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The exercise is to be submitted by the denoted deadline via the submission interface of the
Moodle course as a single file in zip (.zip) or tarred gzip (.tgz) format which contains the
following files:

• A PDF file ExerciseNumber-MatNr.pdf (where Number is the number of the exercise
and MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise, and the
author of the solution (identified by name, Matrikelnummer and email address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that indenta-
tions are appropriately preserved) and an appropriate font size such that source code
lines do not break.

3. A description of all tests performed (copies of program inputs and program outputs)
explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your solution
has unwanted problems or bugs, please document these explicitly (you will get more
credit for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.



Exercise 2: Polynomials in Distributive Representation

Write a program that implements arithmetic on multivariate polynomials in distributive repre-
sentation: here a polynomial p ∈ K[x1, . . . , xn] symbolically written as

k∑
i=1

cix
e1,i
1 · · · xen ,in

is represented by a sequence [m1, . . . ,mk] of k monomials where each mi is a pair

〈ci, [e1,i, . . . , en,i]〉

of a non-zero coefficient ci ∈ K and a sequence [e1,i, . . . , en,i] of n exponents (natural numbers)
representing the power product of the monomial.

In our program, we take K := Z, i.e., we implement polynomials over the ring of integers; fur-
thermore, we sort the monomials m1, . . . ,mk in reverse lexicographic order where monomial ma

occurs before monomial mb, if for some variable index j we have ea, j > eb, j and for every index
k < j we have ea,k = eb,k . For instance, the polynomial 3xy2 + 5x2y + 7x + 11y + 13 in Z[x, y]
is represented by the sequence

[〈5, [2,1]〉, 〈3, [1,2]〉, 〈7, [1,0]〉, 〈11, [0,1]〉, 〈13, [0,0]〉]

Every polynomial has thus a unique representation; please note that the zero polynomial is
represented by the empty sequence.

In more detail, write a class DistPoly for which it shall be possible to execute the following
commands:

// some exponent vectors ("power products")
int e1[2] = {1,2}; int e2[2] = {2,1}; int e3[2] = {1,0};
int e4[2] = {0,1}; int e5[2] = {0,0}; int e6[2] = {2,2};

// construct zero polynomial in two variables, then add monomials
string vars[2] = {"x","y"};
DistPoly p(2, vars);
p.add(3,e1).add(5,e2).add(7,e3).add(11,e4).add(13,e5);

// construct zero polynomial in two variables, then add monomials
DistPoly q(2);
q.add(11,e4).add(-3,e2).add(2,e6).add(-2,e2);

// print p and q
p.println();
q.println();
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// set p to p+2*q and print it
DistPoly r = p;
r.add(q).add(q);
p = r;
p.println();

This requires (among others) the definition of the following methods in the class:

// zero-polynomial in n variables with given names
DistPoly(int n, string* vars);

// copy constructor and copy assignment operator
DistPoly(DistPoly &p);
DistPoly& operator=(DistPoly &p);

// add new term with given coefficient and exponents to this polynomial
// and return this polynomial
DistPoly& add(int coeff, int* exps);

// add polynomial p to this polynomial and return this polynomial
DistPoly& add(DistPoly &p);

// print polynomial on stdout
void println();

A DistPoly object shall be represented by

1. the number and names of the variables,

2. a pointer to a heap-allocated array of monomials in these variables,

3. the length of this array,

4. the number of monomials in this array.

At any time, the array shall hold as many monomials as are indicated by the number value which
is less than or equal the length value; these monomials hold coefficients different from 0, are
unique with respect to their exponents and are sorted in reverse lexicographic order. It might be
a good idea to introduce a class Mono such that the monomial array in DistPoly holds elements
of this type (respectively pointers to such elements, depending on your design choice).

When a new polynomial is created, we allocate an empty array of some default size. When a
new monomial is added, we first check its coefficient; if it is zero, the monomial is ignored.
Otherwise, we search in the array for the position where

1. either a monomial with the given exponent sequence already occurs; in this case, the given
coefficient is added; if the resulting coefficient is zero, the monomial is discarded from the
array and all subsequent monomials are shifted to fill the gap;
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2. or, if there is no such exponent sequence, a new monomial is to be inserted; the subsequent
monomials have to be shifted to make room for the new monomial.

Please note the following:

• No part of the internal representation of a DistPoly object shall be shared with any
other object; in particular, the exponent array passed to add must be duplicated in the
representation. Furthermore, if a DistPoly is copied, a new monomial array (and new
exponent arrays) must be created for the new object.

• No memory leaks shall arise from the implementation. As a consequence,

– the class needs a destructor that frees the memory allocated for the number when the
object is destroyed, and

– the memory allocated for a polynomial must be freed before the polynomial gets
assigned a new value.

• Check in the addition of polynomials whether the number and names of variables in both
polynomials match; if not abort the program with an error message.

• For printing a polynomial, remember that the interpretation of a polynomial with an empty
monomial sequence is 0.

Avoid any code duplication but make extensive use of auxiliary functions (that shall become as
far as possible private member functions of DistPoly).

Write the declaration of DistPoly into a file DistPoly.h and the implementation of all non-
trivial member functions of DistPoly and of into a file DistPoly.cpp.

Write a file DistPolyMain.cpp that uses DistPoly and tests its operations (with uni-, bi-, and
three-variate polynomials). Test each operation with at least three test cases that also include
special cases (such as adding to a polynomial a zero monomial or a zero polynomial).
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