Specifying in the Large

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

N\

e

Wolfgang Schreiner http://www.risc.jku.at 1/39
S
A Specification Language ¢ ¢
N

A language for building “large” specifications from “small” ones.

Abstract Syntax: set SL of specifications sp with signatures S(sp).

Atomic: If sp is “atomic” (a specification as previously defined), then
sp € SL

with S(sp) as previously defined.

Union: If sp; € SL and sp, € SL, then
(spy +spy) € SL

with S(sp; + spy) = S(sp1) U S(sp,).

Renaming: If sp € SL and p : S(sp) — ¥’ is a renaming, then
(rename sp by u) € SL

with S(rename sp by 1) = p(S(sp)).

Forgetting: If sp € SL, S is a set of sorts and Q2 is a set of operations

such that (S,Q) C S(sp) and S(sp)\(S, Q) is a signature, then
(sp forget (S,Q)) € SL

with S(sp forget (S,Q)) = S(sp)\(S, Q).

Wolfgang Schreiner http://www.risc.jku.at 3/39

AN

W
[]
. A Specification Language
. Modularization
. Parameterization
. Further Topics
Wolfgang Schreiner http://www.risc.jku.at 2/39

I

A Specification Language (Contd) W

Abstract Syntax: set SL of specifications sp with signatures S(sp).

Extension:If sp € SL, S is a set of sorts and is a set of operations
such that S(sp) U (S5,€Q) is a signature, then
(sp extend (S,9Q)) € SL
with S(sp extend (5,Q)) = S(sp) U (S, 9Q).
Modelling: if sp € SL and ® C L(S(sp)) for some logic L, then
(sp model ¢) € SL
with S(sp model) = S(sp).
Restricting: if sp € SL with S(sp) = (S5,Q), if Sc C S is a set of sorts
and if Q. C Q is a set of operations with target sorts in S, then
(sp generated in S; by Q.) € SL and
(sp freely generated in S. by Q.) € SL
with S(sp generated in S. by Q.) = S(sp)
and S(sp freely generated in S; by Q.) = S(sp).

S(sp) is a signature for any specification sp € SL.

Wolfgang Schreiner http://www.risc.jku.at 4/39

Concrete Syntax

(5,9):
sorts sorts
opns operations
o — 3
sorts sp,...,Sc OpNS wy,...,w, as
sorts s;,...,Ss, OpNs Wi, ...,w;
Example: S(sp) = ({s,t},{m:sxt—>s,n:txs—t,n:—s}).
(rename sp

by sorts sopns n:t xs—t
as sorts uopns g : t X u—t)
means (rename sp by p) with p: ¥ — Y/ defined as
X =38(sp), X" = pu(X)

n:txs—t)=(g:txu—t)

(
(m:sxt—s)=(m:uxt—u)
(
(n:—=s)=(n:—u)

http://www.risc.jku.at 5/39

N,
W

Wolfgang Schreiner

Pragmatics

Operator + builds the “union” of two specifications sp; and sp;.
If sp; and sp, have common sorts/operations, only those algebras of
M(sp;) and M(sp,) contribute to this union that have the same
interpretation of the common parts.

rename may be used to avoid “name clashes”.

If two specifications have the same sort/operator with different
meaning, rename this entity in one of them before constructing the
union of both specifications.

forget hides sorts and operations.

For auxiliary entities that are not part of the “public” specification
interface.

extend introduces new sorts and operations.
Loose semantics of new entities.

model and (freely) generated by filter out unintended algebras.

Wolfgang Schreiner http://www.risc.jku.at 7/39

. N,
Semantics &.{

Semantics: M(sp) is inductively defined:
M(sp) of an atomic specification sp is as previously defined;
M(spy + sp,) = {A € Alg(S(spy + sp,)) |
(AlS(sp1)) € M(sp1), (AlS(spy)) € M(sp,)};
A|X ... X-reduct of A
Hide sorts and operations that do not occur in signature ¥.
M(rename sp by ;1) = {A € Alg(u(S(sp))) | (Alp) € M(sp)};
Alp ... p-reduct of A
Rename sorts and operations as indicated by renaming .
M(sp forget (5,Q)) = M(sp) | (S(sp)\(5,));
M(extend sp by (5,Q)) =
[A € Alg(S(sp) U (S,9)) | (AIS(sp)) € M(sp)};
M(sp model ®) = M(sp) N Mod 555 (®);
M(sp generated in S. by Q) =
{A € M(sp) | Ais generated in S¢c by Q.};
M(sp freely generated in S. by Q) =
{A € M(sp) | Ais freely generated in S, by Q.}.

