Initial Specifications
Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

2,
N

Wolfgang Schreiner http://www.risc.jku.at

Concrete Syntax

initial spec
sorts sort . ..
opns operation . ..
vars variable: sort ...
eqns equation . ..
endspec

Signature ¥ = ({sort, ...}, {operation, ...}).

Set of formulas ® = {(Vvariable : sort, equation),...}.

We will only use the concrete syntax to define specifications.

Wolfgang Schreiner http://www.risc.jku.at

3/25

17\
N

Initial Specifications

We fix as our logic the equational logic EL.

Initial specification sp = (X,).
Signature X, set of formulas ® C EL(Y).
Semantics M(sp) = {A€ Alg(X) | A~ T(X,9)}.
The class of algebras isomorphic to the quotient term algebra over ®.

Values are (isomorphic to) classes of terms that have the same value
in all models of ®.

An initial specification specifies as the abstract datatype the class of all
algebras isomorphic to the quotient term algebra over its formula set.

Wolfgang Schreiner http://www.risc.jku.at 2/25
7\
) (]
Example
W
initial spec
sorts nat
opns
0 :— nat

Succ : nat — nat
_ 4+ _:nat x nat — nat
vars m, n: nat
eqns
n+0=n
n+ Succ(m) = Succ(n+ m)
endspec

T(X, ®)(nat) = {[0], [Succ(0)], [Succ(Succ(0))], ...}
0]=[0+0]=[0+(0+0)]=...
[Succ(0)] = [Suce(0) + 0] = [0 + Succ(0)] = [Succ(0+0)] =...

Wolfgang Schreiner http://www.risc.jku.at 4/25

Initiality .E Z

Take signature X, set of formulas ® € EL(P).
Theorem: T(X,®) € Mody(P).
Quotient term algebra of @ is itself a model of .
Not true for formula set ® from every logic L.

Corollary: T(X, ®) is initial in Modyx (®).

Consequence of the final theorem of the previous section.
Corollary: Every algebra of M(sp) is initial in Mody (®).

The specified algebras distinguish most among all models of ®.

The specified abstract datatype is the most “distinguishing” one.

Wolfgang Schreiner http://www.risc.jku.at 5/25

™,
W

Logical Properties

Take initial specification (X, ®), ground equation t = u and equation
VX.v=win EL(®).

TE,®)Et=uviffdEt=u.
& =t =uiff A=t = u for every T-algebra A that is a model of ®.
The equation holds in specified datatype, iff the equation is a logical
consequence of the specification equations.

T(E,®) EVX.v =wiff ® =g VXv = w.
® g t = uiff A=t = u for every model A of ® that is generated.
The equation holds in the specified datatype, iff the equation is a
logical consequence of the specification equations; for proving this, we
may apply the principle of structural induction.

In the specified abstract datatype, no other equalities hold than those
that are consequences of .

Wolfgang Schreiner http://www.risc.jku.at 7/25

17\
N

Datatype Properties

Take initial specification sp = (X, ®).

M(sp) is not empty.
It contains T(X, ®).
An initial specification is consistent.
M(sp) is monomorphic.
By definition, all algebras in M(sp) are isomorphic.
An initial specification describes a single datatype.

M(sp) only contains generated algebras.

Every value is isomorphic to (the congruence class of) a ground term.
The specified datatype does not contain junk.

An initial specification is much more specific than a loose specification.

Wolfgang Schreiner http://www.risc.jku.at 6/25
ZAY
Example '& {'
[)
initial spec

sorts nat, set

opns
0:— nat
Succ : nat — nat
0 :— set

Insert : set X nat — set
vars m,n: nat,s : set
eqns
Insert(Insert(s, n), n) = Insert(s, n)
Insert(Insert(s, n), m) = Insert(Insert(s, m), n)
endspec

Strictly adequate specification of “classical” set algebra (compare with a
corresponding loose specification with constructors).

Wolfgang Schreiner http://www.risc.jku.at 8/25

Example .ﬁ ¢
4
loose spec initial spec
sorts freely generated nat sorts nat
opns opns
constr 0 :— nat 0 :— nat
constr Succ : nat — nat Succ : nat — nat
Pred : nat — nat Pred : nat — nat
vars n : nat vars n : nat
axioms Pred(Succ(n)) =n eqns Pred(Succ(n)) =n
endspec endspec

Loose specification is polymorphic:
Algebra A may define any value A(Pred(0)) € A(nat).
Same is true for the “classical” algebra of natural numbers.
Initial specification is monomorphic:
T (X, ®)(nat) has [Pred(0)], [Pred(Pred(0))], [Succ(Pred(0))], ...
Certainly not isomorphic to the “classical” algebra of natural numbers.

