
Executing Specifications

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner http://www.risc.jku.at 1/30

1. Executing Initial Specifications

2. Constructive Specifications

Wolfgang Schreiner http://www.risc.jku.at 2/30

Term Rewriting

Term rewriting can be used for “executing” initial specifications.

Reduction system (R,→).

Set R, relation → ⊆ R × R.

Reduction sequence r1, r2, . . .
Finite or infinite sequence of elements ri ∈ R with ri → ri+1, for
every i .

Transitive closure: r1 →∗ rk , for every k.

Equivalence sequence r1, r2, . . .
Finite or infinite sequence of elements ri ∈ R with ri → ri+1 or
ri+1 → ri , for every i .

Transitive closure: r1 ' rk , for every k.

We will now investigate various properties of these notions.

Wolfgang Schreiner http://www.risc.jku.at 3/30

Properties of Reduction Systems

Take reduction system (R,→).

(R,→) is Noetherian:
(R,→) does not have any infinite reduction sequence.

(R,→) is locally confluent:
∀r , s, t ∈ R : r → s ∧ r → t ⇒ ∃u ∈ R : s →∗ u ∧ t →∗ u.

u

r

s t

* *

(R,→) is confluent:
∀r , s, t ∈ R : r →∗ s ∧ r →∗ t ⇒ ∃u ∈ R : s →∗ u ∧ t →∗ u.

s ∈ R is a normal form of r ∈ R:
r →∗ s ∧ ¬∃t ∈ R : s → t.

Wolfgang Schreiner http://www.risc.jku.at 4/30

Example

Take reduction system (N3,→):

(m1,m2,m3)→ (n1, n2, n3) :⇔
m3 > 0 ∧ n1 = m1 ∧ n2 = m2 + 1 ∧ n3 = m3 − 1 ∨
m2 > 0 ∧ n3 = m3 ∧ n1 = m1 + 1 ∧ n2 = m2 − 1.

Possible reduction sequences:

(4, 1, 2)→ (5, 0, 2)→ (5, 1, 1)→ (6, 0, 1)→ (6, 1, 0)→ (7, 0, 0)
(4, 1, 2)→ (4, 2, 1)→ (5, 1, 1)→ (5, 2, 0)→ (6, 1, 0)→ (7, 0, 0)

Reduction system is Noetherian, locally confluent, and confluent.

Normal forms are (n, 0, 0) with n ∈ N.

A reduction system may be viewed as a non-deterministic program
(provided that R is decidable and → is computable).

Wolfgang Schreiner http://www.risc.jku.at 5/30

Church-Rosser Property

Lemma: for every confluent reduction system (R,→), we have

∀r , s ∈ R : r ' s ⇔ ∃t ∈ R : r →∗ t ∧ s →∗ t.

Proof of “⇒” (“⇐ is trivial):

Take arbitrary r ' s with equivalence sequence r = r1, r2, . . . , rk = s.
Proof proceeds by induction on k.
k = 1: take t = r .
k > 1: by induction hypothesis, we have u with r →∗ u and
rk−1 →∗ u. Now either rk−1 → s or s → rk−1.

Case rk−1 → s: by confluence, we have v with s →∗ v and u →∗ v ,
hence r →∗ v . Take t = v .
Case s → rk−1: we have s →∗ u. Take t = u.

Graphical representation guides intuition in proof.

Wolfgang Schreiner http://www.risc.jku.at 6/30

Central Theorem

Newman’s Lemma: a Noetherian and locally confluent reduction
system is confluent.

It suffices to check local confluence.

Theorem: take Noetherian and confluent reduction system (R,→).

Each element of R has exactly one normal form.
Let r , s ∈ R. Then r ' s iff r and s have the same normal form.

Central theorem for reduction systems.

Wolfgang Schreiner http://www.risc.jku.at 7/30

Term Rewriting Systems

Take initial specification (Σ,Φ).

The term rewriting system for (Σ,Φ) is the reduction system
(TΣ,→) where → is inductively defined as follows:

vσ → wσ

for each equation ∀X .v = w ∈ Φ and ground substitution
σ : X → TΣ.

If t → u, then s[t/y]→ s[u/y]

for every term s ∈ TΣ({y}) containing at least one occurrence of
variable y .

If t → u, we call “t → u” a rewrite rule.

Initial specifications give rise to reduction systems.

