Term Algebras

Wolfgang Schreiner

Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

- Example: NAT $=(\{n a t\},\{0: \rightarrow n a t$, Succ $: n a t \rightarrow n a t\})$.
- $T(\mathrm{NAT})(n a t)=\{0, \operatorname{Succ}(0), \operatorname{Succ}(\operatorname{Succ}(0)), \ldots\}$.
$-T(\mathrm{NAT})(0)=0$.
- $T($ NAT $)(\operatorname{Succ})(t)=\operatorname{Succ}(t)$, for every $t \in T(N A T)(n a t)$.
- Term value $T(\Sigma)(t)=t$, for every ground term $t \in T(\Sigma)$.
- A ground term denotes itself.
- $T(\Sigma)$ is freely generated.
- Generated: every value is denoted by itself.
- Free: two different ground terms denote two different values.

In a term algebra, a ground term and its interpretation coincide.

Take signature $\Sigma=(S, \Omega)$.

- Term algebra $T(\Sigma)$:
- Σ-algebra whose values are Σ-terms.
- $T(\Sigma)(s)=T_{\Sigma, s}$, for every $s \in S$.
- $T(\Sigma)(\omega)=n$
- for every $\omega=(n: \rightarrow s) \in \Omega$.
- $T(\Sigma)(\omega)\left(t_{1}, \ldots, t_{k}\right)=n\left(t_{1}, \ldots, t_{k}\right)$
- for every $\omega=\left(n: s_{1} \times \ldots \times s_{k} \rightarrow s\right) \in \Omega, t_{i} \in T(\Sigma)\left(s_{i}\right)$.
$T(\Sigma)$ is the algebra of (well-typed) ground terms of Σ.

Initiality

Take signature Σ, class $\mathcal{C} \subseteq A / g(\Sigma)$ of Σ-algebras, and Σ-algebra $A \in \mathcal{C}$.

- A is initial in \mathcal{C} if
- for every $B \in \mathcal{C}$, there exists exactly one homomorphism $h: A \rightarrow B$.
- A distinguishes most among all algebras of \mathcal{C}.
- Initial algebras are unique up to isomorphism:
- If A is initial in \mathcal{C}, then B is initial in \mathcal{C} iff $A \simeq B$.
- Theorem: $T(\Sigma)$ is initial in $\operatorname{Alg}(\Sigma)$.
- For every $A \in \operatorname{Alg}(\Sigma)$, there exists the unique evaluation homomorphism:

$$
\begin{aligned}
& h: T(\Sigma) \rightarrow A \\
& h(t):=A(t) \text {, for every ground term } t \in T_{\Sigma}
\end{aligned}
$$

The term algebra $T(\Sigma)$ distinguishes most among all Σ-algebras.

Congruence Relation

Take signature $\Sigma=(S, \Omega), \Sigma$-algebra A.

- Congruence relation $Q=\left(Q_{s}\right)_{s \in S}$ on A :
- Q_{s} is an equivalence relation on $A(s)$ for every $s \in S$
- $\left(a_{1}, a_{1}^{\prime}\right) \in Q_{s_{1}} \wedge \ldots \wedge\left(a_{k}, a_{k}^{\prime}\right) \in Q_{s_{k}} \Rightarrow$
$\left(A(\omega)\left(a_{1}, \ldots, a_{k}\right), A(\omega)\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right)\right) \in Q_{s}$
- for every $w=\left(n: s_{1} \times \ldots \times s_{k} \rightarrow s\right) \in \Omega$, and
- for every $a_{1}, a_{1}^{\prime} \in A\left(s_{1}\right), \ldots, a_{k}, a_{k}^{\prime} \in A\left(s_{k}\right)$.
- Equivalent arguments yield equivalent results.

A congruence relation preserves equivalence across function applications.

Take signature $\Sigma=(S, \Omega), \Sigma$-algebra A, congruence relation Q on A.

- Quotient (algebra) A / Q of A by Q :
- Σ-algebra whose values are congruence classes.
- $[a]_{Q}=\left\{a^{\prime}:\left(a, a^{\prime}\right) \in Q\right\}$.
- Class of a with respect to congruence relation Q.
- $A / Q(s)=\left\{[a]_{Q_{s}} \mid a \in A(s)\right\}$
- for every $s \in S$.
- $A / Q(\omega)=[A(\omega)]_{Q_{s}}$
- for every $\omega=(n: \rightarrow s) \in \Omega$.
- $A / Q(\omega)\left(\left[a_{1}\right]_{Q_{s_{1}}}, \ldots,\left[a_{k}\right]_{Q_{s_{k}}}\right)=\left[A(\omega)\left(a_{1}, \ldots, a_{k}\right)\right]_{Q_{s}}$

$$
\text { for every } \omega=\left(n: s_{1} \times \ldots \times s_{k} \rightarrow s\right) \in \Omega \text {. }
$$

Congruent elements of A are combined to a single element of A / Q.