Initial specifications may vyield carriers that are larger than expected.

Wolfgang Schreiner http://www.risc.jku.at 9/25
S
Loose vs Initial Specifications L *
N4

Adding an additional formula to a specification.
Loose specification: some models are removed.
(Not strictly) adequate specification becomes “more adequate”.
Initial specification: some values are identified.
Carrier becomes smaller.
Adequate specification becomes inadequate.
Adding an incompatible formula to a specification.
Loose specification: M(sp) = 0.
Specification becomes inconsistent; all models are “killed”.
Initial spec: M(sp) consists of algebras with singleton carriers.

Specification becomes too constrained; some carriers “collapse”.

In an initial specification, adding an “incompatible” equation lets a
carrier collapse to a singleton.

Wolfgang Schreiner http://www.risc.jku.at 11/25

7\
N

Possible Solution Attempts

Add equation Pred(0) = 0.
Ambiguity is resolved by fixing the value of Pred(0).
Problem: specification is less abstract than possible.
Add equation Succ(Pred(n)) = n.
Unsatisfactory: carriers [Pred’(0)],i > 1 are not removed.
Add constant Error :— nat.
Additional equations:
Pred(0) = Error
Succ(Error) = Error
Pred(Error) = Error
Problem: additional carrier [Error] has to be considered.
Combine last two solutions:
[Succ™ (Pred(0))] = [Succ'(0)].
[Succ™ (Pred(0))] = [Succ™* (Error)] = [Error].
Effect: T(X, ®)(nat) = {[Error]}.

Wolfgang Schreiner http://www.risc.jku.at 10/25

/™,

Expressive Power of Initial Specifications '& s

Theorem: Any generated algebra may be specified by an initial
specification consisting of ground equations only.
Catch: number of equations may be infinite and even not recursively
enumerable (e.g. Peano arithmetic).

Theorem: There exist algebras that can be specified by an initial
specification with a finite number of equations but cannot be
specified with a finite number of ground equations.

Universally quantified variables really add expressive power.

Theorem: There exist generated algebras that cannot be specified by
an initial specification consisting of a finite number of equations.

Universally quantified variables do not suffice.

Seems to impose fundamental limitations on initial specifications.

Wolfgang Schreiner http://www.risc.jku.at 12/25

N,
W

Example

Y = ({nat},{0 :— nat, Succ : nat — nat, Square : nat — nat}).
Classical X-algebra A:
A(nat) =N, A(0) =0, A(Succ)(n) = n+1,
A(Square)(n) = n?.
Attempt to an adequate specification of A:
Square(0) =0
Square(Succ(n)) = .. .7
Y =(...,{...,+ : nat X nat — nat}).
Classical Y'-algebra A:
o AH)(n,m)=n+m
Adequate specification of A:
n+0=n
n+ Succ(m) = Succ(n+ m)
Square(Succ(n)) = Succ(Square(n) + (n + n))

Additional operations may be needed for an adequate initial specification.

Wolfgang Schreiner http://www.risc.jku.at 13/25
S
Other Specification Logics ¢ ¢
N

Not in every logic there exists an initial model of a set of formulas.
Specification (X, ®):
Y = ({S},{a,b,c,d:— S}).
d={(a#bAc=d)V(a=bAc#d)}.
Y -algebra B € Modx (P):
B(a) # B(b), B(c) = B(d).
Y -algebra C € Modyx(®):
C(a) = C(b), C(c) # C(d).
Assume that some X-algebra A is initial in Mody (®):
Since A is initial, an equation that does not hold for some algebra in
Mody (®), does also not hold for A.
Since B(a) # B(b), also A(a) # A(b).
Since C(c) # C(d), also A(c) # A(d).
Since A(a) # A(b) and A(c) # A(d), A &€ Mods(®).

Not every logic is suitable for initial specifications.

Wolfgang Schreiner http://www.risc.jku.at 15/25

7y,

Expressive Power of Initial Specifications .E Z

Take finite signature X.

Theorem: For every generated X -algebra A with computable
functions, there exists a signature ¥’ O ¥ and an initial specification
(¥, ®) with a finite set of formulas ® C EL(Y') such that

A~ T(X,0)X
C|X is the X-reduct of class C.