Wolfgang Schreiner http://www.risc.jku.at 8/30

Example

initial spec
sorts nat
opns

0 :→ nat
Succ : nat → nat

+ : nat × nat → nat
vars m, n : nat
eqns

n + 0 = n
n + Succ(m) = Succ(n + m)

endspec

Some rewrite rules:
(0 + Succ(0)) + 0→ 0 + Succ(0)
Succ((0 + Succ(0))+0)+Succ(0)→Succ(0+Succ(0))+Succ(0)

The normal forms are exactly the terms Succn(0), for every n ≥ 0.
If term contains +, a rewrite rule can be applied.

The resulting term rewriting system is Noetherian and confluent.
Wolfgang Schreiner http://www.risc.jku.at 9/30

Properties of Term Rewriting Systems

Take term rewriting system (TΣ,→) for initial specification (Σ,Φ) with
signature Σ = (S ,Ω).

∀s ∈ S : ∀t, u ∈ TΣ,s : t →∗ u ⇒ Φ |= t = u.

If there is a reduction sequence from t to u, then t equals u.

∀s ∈ S : ∀t, u ∈ TΣ,s : t ' u ⇒ Φ |= t = u.

If there is an equivalence sequence between t and u, then t equals u.

∀s ∈ S : ∀t, u ∈ TΣ,s : Φ |= t = u ⇒ t ' u.

If t equals u, then there is an equivalence sequence between t and u.

The notion of equality in a specification coincides with the existence of
an equivalence sequence in the specification’s term rewriting system.

Wolfgang Schreiner http://www.risc.jku.at 10/30

Proofs by Term Rewriting

Simple proof method for equality proofs:

To prove Φ |= t = u, it suffices to prove t ' u.
To prove Φ |= ∀X .v = w , it suffices to prove vσ ' wσ for all ground
substitutions σ.

Example: prove for initial specification (Σ,Φ) of the natural numbers

Φ |= n + Succ(Succ(0)) = Succ(Succ(n) + 0)

Take arbitrary ground term t ∈ TΣ and prove

t + Succ(Succ(0)) ' Succ(Succ(t) + 0)

t + Succ(Succ(0))
→ Succ(t + Succ(0))
→ Succ(Succ(t + 0))
→ Succ(Succ(t))
← Succ(Succ(t) + 0)

Difficult to find equivalence sequence between terms.
Wolfgang Schreiner http://www.risc.jku.at 11/30

Proofs by Term Rewriting (Contd)

Assume that term rewriting system is Noetherian and confluent.
Assume that normal forms are terms Succn(0), n ≥ 0.

Both needs proof.

Take arbitrary ground term t ∈ TΣ and prove
t + Succ(Succ(0)) ' Succ(Succ(t) + 0)

Take k ≥ 0 such that t ' Succk(0).
t + Succ(Succ(0))
→ Succ(t + Succ(0))
→ Succ(Succ(t + 0))
→ Succ(Succ(t))
→∗ Succk+2(0).
Succ(Succ(t) + 0)
→ Succ(Succ(t))
→∗ Succk+2(0).

The existence of unique normal forms simplifies rewriting proofs.
Wolfgang Schreiner http://www.risc.jku.at 12/30

Execution by Term Rewriting

Take initial specification (Σ,Φ) with a Noetherian and confluent term
rewriting system.

Theorem: let C be the Σ-algebra defined as:
C (s) = {t ∈ TΣ,s | t is a normal form}

for each sort s of Σ.

C (ω) = the normal form of term n
for each constant ω = (n :→ s) of Σ.

C (ω)(t1, . . . , tk) = the normal form of term n(t1, . . . , tk)
for each operation ω = n : s1 × . . .× sk → s of Σ.

Then we have:
C (t) is the normal form of t, for each ground term t ∈ TΣ.
C is a characteristic term algebra for (Σ,Φ).
C is thus isomorphic to T (Σ,Φ).

The calculation of the value of a ground term may be performed by
calculating the normal form of the term.

Wolfgang Schreiner http://www.risc.jku.at 13/30

Systems for Executing Specifications

Based on the previous result, systems like CafeOBJ “execute” initial
specifications (i.e. compute the values of ground terms).

Basic strategy: equations are treated as rewrite rules.
Ground terms are rewritten to their normal forms.

But term rewriting systems may not be Noetherian or confluent.
Rewriting may not terminate, normal forms may not be unique.