Example

- BOOL-algebra D
$D($ bool $)=\mathbb{N}$
$D(\neg)(n)= \begin{cases}n+1, & \text { if } n \text { is even } \\ n-1, & \text { otherwise }\end{cases}$
$D(\wedge)(n, m)=n * m$
$D(\wedge)(n, m)=n * m$
- Q is a congruence relation on D.
$(m, n) \in Q_{\text {bool }}: \Leftrightarrow m+n$ is even.
- Take $\omega=\neg$: bool \rightarrow bool:
- Take $n, n^{\prime} \in D($ bool $)$ with $\left(n, n^{\prime}\right) \in Q_{b o o l}$.
- We have to show $\left(D(\neg)(n), D(\neg)\left(n^{\prime}\right)\right) \in Q_{\text {bool }}$.
$=n+n^{\prime}$ is even. Thus n and n^{\prime} are either both even or both odd
- Case 1 : we have to show $\left(n+1, n^{\prime}+1\right) \in Q_{b o o l}$, i.e.,

$$
(n+1)+\left(n^{\prime}+1\right)=\left(n+n^{\prime}\right)+2 \text { is even. }
$$

- Case 2: we have to show $\left(n-1, n^{\prime}-1\right) \in Q_{b o o l}$, i.e. $(n-1)+(n-1)=\left(n+n^{\prime}\right)-2$ is even. \ldots
- Take $\omega=\wedge$: bool \times bool \rightarrow bool:

Wolfgang Schreiner

Example

- BOOL-algebra D and congruence relation Q on D (as before).
$(m, n) \in Q_{\text {bool }}: \Leftrightarrow m+n$ is even.
- Quotient algebra D / Q :
$[0]=\{n \in \mathbb{N} \mid 0+n$ is even $\}=\{n \in \mathbb{N} \mid n$ is even $\}$
$[1]=\{n \in \mathbb{N} \mid 1+n$ is even $\}=\{n \in \mathbb{N} \mid n$ is odd $\}$
- $(D / Q)(\mathrm{bool})=\{[0],[1]\}$.
- $(D / Q)(\neg)(n)= \begin{cases}{[1]} & \text { if } n=[0] \\ {[0]} & \text { if } n=[1]\end{cases}$
$-(D / Q)(\wedge)(n, m)= \begin{cases}{[1]} & \text { if } n=m=[1] \\ {[0]} & \text { else }\end{cases}$
$-(D / Q) \simeq C$
$C($ bool $)=\{0,1\}$
$C($ True $)=1$
$C($ False $)=0$
$C(\neg)(n)=1-n$
$C(\wedge)(n, m)=n * m$

Take signature $\Sigma=(S, \Omega)$ and class of algebras $\mathcal{C} \subseteq \operatorname{Alg}(\Sigma)$.

- Congruence relation $\equiv_{\mathcal{C}}$ of \mathcal{C} :
$-\equiv_{\mathcal{C}}:=\left(\equiv_{\mathcal{C}, s}\right)_{s \in S}$.
$-\equiv_{\mathcal{C}, s}:=\left\{(t, u) \in T_{\Sigma, s} \times T_{\Sigma, s} \mid \forall A \in \mathcal{C}: A(t)=A(u)\right\}$.
- All ground terms are congruent that have the same value in all algebras of \mathcal{C}.
- Quotient Term Algebra $T(\Sigma, \mathcal{C})$ of \mathcal{C} :
- $T(\Sigma, \mathcal{C}):=T(\Sigma) / \equiv_{c}$.
- Σ-algebra whose values are congruence classes of ground terms of Σ.
- Theorem: If $T(\Sigma, \mathcal{C}) \in \mathcal{C}$, then $T(\Sigma, \mathcal{C})$ is initial in \mathcal{C}.
- For every $A \in \mathcal{C}$, there exists the unique evaluation homomorphism:

$$
\begin{aligned}
& h: T(\Sigma, \mathcal{C}) \rightarrow A \\
& h([t]):=A(t), \text { for every ground term } t \in T_{\Sigma}
\end{aligned}
$$

$T(\Sigma, \mathcal{C})$ relates similarly to \mathcal{C} as $T(\Sigma)$ relates to $\operatorname{Alg}(\Sigma)$.

[^0]http://www.risc.jku.at

- $T(\Sigma, \operatorname{Alg}(\Sigma)) \simeq T(\Sigma)$.
- Values of $T(\Sigma, A \lg (\Sigma))$ are singletons $[t]=\{t\}$ for every ground term $t \in T_{\Sigma}$.
- $T(\Sigma,\{A\}) \simeq A$, for every Σ-algebra A.
- Values of $T(\Sigma,\{A\})$ are classes of all those terms that denote the same value in A.
- Let B be the "classical" NATBOOL-algebra.
- Terms True and \neg False belong to the same value of $T(\Sigma,\{B\})$.
- Terms 0 and $0+0$ belong to the same value of $T(\Sigma,\{B\})$.

Quotient Term Algebra of a Set of Formulas

Take logic L, signature Σ, set of formulas $\Phi \subseteq L(\Sigma)$.

- Quotient term algebra $T(\Sigma, \Phi)$ of Φ :
- $T(\Sigma, \Phi):=T\left(\Sigma, \operatorname{Mod}_{\Sigma}(\Phi)\right)\left(=T(\Sigma) / \equiv_{\operatorname{Mod}_{\Sigma(\Phi)}}\right)$.
- $\operatorname{Mod}_{\Sigma}(\Phi)=\{A \in \operatorname{Alg}(\Sigma) \mid A$ is a model of $\Phi\}$.
$\equiv_{\operatorname{Mod} \Sigma(\Phi), s}=\left\{(t, u) \in T_{\Sigma, s} \times T_{\Sigma, s} \mid \forall A \in \operatorname{Mod}_{\Sigma}(\Phi): A(t)=A(u)\right\}$.
- Σ-algebra whose values are classes of those terms that have the same value in all models of Φ.
- Theorem: If $T(\Sigma, \Phi)$ is model of $\Phi, T(\Sigma, \Phi)$ is initial in $\operatorname{Mod}_{\Sigma}(\Phi)$.
- For every model A of Φ, there exists the unique evaluation
homomorphism:

$$
\begin{aligned}
& h: T(\Sigma, \Phi) \rightarrow A \\
& h([t]):=A(t), \text { for every ground term } t \in T_{\Sigma}
\end{aligned}
$$

Basis of initial specification semantics.

[^0]: Wolfgang Schreiner