Wolfgang Schreiner http://www.risc.jku.at 6/39
()
N 78
roperties
o

Take specification sp € SL.

Every algebra in M(sp) has signature S(sp).
M(sp) is an abstract datatype.

The semantics of the specification language is “as expected”.

Wolfgang Schreiner http://www.risc.jku.at 8/39

A o7\

. . - - - - - . .
Example N A Specification Language with Environments 2
[[
(extend (Introduce an environment e that maps names to specifications.
(loose spec
sorts freely generated bool Abstract syntax: set SL(e) of specs sp with signatures S(e, sp).
opns constr True :— bool, False :— bool . . .
endspec + If nis a name such that e(n) is defined, then
loose spec ne SL(e)
sorts nat .
opns 0 :— nat, Succ : nat — nat with S(ea n) = ’S(ea e("))-
endspec) ... (as before)
freely generated Using SL(e) and S(e, sp) rather than SL and S(sp).
in sorts nat
by opns 0 :— nat, Succ : nat — nat) Semantics: M(e, sp) is inductively defined:
by opns - < _ : nat X nat — bool) M(e, n) — M(e7 e(n))
mod(.el vars m, n : nat o (as before)
axioms]
0< n= True Using M(e, sp) and S(e, sp) rather than M(sp) and S(sp).
Succ(m) < 0 = False .
Suce(m) < Suce(n) =m < n Specifications can be named.
A (still rather clumsy) specification of the “classical”
Wolfgang Schreiner http://www.risc.jku.at 9/39 Wolfgang Schreiner http://www.risc.jku.at 10/39
0 0
C S .M Eo E I .M E.
oncrete Syntax xample
W, A
BOOL is
Environment: defined by a declaration (sequence). loose spec
. sorts freely generated bool
€: the empty declaration sequence. opns constr True :— bool, False :— bool
Denoting the environment that does not contain any mapping. endspec;
nis sp: a sequence with a single declaration. NAT is
loose spec
Denoting the environment that only maps n to sp. sorts nat
d; nis sp: declaration sequence d followed by a declaration. EP"S 0 :— nat, Succ : nat — nat
Denoting the gr?virc?nment that maps n to sp and every other name to ngfﬁ;‘;'- is BOOL + NAT
the same specification as the environment denoted by d does. freely generated
Specification: d; sp in sorts nat
. . . by opns 0 :— nat, Succ : nat — nat;
Declaration (sequence) d denoting an environment e. extend BOOLNAT by opns . < _ : nat X nat — bool
sp € SL(e). model vars m, n : nat
Special case: ¢; sp is simply written as sp. axioms
0 < n= True
Specifications are defined in the context of declarations. Succ(m) < 0 = False
Succ(m) < Suce(n) =m < n
A structured specification of the “classical” algebra.
Wolfgang Schreiner http://www.risc.jku.at 11/39 Wolfgang Schreiner http://www.risc.jku.at 12/39

1. A Specification Language

2. Modularization

3. Parameterization

4. Further Topics

Wolfgang Schreiner http://www.risc.jku.at 13/39
@S
Modularized Abstract Datatypes .E {'
[

Take module signature (X;, X¢).

A (X, X¢)-module (also called a “modularized abstract datatype”)
M : Alg(%;) — P(Alg(Xe))
is a mapping from X ;-algebras to classes of ¥ .-algebras such that
for every A € Alg(X;), M(A) C Alg(X.) is an abstract datatype.