Why not check for these properties in advance?
We may prove that a certain term rewriting system is Noetherian.

Need to find a Noetherian (well-founded) irreflexive partial order of
terms that is decreased by the application of every rewrite rule.

But also local confluence is undecidable, and so is confluence.
The Knuth-Bendix completion method tries to construct from a given
initial specification sp a specification sp′ with M(sp) =M(sp′) such
that, if the term rewriting system for sp is Noetherian, the term
rewriting system for sp′ is Noetherian and confluent.
Semi-algorithm: termination is not guaranteed.

Are there specifications that are guaranteed to be executable?
Wolfgang Schreiner http://www.risc.jku.at 14/30

1. Executing Initial Specifications

2. Constructive Specifications

Wolfgang Schreiner http://www.risc.jku.at 15/30

Constructive Specifications

Specifications with an “operational” flavor (“abstract programs”).

Constructive specification sp = (Σ,Φ,Ωc)

Signature Σ = (S ,Ω).
Set of equations Φ ⊆ EL(Σ).
Set of constructors Ωc ⊆ Ω.

Three constraints must be satisfied that can be informally stated as:

1. The left-hand side of every equation is a “pattern”, the right-hand
side is the “value” of this pattern.

2. Every ground term whose outermost operation is not a constructor
“matches” exactly one pattern.

3. Treating the equations as rewrite rules from left to right cannot lead
to “infinite recursion” in the evaluation of ground terms.

The conditions ensure that every ground term can be deterministically
evaluated to a constructor term in a finite number of steps.

Wolfgang Schreiner http://www.risc.jku.at 16/30

Constructive Specifications (Contd)

The three constraints are formalized as follows:

1. Each equation of Φ has form n(v1, . . . , vk) = t with

(n : s1 × . . .× sk → s) ∈ Ω\Ωc ,
vi ∈ TΣc (X),si , for all i ,
t ∈ TΣ(X),s ,Var(t) ⊆ Var(n(v1, . . . , vk)),
no variable may occur more than once in n(v1, . . . , vk).

2. For each ground term n(w1, . . . ,wk) of TΣ with

(n : s1 × . . .× sk → s) ∈ Ω\Ωc ,
wi ∈ TΣc ,si , for all i

there exists exactly one equation n(v1, . . . , vk) = t in Φ and exactly
one ground substitution σ : Var(n(v1, . . . , vk))→ TΣc such that

wi = viσ, for all i .

3. There exists a reduction ordering < such that

t < n(v1, . . . , vk), for each equation n(v1, . . . , vk) = t in Φ.

Wolfgang Schreiner http://www.risc.jku.at 17/30

Example

constructive spec
sorts nat
opns

constr 0 :→ nat
constr Succ : nat → nat

+ : nat × nat → nat
vars m, n : nat
eqns

m + 0 = m
m + Succ(n) = Succ(m + n)

endspec

First constraint is clearly satsfied but it is not evident that this is also the
case for the last two constraints.

Wolfgang Schreiner http://www.risc.jku.at 18/30

Semantics of Constructive Specifications

Take constructive specification sp = (Σ,Φ,Ωc) with signature
Σ = (S ,Ω) and define Σc = (S ,Ωc).

Specification semantics M(sp) = {A ∈ Alg(Σ) | A ' C}
where C is the canonical algebra of sp defined as follows:

C (s) = TΣc ,s , for each sort s ∈ S .
C (ω) = n, for each constructor constant ω = (n :→ s) ∈ Ωc .
C (ω)(w1, . . . ,wk) = n(w1, . . . ,wk),

for each constructor ω = (n : s1 × . . .× sk → s) ∈ Ωc , k ≥ 1,
and for each constructor term wi ∈ TΣc ,si , for every i .

C (ω)(w1, . . . ,wk) = C (tσ),
for each non-constructor (constant)
ω = (n : s1 × . . .× sk → s) ∈ Ω\Ωc , k ≥ 0,
and for each constructor term wi ∈ TΣc ,si , for every i

where t ∈ TΣ(X) and σ : Var(n(v1, . . . , vk))→ TΣc are such that
n(v1, . . . , vk) = t is an equation in Φ,
viσ = wi , for every i .

It can be proved that C is consistently and uniquely defined.
Wolfgang Schreiner http://www.risc.jku.at 19/30

Example

Take the previous specification of the natural numbers.