From every algebra of C, all carriers and functions are removed that
correspond to sorts and operations not mentioned in .

Any computable function can be defined by recursive equations, thus any
generated algebra with computable functions can be adequately specified
by an initial specification (after extending the signature appropriately).

Wolfgang Schreiner http://www.risc.jku.at 14/25
A
Other Specification Logics X *
N4

Take signature 2.
Theorem: If ® C CEL(X), T(X,) € Mods(®).

initial spec
sorts bool, nat, list
True :— bool
False :— bool

vars |, m: list,e, e’ : nat
cond eqns

[1.1=1

Add(e,l).m = Add(e, l.m)

0 :— nat Isprefix([],1) = True
Succ : nat — nat Isprefix(Add(e, I),[]) = False
[1:= list Isprefix(Add(e,), Add(e, m)) =

Add : nat x list — list
_. _: list x list — list
Isprefix : list x list — bool

Isprefix(1, m)
Isprefix(Add(e, 1), Add(e’, m)) = True
=e=¢
endspec

Initial specifications may also use conditional equations.

Wolfgang Schreiner http://www.risc.jku.at 16/25

N\

N4

Properties and Proofs

Additional proof techniques for ADTs defined by initial specifications.

Take initial specification sp = (X, Q).
Goal: M(sp) EVX.v=w.
Prove: Q = vo = wo for each ground substitution o : X — Tyx.
Proof by induction on the structure of the substitution.
Example: sp = (X, ®), ¥ = ({nat}, {0, Succ,+})
& ={(1) n+0=n, (2) n+ Succ(m) = Succ(n+ m),
(3) (n+m)+p=n+(m+p)}
Goal: M(sp) E0+n=n.
Prove: & =0+t = t, for every ground term t € Tx.
Case t =0: 0+ 0= 0.
Case t = Succ(t'): 0+ Succ(t') =) Succ(0 + t') =(ing) Succ(t’).
Case t=(t'+t"): 04 (' +t") =3 O+ t') + t" =(pay t' +t".

Proof by induction on the structure of substitution terms.

Wolfgang Schreiner http://www.risc.jku.at 17/25
7\
Example K *
N4

sp= (X,), ¥ = ({nat}, {0, Succ, +})
¢ ={(1) n+0=n, (2) n+ Succ(m) = Succ(n+ m),
(3) (n+m)+p=n+(m+p)}
Goal: sp adequately specifies classical X-algebra A.

1. Prove A = ®.

2. Prove A is generated.
3. Take terms t,u € Ty with A(t) = A(u) and prove ® =t = u.
3.1 Lemma: A(v) = n implies ® = v = Succ”(0), for n€ N,v € Tx.
Proof by induction on the structure of v
3.2 Take n = A(t) = A(u). Then, by the lemma, ¢ = t = Succ”(0) and
& = u = Succ"(0). Thus ® =t =u.

A canonical term representation for carriers simplifies proofs.

Wolfgang Schreiner http://www.risc.jku.at 19/25

AN

Properties and Proofs
N
Take initial specification (X, ®) and X-algebra A.
Goal: (X, ®) adequately specifies A.
A~ T(Z,).
1. Prove A is a model of ®.
Since T(X, ®) is initial in Mods (%), we have an evaluation
homomorphism h: T(X,®) — A, i.e. h([t]) := A(t).
2. Prove A is generated.
Thus for every carrier a there exists a term t with A(t) = a and
consequently h([t]) = a, i.e. h is surjective.
3. Prove h is injective.
Prove, for arbitrary t,u € Tx,
h([t]) = h([u]) = [t] = [u], i.e.
At) = A(u) = [t] = [u], ie.
A(t) = Alu) = T(Z,0)(t) = T(Z, 0)(u), ie.
Aty =Alu)=dE=t=u.
Wolfgang Schreiner http://www.risc.jku.at 18/25
A
Characteristic Term Algebras '& {'
[

Take signature ¥ = (S,Q) and initial specification sp = (X, ®).
A XY-algebra C with C(s) € Ty s for every sort s € S is called a
characteristic term algebra for sp, if
CEo
® = C(t) = t for each ground term t € Tx.
C maps every ground term to another term with the same value.
Theorem: If C is charact. term alg. for (X, ®), then C ~ T(X, ®).