A (X;,X¢)-module M is persistent for an algebra A € Alg(%;), if
VB € M(A) : (AIZ; N Xe) ~ (B|T; N Xe).
Inherited sorts/operations have the same meaning in A and in M(A).

A (¥j,X.)-module M is consistent for an algebra A € Alg(%;), if
M(A) # 0.
The mapping M is “effective”.

A (X, X¢)-module M is monomorphic for an algebra A € Alg(%;), if
M(A) is monomorphic.

M is persistent/consistent/monomorphic, if
it is consistent/persistent/monomorphic for every A € Alg(%;).

Wolfgang Schreiner http://www.risc.jku.at 15/39

: ZaN
Module Signatures -& {-

A module is an entity with a well-defined interface to its environment.
Module signature: pair (¥;, Xe).
Import signature ¥ ;.
A sort/operation from X; is called imported.
Export signature X..
A sort/operation from X. is called exported.
A sort/operation from X; N ¥, is called inherited.

Example: L; = ({r,s},{w1,w2}), e = ({5}, {w1,w3}).

S w1 w3
T T T exported
I |
|
: s : w1 inherited
I |
. |
I I I T imported
s r w1 w2
Wolfgang Schreiner http://www.risc.jku.at 14/39
Z\
Loose Module Specifications '& {'
[]

Take logic L.

Abstract syntax: a loose module specification is a pair
sp = ((X, Xe),) consisting of

a module signature (X;,X.) with X; C X, and

a set of formulas ® C L(X,).

Entities of X; are specified “elsewhere”.

Semantics: the meaning of a loose module specification

sp = ((Xi, Xe), ®) is the (X, Xe)-module defined as
M(sp)(A) = {B € Alg(X.) | BE ® ABJX; ~ A}

for every A € Alg(%;).

A loose module specification defines a persistent (but not necessarily
consistent) module.

Wolfgang Schreiner http://www.risc.jku.at 16/39

Concrete Syntax

Y = ({bool,el},{True, False}), . = X; U ({list},{[|, Add, .}).

loose mspec
sorts import bool,import e/, list
opns
import True :— bool
import False :— bool
[]:— list
Add : el x list — list
_: list x list — list
vars [, m: list,e : el
axioms
[].1=1
Add(e,l).m = Add(e, |.m)
endspec

Elements of the import signature are prefixed by the keyword import.

Wolfgang Schreiner http://www.risc.jku.at 17/39

I 4\
A Module Specification Language (Contd) %\, *

Abstract syntax: set MSL of specs sp with signatures S(sp):

If sp1,Spy € MSL with S(sp;) = (X;,X) and S(sp,) = (X, Xe), then
(spy 0 sp;) € MSL b

with S(sp, o sp;) = (X, Ze).

If sp € MSL with S(sp) = (%, X.) and

W Xe — X' is a renaming with u(a) € ¥;

for each sort/operation a with p(a) # a, then
(rename sp by 1) € MSL

with S(rename sp by 1) = (X, u(Xe)):
(no clash between imported sorts/operations
and “new"” exported sorts/operations)

M

The constructs forget, extend, model, and Lo _|___
(freely) generated are defined similarly as before. 5.
The language SL can be considered as a sublanguage of MSL where all

winod Scl}gelﬂ)eaﬁcatlons have emetx/ vPnsclrjtkusalgnatures 19/

7Y
N2

A Module Specification Language

Abstract syntax: set MSL of specs sp with signatures S(sp):
If sp is a loose module specification, then
sp € MSL
with S(sp) as previously defined;
If spy,spy € MSL with S(sp;) = (X17, X1e) and S(sp,) = (X2, L2e)
and each sort and operation of X1 N Xy is inherited in S(sp;),
and each sort and operation of X3 N Xy is inherited in S(sp,),

(no sort/operation introduced by
one specification is imported
by the other one)

then
(spy + sp,) € MSL
with S(sp; + sp,) =
(X1 UXoi, X1e UXoe);