The canonical algebra C of this specification:
C (nat) = {Succ i (0) | i ∈ N},
C (0) = 0,
C (Succ(w)) = Succ(w), for all w ∈ C (nat),
C (+)(w , 0) = C (w), for all w ∈ C (nat),
C (+)(w1,Succ(w2)) = C (Succ(w1 + w2)),

for all w1,w2 ∈ C (nat).

Sample reduction:
C (+)(0,Succ(0))
= C (Succ(0 + 0))
= C (Succ)(C (0 + 0))
= Succ(C (+)(C (0),C (0)))
= Succ(C (+)(0, 0))
= Succ(C (0))
= Succ(0)

Wolfgang Schreiner http://www.risc.jku.at 20/30

Properties of Constructive Specifications

Take constructive specification sp = (Σ,Φ,Ωc) with Σ = (S ,Ω).

The canonical algebra C of sp is a model of Φ.

It makes sense to take C as the meaning of the specification.

The term rewriting system for sp is Noetherian and confluent.

Ground terms can be mechanically reduced to their normal form.

Take initial specification spI = (Σ,Φ). Then M(sp) =M(spI).

A constructive specification can be viewed as an initial specification.

Take loose specification with free constructors spL = (Σ,Φ,S ,Ωc).
Then M(sp) =M(spL).

A constructive specification can be viewed as a loose specification
which is freely generated in all sorts.

Constructive specifications can be “executed”; properties and proof
techniques of initial and loose specifications remain valid.

Wolfgang Schreiner http://www.risc.jku.at 21/30

Example

loose spec
sorts nat
opns

free constr 0 :→ nat
free constr Succ : nat → nat

+ : nat × nat → nat
vars m, n : nat
eqns

m + 0 = m
m + Succ(n) = Succ(m + n)

endspec

This loose specification and the corresponding initial and constructive
specifications define the same monomorphic abstract datatype.

Wolfgang Schreiner http://www.risc.jku.at 22/30

Constructor Patterns

Take signature Σ = (S ,Ω), set of variables X for Σ, set of constructors
Ωc ⊆ Ω, non-constructor ω = (n : s1 × . . .× sk → s) ∈ Ω\Ωc and define
signature Σc = (S ,Ωc).

A term n(v1, . . . , vk) is a constructor pattern for ω if:
vi ∈ TΣc (X),si , for every i , and
no variable in n(v1, . . . , vk) occurs more than once.

A finite set of patterns P for ω is complete if P ∈ P(ω) where P(ω)
is inductively defined as follows:

“Base” rule:
{n(x1, . . . , xk)} ∈ P(ω)

where x1, . . . , xk are pair-wise different variables from X .
“Variable unfolding” rule: If P ∈ P(ω) and p ∈ P, then any

(P\{p} ∪ {p[ni (x1, . . . , xki)/x] | 1 ≤ i ≤ l}) ∈ P(ω)
where x ∈ Var(p), s is the sort of x , l is the number of constructors
in Ωc of form ni : si,1 × . . .× si,ki → s and the variables x1, . . . , xki are
pairwise different variables from X not in Var(p)\{x}.

Wolfgang Schreiner http://www.risc.jku.at 23/30

Example

Take the previously stated specification of natural numbers.

Complete sets of constructor patterns for + : nat × nat → nat
are, for instance:

{n + m},
{n + 0, n + Succ(m)},
{0 + m,Succ(n) + m},
{0 + 0,Succ(n) + 0, 0 + Succ(m),Succ(n) + Succ(m)},
{n + 0, n + Succ(0), n + Succ(Succ(m))}

Every complete set of constructor patterns for an operation “covers all
cases” for the application of the operation.

Wolfgang Schreiner http://www.risc.jku.at 24/30

Properties

Take signature Σ = (S ,Ω) and set of constructors Ωc ⊆ Ω and define
signature Σc = (S ,Ωc).

Lemma: If P is a complete set of constructor patterns for
non-constructor ω = (n : s1 × . . .× sk → s) ∈ Ω\Ωc and
n(w1, . . . ,wk) is a term with constructor terms wi ∈ TΣc ,si , then:

There exists exactly one pattern p ∈ P and one substitution
σ : Var(p)→ TΣc such that wi = viσ, for every i .

