
Formal Specification of Abstract Datatypes
Exercise 5 (June 29)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

The result is to be submitted by the deadline stated above via the Moodle interface as a .zip or
.tgz file which contains

• a PDF file with

– a cover page with the title of the course, your name, Matrikelnummer, and email-
address,

– the formal specifications in the style of “Thinking Programs”,

– the CafeOBJ specifications,

– comprehensive tests of the CafeOBJ specifications (sample reductions),

– optionally any explanations or comments you would like to make;

• the CafeOBJ (.mod) file(s) of the specifications.

1



Exercise: Directed Graphs

In set theory, a directed graph is a pair G = (N, E) where N is a set of elements called nodes
and E is a set of pairs of nodes called edges.

The goal of this exercise is to specify an abstract datatype of directed graphs with associated
operations where N = Nn = {0, ..., n − 1} for some n ∈ N.

Specification First develop a formal specification of the following shape:
spec GRAPH import NAT :=
... {
type Graph = g(Nat,Edges)
type Edges = ...
...

}
then ... {
empty: Nat → Graph
link: Graph × Node × Node → Graph

nodes: Graph → Nat
edges: Graph → Nat

adjacent ⊆ Graph × Node × Node
connected ⊆ Graph × Node × Node
distance: Graph × Node × Node → Nat

complete ⊆ Graph
connected ⊆ Graph
cyclic ⊆ Graph

...
}

Make sure that two graphs are equal if they have the same nodes and the same edges.

Here graph(n) denotes the graph with n nodes and no edges while link(g, n1, n2) denotes the
graph that adds to graph g an edge from n1 to n2 (if n1 or n2 is not a node of g or g already
contains that edge, the graph remains unchanged). Furthermore, nodes(g) denotes the number
of nodes in g while edges(g) denotes the number of its edges.

The predicate adjacent(g, n1, n2) holds if g has an edge from n1 to n2 (thus it does trivially not
hold, if n1 or n2 is not a node of g). The predicate connected(g, n1, n2) holds if there exists for
some k ≥ 1 a path of nodes n1 = m1,m2, . . . ,mk = n2 where every pair mi and mi+1 with i < k
is adjacent (thus every node n is trivially connected to itself by the path n = m1 = n). For two
connected nodes n1 and n2 in g, distance(g, n1, n2) denotes the number of edges in the shortest
path from n1 to n2 (thus every node has distance 0 to itself).

2



The predicate complete(g) holds if every pair of nodes in g is adjacent. The predicate connected(g)
holds if every pair of nodes in g is connected. The predicate cyclic(g) holds, if there is some
node in g that is connected to itself by a path with at least one edge.

Does your specification give rise to a monomorphic datatype (justify your answer)?

CafeOBJ Implement your specification by a tight CafeOBJ module
module! GRAPH
{
protecting (NAT)
...

}

Test the CafeOBJ module with several reductions. Give the input and output of each test and
your interpretation of the results (do they indicate errors in your specification or not?). If your
specification contains errors, use the trace facilities of CafeOBJ for debugging.

Does your CafeOBJ module denote the same datatype as the one of the previous specification?
Justify your answer.

3