3
=
0
RS
N

Wolfgang Schreiner http://www.risc.jku.at 18/39
7\
Semantics) *
o

Semantics: M(sp) is inductively defined:
M(sp) of a loose module specification sp is as previously defined;
If S(sp;) = (X17, £1e) and S(spy) = (X2, X2e), then
M(sp; + spy)(A) = {B € Alg(X10 U X2e) |
(BlZ1e) € M(sp1)(AlZ1i) A (B[X2e) € M(spy)(AlX2i)}:
If S(spy) = (X, X) and S(sp,) = (X, Xe), then
M(spy 0 sp1)(A) = UBeM(spl)(A) M(sp,)(B);
ItS(sp) = (Xi, Xe), then
M(rename sp by p)(A) =
{B € Alg(i(xe)) | (Blp) € M(sp)(A)};
The semantics of the constructs forget, extend, model, and (freely)
generated is defined similarly as before.

Generalization of the semantics of a specification from an ADT to a
function that takes an algebra and returns an ADT.

Wolfgang Schreiner http://www.risc.jku.at 20/39

N\

N4

Example

As shown in previous section, also module specifications may be named.

BOOL is
loose mspec
sorts freely generated bool
opns constr True :— bool, False :— bool
endmspec;
EL is loose mspec sorts e/ endmspec;
LIST is ...; (see last example)
LIST o (BOOL + EL)

Since the import signature of this specification is empty, it may be
considered as a specification with signature
({bool, el, list}, { True, False, [|, Add}).

Wolfgang Schreiner http://www.risc.jku.at 21/39
S
Import Signatures Revisited .ﬁ {'
[J

What is actually the purpose of a specification’s import signature?

Consider LIST o (BOOL + .. .)

LIST uses an imported sort bool.

BOOL provides a specification of this sort.

Purpose: we want to reuse bool in different contexts.
Only a single specification BOOL suffices; its can then be used by
import in multiple other specifications.

Consider LIST o(...+ EL)

LIST uses an imported sort el.

But we actually do not expect a specification for e/ !

Rather el saves as a “placeholder” for some other sort.

Purpose: we want to instantiate e/ by different sorts.
Only a single specification LIST suffices; its sort el can then be
instantiated by multiple concrete sorts.

Two additional mechanisms are needed:
A mapping of the specified sorts to the actual sorts.
A mean to express semantic constraints on the imported sorts.

Wolfgang Schreiner http://www.risc.jku.at 23/39

AN
N

Properties

Take specification sp € MSP with S(sp) = (X, Xe).
M(sp) maps X;-algebras to classes of ¥ .-algebras.

M(sp)(A) is an abstract datatype, for each X ;-algebra A.
Each construct of the module specification language preserves
persistency.

Thus any module specification is persistent, provided that the atomic
specifications in it are.

Each construct of the module specification language except model,
generated, and freely generated preserves consistency.

Thus any module specification that does not use these constructs is
consistent, provided that the atomic specifications in it are.

The semantics of the module specification language is “as expected”.

Wolfgang Schreiner http://www.risc.jku.at 22/39

1. A Specification Language

2. Modularization

3. Parameterization

4. Further Topics

Wolfgang Schreiner http://www.risc.jku.at 24/39

Parameterized Specifications

We extend module specifications to parameterized specifications.

Abstract Syntax: set PSL of specifications sp with signatures S(sp).
If sp € PSL with S(sp) = (X, %) and if p: XL, UX, — Y is a
signature morphism that “renames the import signature”, i.e.

wu(s) = s for each sort s € X.\X;,
p(w) and w have the same operation name for each op. w € X.\X;,
and that avoids “name clashes” with introduced sorts, i.e.
wu(a) = u(b) implies a and b are inherited, for all a,b € X.,a # b,
w(a) = pu(b) implies b is inherited for each a from X; and b from X,
then
(import rename sp by 1) € PSP
with S(import rename sp by 1) = (u(%;), p(Xe));
If sp € PSP with S(sp) = (X, %e) and ® C L(X;) for logic L, then
(sp import model ®) € PSP
with S(sp import model ¢) = S(sp);
... (as before using PSL rather than MSL).