Theorem: If Φ ⊆ EL(Σ) is a finite set of equations that satisfies
constraint (1), then the following is equivalent to constraint (2):

The left-hand sides of the equations n(v1, . . . , vk) = t ∈ Φ represent
a complete set of constructor patterns for ω,

for each operation ω = (n : s1 × . . .× sk → s) ∈ Ω\Ωc and
vi ∈ TΣc (X),si , for all i .

A syntactic criterion to check constraint (2).

Wolfgang Schreiner http://www.risc.jku.at 25/30

Example

Extend the specification of natural numbers as follows:

≤ : nat × nat → bool ,
Even : nat → bool .

0 ≤ n = True,
Succ(m) ≤ 0 = False,
Succ(m) ≤ Succ(n) = m ≤ n,

Even(0) = True,
Even(Succ(0)) = False,
Even(Succ(Succ(m))) = Even(m).

Now it is easy to check that the specification satisfies constraint (2).

Wolfgang Schreiner http://www.risc.jku.at 26/30

Properties

Take signature Σ = (S ,Ω) and set of constructors Ωc ⊆ Ω and define
signature Σc = (S ,Ωc).

Theorem: If Φ ⊆ EL(Σ) is a finite set of equations that satisfies
constraints (1) and (2), then the conjunction of the following two
conditions implies constraint (3):

The operations ωj = (nj : s1 × . . .× skj → s) of Ω\Ωc can be ordered
as a sequence ω1, . . . , ωd such that for each equation
(nj(v1, . . . , vkj) = tj) ∈ Φ the following holds:

tj ∈ TΣj (X),s where Σj = (S ,Ωc ∪ {ω1, . . . , ωj}).

No mutual recursion among operation definitions.

For each operation n : (s1 × . . .× sk → s) ∈ Ω\Ωc , each equation
(n(v1, . . . , vk) = t) ∈ Φ, and each subterm n(t1, . . . , tk) of t:

Every ti is a subterm of vi , and
at least one ti is a proper subterm of vi .

In every equation, no argument “grows” and one argument “shrinks”.

Syntactic criterion that is sufficient (not necessary) for constraint (3).
Wolfgang Schreiner http://www.risc.jku.at 27/30

Properties

Take signature Σ = (S ,Ω) and set of constructors Ωc ⊆ Ω and define
signature Σc = (S ,Ωc).

Theorem: If Φ ⊆ EL(Σ) is a finite set of equations that satisfies
constraints (1) and (2), then the conjunction of the following two
conditions implies constraint (3):

. . . (as before)
For each operation n : (s1 × . . .× sk → s) ∈ Ω\Ωc , there exists an
argument position j such that for each equation
(n(v1, . . . , vk) = t) ∈ Φ, and each subterm n(t1, . . . , tk) of t:

tj is a proper subterm of vj .

In all equations, the same argument “shrinks” (others may “grow”).

Alternative criterion that is sufficient (not necessary) for constraint (3).

Wolfgang Schreiner http://www.risc.jku.at 28/30

A Generalization

Constructive specifications may use conditional equations

φ1 ⇒ n(v1, . . . , vk) = t1

. . .
φl ⇒ n(v1, . . . , vk) = tl

where the φi are first-order predicate formulas without quantifiers

that exclude each other mutually: i 6= j ⇒ ¬(φi ∧ φj),
but whose disjunction holds: φ1 ∨ . . . ∨ φl .

Example: abstract datatype “list of elements”.

[].l = l
Add(e, l).m = Add(e, l .m)
Isprefix([], l) = True
Isprefix(Add(e, l), []) = True
e = e′ ⇒ Isprefix(Add(e, l),Add(e′,m)) = Isprefix(l ,m)
e 6= e′ ⇒ Isprefix(Add(e, l),Add(e′,m)) = False

Wolfgang Schreiner http://www.risc.jku.at 29/30

Summary

Constructive specifications define monomorphic abstract datatypes.

Like initial specifications,

Constructive specifications define abstract datatypes whose carriers
can be represented as term languages.

Like loose specifications with free constructors.

Constructive specifications always possess a model.

Unlike loose specifications.

Model cannot collapse into algebra with singletons as carriers.

Unlike initial specifications.

Constructive specifications can be “executed”.

Various constraints have to be satisfied.
Comparatively “low-level” (less abstract) flavor.

Initial specifications are frequently written in a constructive fashion.

Wolfgang Schreiner http://www.risc.jku.at 30/30

