Formal Specification of Abstract Datatypes
Exercise 2 (May 18)

Wolfgang Schreiner
Wolfgang.Schreiner @risc.uni-linz.ac.at

The result is to be submitted by the deadline stated above via the Moodle interface as a .zip or
.tgz file which contains

¢ a PDF file with

a cover page with the title of the course, your name, Matrikelnummer, and email-
address,

the formal specifications in the style of “Thinking Programs”,

the CafeOBJ specifications,

comprehensive tests of the CafeOBJ specifications (sample reductions),

optionally any explanations or comments you would like to make;

* the CafeOBJ (.mod) file(s) of the specifications.

Exercise: File Systems

A file system is hierarchical collection of files and in directories which both are denoted by
structured names called paths.

Formal Specification First, develop a formal specification of the concepts in the style presented
in the course:

spec FILESYSTEM import STRING :=
free type Path = root | path(Path, String)
then free

{
type FileSystem = empty | mkdir(FileSystem, Path)
| write(FileSystem, Path, String)

}
then ...

{
3

with the following operations

fun parent: Path — Path
fun base: Path — String

exists FileSystem X Path

isdir FileSystem X Path

read: FileSystem x Path — String
remove: FileSystem X Path — FileSystem

c
c

The specified entities shall have the following intended interpretations:

* A (file/directory) path is a structured name that is either empty (denoting the root) or
a composition of another path (its parent) with a base name (a string identifying the
file/directory relative to the parent).

Among other operations, it is possible to extract the parent and the base name of a path.
* A file system is either empty or the result of
— creating by an operation mkdir a directory at a denoted path,
— creating/updating by an operation write a file at a certain path with a certain content.

In both cases, the parent of the path (of the directory/file) must already exist. In a parent
directory, there cannot exist two entities (directories and/or files) with the same base name.

Among other operations, exists determines whether the file system has an entity with a
given path, isdir determines whether this entity is a directory (otherwise it is a file), read
determines the content of a file and remove removes an entity (directory/file) from the file
system (if an entity with that path does not exist, the file system remains unchanged).

You may assume that STRING provides an (otherwise unspecified) type String for base names
and file contents.

Please consider carefully in which part of the specification you declare operations and where you
add axioms. Axioms in the free part of the specification must be formulated in the language
of conditional equational logic to ensure the existence of a free (initial) interpretation. However,
do not try to further constrain the entities specified in the free part in subsequent parts of the
specification by additional axioms; this will make the specification inconsistent.

Are according to your specification two file systems identical, if they provide the same directories
and files and file contents? Justify your answer.

CafeOBJ Second, implement the specification in CafeOBJ by a tight module:

module! FILESYSTEM

{
protecting (STRING)
signature

{
[Path FileSystem]

}

axioms

{

}
}

Test the CafeOBJ module with several reductions. Give the input and output of each test and
your interpretation of the results (doe they indicate errors in your specification or not?). If your
specification contains errors, use the trace facilities of CafeOBJ for debugging.

Are in the CafeOBJ specification two file systems identical, if they provide the same directories
and files and file contents? Justify your answer.