Wolfgang Schreiner http://www.risc.jku.at 25/39

. o,
Semantics v

Semantics: M(sp) is inductively defined:
If S(sp) = (X, Xe), then for each A € Alg(u(%)))
M(import rename sp by 1)(A) =
{B € Alg(u(Xe)) | (Bl(r5.)) € M(sp)(Al(k5,))}:
Let f : A— B and C C A. The restriction f|¢ is the function
fc:C—B
fic(c) = f(c)
If S(sp) = (X, Xe), then for each A € Alg(u(%)))
M(sp import model ®)(A) = { 6\/1(5[))(/4) ftl?esvi(:e

... (as with module specifications).

Wolfgang Schreiner http://www.risc.jku.at 27/39

72"

N

Example

Take X; = ({a, b},0), Xc({a, c},0).
A signature morphism g suitable for import rename must not allow

pu(c) =d,
First condition is violated.
1 renames an entity introduced by the specification.

(a) = p(c),
Third condition is violated.
1 maps exported sort a to the same name as the introduced sort c.

1(b) = p(c).
Fourth condition is violated.
1 maps imported sort b to the same name as the introduced sort c.
The signature morphism is intended to map actual “argument” sorts to
formal “parameter” sorts.

Wolfgang Schreiner http://www.risc.jku.at 26/39
()
N 78
roperties
o

Take specification sp € PSL with S(sp) = (X, Xe).
M(sp) maps X;-algebras to classes of ¥.-algebras.
M(sp)(A) is an abstract datatype, for each X ;-algebra A.
import rename and import model preserve persistency.
Only import rename preserves consistency.

The semantics of the parameterized specification language is “as
expected” .

Wolfgang Schreiner http://www.risc.jku.at 28/39

Example

Parameterized specification

loose pspec
sorts import e/, import el,, freely generated pair
opns
constr [, | : ely X el, — pair
First : pair — ely
Second : pair — el,
vars e : el1, e : el
axioms
First([e1, &]) = e
Second([e1, e2]) = e
endpspec

defines a (¥, Xo)-module with
Y = ({el, el2},0),

Y. = ({eh, el2, pair},
{[-, -] : el1 x el — pair, First : pair — el1, Second : pair — el>}).

Specification of (elq, ely)-pairs.

Wolfgang Schreiner http://www.risc.jku.at 29/39

Example (Contd’2) M

.
Parameterized specification
PAIR is loose pspec ...endpspec;
NAT is loose pspec
sorts freely generated nat
opns
constr 0 :— nat
constr Succ : nat — nat
endspec;
(import rename PAIR by sorts el1, el» as sorts nat, nat) o NAT
defines a module with empty import signature and export signature
¥ = {nat, pair},
{[-,] : nat x nat — pair, First : pair — nat, Second : pair — nat}).
Specification of pairs of natural numbers.
Wolfgang Schreiner http://www.risc.jku.at 31/39

07\
Example (Contd) A%

Parameterized specification

PAIR is loose pspec ... endpspec;
import rename PAIR by sorts el1, el> as sorts nat, nat

defines a (¥;, Xo)-module with

X = ({nat},0),
Y. = ({nat, pair},
{[-,] : nat x nat — pair, First : pair — nat, Second : pair — nat}).

Specification of nat-pairs.

Wolfgang Schreiner http://www.risc.jku.at 30/39

Example (Contd’3) A%

Better notation for parameterized specifications:

PAIR(sorts el1, el») is loose pspec ... endpspec;
NAT is loose pspec ...endpspec;
PAIR(sorts nat, nat) o NAT

Similar to definition and application of parameterized procedures.

