� The loop condition itself cannot be an invariant due to
the last iteration of the loop must return false and that
would break an invariant.

Language: Aggregates and Quantifiers

� sum

� count

� product

� min

� max

� forall

� exists

� exists unique

Language: Intervals

� in (0 : n) half-open interval 0 <= i < n

� in (0 .. n) closed interval 0<= i <= n

Language: Assumptions

� Assertions are checked at the runtime.

� Assumptions are meant for the Boogie verifier.

� Must be careful when using it. Incorrect assumption may
prevent the static verifier from doing its job correctly.

� We use the keyword assume to declare an

assumption.

Language: Frame Conditions

� Restrict which pieces of the state that a particular
method is allowed to modify.

� To declare frame conditions we use the keyword

modifies.

Outline

� Motivation

� Overview

� Usage

� Language

�Examples
� References

Outline

� Motivation

� Overview

� Usage

� Language

� Examples

�References

References
� The Spec# programming system: An overview, Mike Barnett, K. Rustan M.
Leino, and Wolfram Schulte. In CASSIS 2004, LNCS vol. 3362, Springer,
2004.

� Program Verification Using the Spec# Programming System. (Tutorial
presented at ETAPS 208 by Rustan Leino and Rosemary Monahan.)

� .NET 3.5, Design by contract and Spec#, Matthew
Podwysocki,http://geekswithblogs.net/Podwysocki/archive/2007/12/10/1175
42.aspx , retrieved on 1/1/2009.

� Expert to Expert: Contract Oriented Programming and Spec#, Interview
of some Spec# development team leaders, Channel 9 MSDN, Video,
http://beta.channel9.msdn.com/shows/Going+Deep/Expert-to-Expert-
Contract-Oriented-Programming-and-Spec/?Page=4 , retrieved on
1/1/2009 .

Questions ?

Thank You !

☺☺☺☺

