
Introduction to
Parallel and Distributed Computing

Exercise 4 (June 29)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface as a .zip or
.tgz file which contains

• a single PDF (.pdf) file with
– a cover page with the title of the course, your name, Matrikelnummer, and email-
address,

– a section with the source code of the program benchmarked, the output of the
parallelizing compiler, and an explanation of the output,

– a section with the raw data of the benchmarks,
– a section with a summary table and graphical diagrams of the benchmarks.

• the source (.c) file(s) of the programs.

1



Exercise 4: Message Passing Programming in MPI

The goal of this exercise is to develop a MPI-based parallel solution to the “all pairs shortest
paths” problem described in Exercise 1.

MPI Program Initially process 0 broadcasts D := W to every process (MPI_Bcast). The
program then runs in multiple rounds where in each round D := D × D is computed as follows:

• every process computes some rows of D × D (row-wise parallelization),

• every process gathers the results of all other processes (MPI_Allgather) such that every
process holds again the complete D := D × D.

The dimension n of the matrix is not necessarily a multiple of the number n of processes. To
simplify the gathering, one may thus extend the matrix to a dimension n′ = p · dn/pe and let n′/p
rows be gathered from every process.

Scalability Analysis Furthermore, perform a scalability analysis of the program, i.e.:

• determine the basic execution time Tn;

• determine the parallelization overhead Pp,n;

• determine the solution np of the constraint Tnp = KE · Pp,np ;

• determine the isoefficiency function IEp = KE · Pp,np .

For determining Pp,n, you just need to consider the communication overhead. Here it suffices
to use a simple communication model where sending a message of size m takes time Θ(m).
Furthermore assume that broadcasting a message to p processors is implemented by sending p
individual messages to each processor, i.e., takes time Θ(p ·m); likewise, scattering a message of
size m among p processors takes the same time as p times broadcasting a message of size m/p,
i.e., it takes time Θ(p · p · m/p) = Θ(p · m).

Benchmarking Finally, benchmark the program as follows:

• Take the sequential solution and benchmark it with two appropriate values N1, N2 for the
matrix dimension (at least one should run for at least one minute).

• Benchmark the MPI version of the program for N1 and N2 and P = 1,4,8,16,32,64 pro-
cesses. Do not forget to set the environment variable MPI_DSM_CPULIST to pin processes
to separate physical processor cores.

• Apply the result of the scalability analysis to scale the larger of N1 or N2 for P =
1,4,8,16,32,64 processors; benchmark for these values both the sequential and the parallel
program. Do the benchmark results confirm the results of the scalability analysis (i.e., is
the efficiency preserved at a high level)?

Perform your benchmarks and present the results in the same way as in Exercise 1.

2