Wolfgang Schreiner http://www.risc.jku.at 32/39

. o
Example
N
OLISTS(sorts el, opns _C _: el x el — bool) is
(loose pspec
sorts import bool, import el, freely generated /ist
opns
import True :— bool
import False :— bool
import _C _: el X el — bool
constr [] :— list
constr Add : el x list — list
Ordered : list — bool
vars e, e1, e :el, | : list
axioms
Ordered([]) = True; Ordered(Add(e,[])) = True
(e1 C &) = True = Ordered(Add(e1, Add(e2,1))) = Ordered(Add(ey, 1))
(e1 C &) = False = Ordered(Add(e1, Add(e2,1))) = False
enspec)
import model
vars e, e1, e, €3 : el
axioms
(e C e) = True
(e1 C &) = True A (e2 C e3) = True = (e1 C e3) = True
(e1Ce)=TueN(2Ce)=>e =&
Wolfgang Schreiner http://www.risc.jku.at 33/39
/™ \y
N
.
1. A Specification Language
2. Modularization
3. Parameterization
4. Further Topics
Wolfgang Schreiner http://www.risc.jku.at 35/39

Wolfgang Schreiner

7\
Example (Contd) 2

OLISTS(sorts el, opns _C _: el x el — bool) is

NATBOOL is
loose pspec
sorts freely generated bool, freely generated nat
opns
constr True :— bool
constr False :— bool
constr 0 :— nat
constr Succ : nat — nat
_ < _: nat X nat — bool
vars m, n : nat
axioms
(0 < n) = True
(Succ(m) < 0) = False
(Succ(m) < Succ(n)) = (m < n)
endpspec;
OLISTS(sorts nat, opns <: nat X nat — bool) o NATBOOL

Specification of ordered list of natural numbers; specification is adequate,
because < satisfies the axioms imposed on T

Wolfgang Schreiner http://www.risc.jku.at 34/39
()
Oven | 7\,
en issues
P W

Constructs extend and model have loose semantics.
Initial semantics counterparts require the notion of “free extensions”.
Generalization of the notion of “initial algebra”.
Algebras in free extension have common “stem” which does not “take
part” in initiality.
Initial counterpart of extend is (freely extend sp by (S,Q)).
Constructs only free extensions (rather than all extensions.
Initial counterpart of model is (sp quotient ®).
Builds quotient algebras (rather than removing algebras).
Specifications can be flattened.
Compound specifications can be translated to equivalent atomic ones.
There exist alternative parameterization mechanisms.
We have used the renaming approach with a syntactic flavor.
There exists approaches with a semantic flavor.
Based on A-calculus or on category theory.
However, all approaches are ultimately equivalent in expressive power.

http://www.risc.jku.at 36/39

CafeOBlJ '& <

CafeOBJ supports some of the described constructions.

Named modules:
n is loose (initial) spec ...endspec
module* (module!) n { ... }
nis ... (arbitrary module expression)
make n (...)
References to named modules: n
n
Union: sp; + sp,
SP1 + SP2
Renaming: rename sp by ...
SP x { sort s1 -> s1’> op wi1 -> wl’> ... }
Extension and Modelling: sp extend ... model ...
protecting (SP) signature { ... } axioms { ... }

Wolfgang Schreiner http://www.risc.jku.at 37/39

7\

Parameterized Modules in Programming .E {'

Parameterized modules are now part of various programming languages.
ML functors

signature ELEM = sig ... end;
functor STACK(structure EL: ELEM) = struct ... end;

C++ templates (type checking only after instantiation)
template <class EL> class Stack { ... }
Java generic types

interface ELEM { ... }
class Stack<EL implements ELEM> { ... }

C# generic types

interface ELEM { ... }
class Stack<EL> where EL:ELEM { ... }

Wolfgang Schreiner http://www.risc.jku.at 39/39

CafeOBJ (Contd)

Parameterized Modules
Parameters are whole modules (rather than sorts or operations).

modulex SP1 { [s1 ...] op ol: ... }

module* (module!) SP (P1::8SP1, ...) { ...

Module Instantiation
“Views" specify bindings of actual arguments to formal parameters.

module! SP2 { [s2 ...] op 02: ... }

view V from SP1 to SP2 { sort si1 -> s2, op ol -> 02,
Instantiation of parameter module by a declared view

SP(P1 <= V1, ...)

}

Instantiation of parameter module by ad-hoc view

SP(P1 <= view to SP2
{ sort s1 -> s2, op ol -> o2.

See the CafeOBJ manual for more details

Wolfgang Schreiner

http://www.risc.jku.at

. }’

-}

38/39