C is a term algebra isomorphic to the quotient term algebra.
C may serve in proofs as a replacement of the quotient term algebra.

By using characteristic term algebras, proofs can be simplified.

Wolfgang Schreiner http://www.risc.jku.at 20/25

Example 5 *
7
sp = (¥, ®), * = ({nat}, {0, Succ, +})
& = {n+0=n,n+ Succ(m) = Succ(n+ m)}
> -algebra C:
C(nat) = {Succ"(0) | n € N}
c(0)y=0
C(Succ)(t) = Succ(t), for all t € C(nat)
C(+)(t, u) = Succ”™9(0) where p, g € N such that
t = Succ®(0), u = Succ?(0), for all t,u € C(nat).
C maps nat-terms to terms involving 0 and Succ only.
Wolfgang Schreiner http://www.risc.jku.at 21/25

ZAS

Example (Contd’2) M

Once it has been proved that C is a characteristic term algebra of sp,
proving properties of sp becomes simple.

Prove that sp adequately specifies classical A with A(nat) = N.
Prove that A~ C.

Find isomorphism h: C — A.
hnat(Succ”(0)) := n.

Clearly h is bijective.

h is a homomorphism:
h(C(Succ)(Succ™(0))) = h(Succ™™(0)) =n+1=
A(Succ)(n) = A(Succ)(h(Succ"(0))).
h(C(+)(Succ"(0), Succ™(0))) = h(Succ™™(0)) =n+m=
A(+)(n, m) = A(+)(h(Succ"(0)), h(Succ™(0))).

Proof can make use of the structure of characteristic terms.

Wolfgang Schreiner http://www.risc.jku.at 23/25

A"

Example (Contd) M
C is a characteristic term algebra for (X, ®):
1. CEt+0=1t:C(t+0)= C(+)(C(t), C(0)) = C(+)(C(t),0) = C(¢).
C =t + Succ(u) = Succ(t + u) : C(t + Succ(u)) =
C(+)(C(t), C(Succ)(C(u)))) = C(+)(SuccP(0), Succ(Succ(0))) =
SuccPt1+9(0) = Succ(SuccP*(0)) = Succ(C(+)(SuccP(0), Succ?(0))) =
C(Succ)(C(+)(C(t), C(u))) = C(Suce(t + u)).
2. ® = C(t) = t: proof by induction on t.
t=0: C(0) =0, thus ® = C(0) = 0.
t = Succ(u):
C(Succ(u)) = C(Succ)(C(u)) = Succ(C(u)). By induction
hypothesis, ® = C(u) = u, thus ® = C(Succ(u)) = Succ(u).
t=u+v:
C(u+v)=C(+)(C(u), C(v)) = C(+)(SuccP(0), Succ?(0)) =
SuccP*9(0). By the lemma below, ¢ = Succ”™?(0) = C(u) + C(v).
By induction hypothesis, ® = C(u) = u and ® = C(v) = v, thus
® = SuccPt9(0) = u+ v and finally ® = C(u+v) = u+v.
Lemma: ¢ = SuccP™9(0) = Succ?(0) + Succ?(0), for all p,q € N.
Proof by induction on q.
Wolfgang Schreiner http://www.risc_jku.at 22/25
()
’ .M EQ
Example (Contd’3) N

Prove that M(sp) =0+t =t.
Prove that C =0+t =t.
C(0 + t) = C(+)(C(0), C(t)) = C(+)(0, Succ"(0)) = Succ"(0) =
C(1).
The work invested in proving that C is characteristic is well spent, since
all other proofs become much simpler.

Wolfgang Schreiner http://www.risc.jku.at 24/25

Summary o

Initial specifications have some nice properties:
The specified ADT is not empty, it is monomorphic, and it only
consists of generated algebras.
The specification already describes a concrete implementation design.
The quotient term algebra is the canonical representative of the ADT.
Values are classes of terms whose values are considered identical.
Only those equalities hold that are explicitly specified.
However, there are also potential pitfalls:
Adding “incompatible” equations lets carriers collapse.
Still necessary to investigate the adequacy of a specification.
“Undefined” terms represent additional values.
Carriers then contain more elements than intended.
Rather than undefined terms, one may prefer error values.
However, then one has to deal with these values in all computations.
Only generated algebras can be specified.
E.g. no initial specifications of the reals.

The necessity to be concrete had advantages and disadvantages.
Wolfgang Schreiner http://www.risc.jku.at 25/25

