Term Algebras

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at

Term Algebra

Take signature $\Sigma = (S, \Omega)$.

• Term algebra $T(\Sigma)$:

$$\Sigma$$-algebra whose values are Σ -terms.

•
$$T(\Sigma)(s) = T_{\Sigma,s}$$
, for every $s \in S$.

•
$$T(\Sigma)(\omega) = n$$

for every
$$\omega = (n : \rightarrow s) \in \Omega$$
.

$$T(\Sigma)(\omega)(t_1, \ldots, t_k) = n(t_1, \ldots, t_k)$$

$$for every \ \omega = (n : s_1 \times \ldots \times s_k \to s) \in \Omega, t_i \in T(\Sigma)(s_i).$$

 $T(\Sigma)$ is the algebra of (well-typed) ground terms of Σ .

Term Algebras

• Example: NAT = ({nat}, { $0 :\rightarrow nat$, Succ : $nat \rightarrow nat$ }).

• $T(NAT)(nat) = \{0, Succ(0), Succ(Succ(0)), \ldots\}.$

•
$$T(NAT)(0) = 0.$$

- T(NAT)(Succ)(t) = Succ(t), for every $t \in T(NAT)(nat)$.
- Term value $T(\Sigma)(t) = t$, for every ground term $t \in T(\Sigma)$.
 - A ground term denotes itself.
- $T(\Sigma)$ is freely generated.
 - Generated: every value is denoted by itself.
 - Free: two different ground terms denote two different values.

In a term algebra, a ground term and its interpretation coincide.

Initiality

Take signature Σ , class $\mathcal{C} \subseteq Alg(\Sigma)$ of Σ -algebras, and Σ -algebra $A \in \mathcal{C}$.

- A is initial in C if
 - for every $B \in C$, there exists exactly one homomorphism $h : A \rightarrow B$.
 - A distinguishes most among all algebras of C.
- Initial algebras are unique up to isomorphism:
 - If A is initial in C, then B is initial in C iff $A \simeq B$.
- Theorem: $T(\Sigma)$ is initial in $Alg(\Sigma)$.
 - For every A ∈ Alg(Σ), there exists the unique evaluation homomorphism:

 $egin{aligned} h: T(\Sigma) &
ightarrow A \ h(t) &:= A(t) ext{, for every ground term } t \in T_{\Sigma}. \end{aligned}$

The term algebra $T(\Sigma)$ distinguishes most among all Σ -algebras.

Take signature $\Sigma = (S, \Omega)$, Σ -algebra A.

• Congruence relation $Q = (Q_s)_{s \in S}$ on A:

•
$$Q_s$$
 is an equivalence relation on $A(s)$ for every $s \in S$.

$$(a_1, a'_1) \in Q_{s_1} \land \ldots \land (a_k, a'_k) \in Q_{s_k} \Rightarrow (A(\omega)(a_1, \ldots, a_k), A(\omega)(a'_1, \ldots, a'_k)) \in Q_s$$
for every $w = (n : s_1 \times \ldots \times s_k \to s) \in \Omega$, and
for every $a_1, a'_1 \in A(s_1), \ldots, a_k, a'_k \in A(s_k)$.

Equivalent arguments yield equivalent results.

A congruence relation preserves equivalence across function applications.

Example

Wolfgang Schreiner

Take signature $\Sigma = (S, \Omega)$, Σ -algebra A, congruence relation Q on A.

Quotient (algebra) A/Q of A by Q:
Σ-algebra whose values are congruence classes.
[a]_Q = {a' : (a, a') ∈ Q}.
Class of a with respect to congruence relation Q.
A/_Q(s) = {[a]_{Qs}|a ∈ A(s)}
for every s ∈ S.
A/_Q(ω) = [A(ω)]_{Qs}
for every ω = (n :→ s) ∈ Ω.
A/_Q(ω)([a₁]_{Qs1},...,[a_k]_{Qsk}) = [A(ω)(a₁,...,a_k)]_{Qs}
for every ω = (n : s₁ × ... × s_k → s) ∈ Ω.

Congruent elements of A are combined to a single element of A/Q.

Example

Wolfgang Schreiner

http://www.risc.jku.at

Take signature $\Sigma = (S, \Omega)$ and class of algebras $\mathcal{C} \subseteq Alg(\Sigma)$.

Congruence relation $\equiv_{\mathcal{C}}$ of \mathcal{C} :

$$\equiv_{\mathcal{C}} := (\equiv_{\mathcal{C},s})_{s\in S}.$$
$$\equiv_{\mathcal{C},s} := \{(t,u) \in T_{\Sigma,s} \times T_{\Sigma,s} \mid \forall A \in \mathcal{C} : A(t) = A(u)\}.$$

- All ground terms are congruent that have the same value in all algebras of *C*.
- Quotient Term Algebra $T(\Sigma, C)$ of C:

•
$$T(\Sigma, C) := T(\Sigma)/_{\equiv_C}$$
.

- **\Sigma**-algebra whose values are congruence classes of ground terms of Σ .
- Theorem: If $T(\Sigma, C) \in C$, then $T(\Sigma, C)$ is initial in C.
 - For every $A \in C$, there exists the unique evaluation homomorphism:

$$h: T(\Sigma, C) \rightarrow A$$

 $h([t]) := A(t)$, for every ground term $t \in T_{\Sigma}$

 $T(\Sigma, C)$ relates similarly to C as $T(\Sigma)$ relates to $Alg(\Sigma)$.

Wolfgang Schreiner

Examples

• $T(\Sigma, Alg(\Sigma)) \simeq T(\Sigma).$

- Values of T(Σ, Alg(Σ)) are singletons [t] = {t} for every ground term t ∈ T_Σ.
- $T(\Sigma, \{A\}) \simeq A$, for every Σ -algebra A.
 - Values of T(Σ, {A}) are classes of all those terms that denote the same value in A.
- Let *B* be the "classical" NATBOOL-algebra.
 - Terms *True* and \neg *False* belong to the same value of $T(\Sigma, \{B\})$.
 - Terms 0 and 0 + 0 belong to the same value of $T(\Sigma, \{B\})$.

Take logic L, signature Σ , set of formulas $\Phi \subseteq L(\Sigma)$.

Quotient term algebra T(Σ, Φ) of Φ:
T(Σ, Φ) := T(Σ, Mod_Σ(Φ)) (= T(Σ)/_{≡Mod_Σ(Φ)}).
Mod_Σ(Φ) = {A ∈ Alg(Σ) | A is a model of Φ}.
≡_{Mod_Σ(Φ),s} = {(t, u) ∈ T_{Σ,s} × T_{Σ,s} | ∀A ∈ Mod_Σ(Φ) : A(t) = A(u)}.
Σ-algebra whose values are classes of those terms that have the same value in all models of Φ.

• Theorem: If $T(\Sigma, \Phi)$ is model of Φ , $T(\Sigma, \Phi)$ is initial in $Mod_{\Sigma}(\Phi)$.

For every model A of Φ, there exists the unique evaluation homomorphism:

$$\begin{split} &h: T(\Sigma, \Phi) \to A \\ &h([t]) := A(t), \text{ for every ground term } t \in T_{\Sigma}. \end{split}$$

Basis of initial specification semantics.

Wolfgang Schreiner