Logic

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at

Term Syntax

Take signature $\Sigma=(S, \Omega)$.

- Variables:
- Family $V=\left(V_{s}\right)_{s \in S}$ of infinite sets disjoint with Ω and each other.
- $V_{s} \ldots$ the set of variables of sort s.
- Any family $X \subseteq V$ is called a set of variables for Σ.
- Terms:
- Family $T_{\Sigma(X)}=\left(T_{\Sigma(X), s}\right)_{s \in S}$ of terms with set of variables X for Σ.
- Variables are terms: $X_{s} \subseteq T_{\Sigma(X), s}$.
- Constants are terms: if $n: \rightarrow s \in \Omega$, then $n \in T_{\Sigma(X), s}$.
- Applications are terms: if $n: s_{1} \times \ldots \times s_{k} \rightarrow s \in \Omega$ and, for $1 \leq i \leq k, t_{i} \in T_{\Sigma(X), s_{i}}$, then $n\left(t_{1}, \ldots, t_{k}\right) \in T_{\Sigma(X), s}$.
$-\operatorname{Var}(t) \subseteq X:$
- The set of variables occuring in term $t \in T_{\Sigma(X)}$.
- Ground terms:
- Term t is a ground term, if $\operatorname{Var}(t)=\emptyset$.
- The set of ground terms $T_{\Sigma}\left(=\left(T_{\Sigma, s}\right)_{s \in S}\right)$.

Example

- Signature NATBOOL $=(\{$ nat, bool $\}$,
$\{$ True $: \rightarrow$ bool, False $: \rightarrow$ bool,
\neg : bool \rightarrow bool, $\wedge:$ bool \times bool \rightarrow bool,
$0: \rightarrow$ nat, Succ $: n a t \rightarrow n a t$,
+ : nat \times nat \rightarrow nat,
$\leq:$ nat \times nat \rightarrow bool $\}$)
- Variable set X with $X_{\text {bool }}=\{b, c\}$ and $X_{\text {nat }}=\{m, n\}$.
- Terms in $T_{\text {NATBOOL }(X), \text { bool }}$:
c
$\wedge(\wedge($ True,$b)$, False $)$
$\leq(0,+(m, \operatorname{Succ}(n)))$

All terms are strongly typed.

Term Semantics

Take signature $\Sigma=(S, \Omega)$, set of variables X for Σ, Σ-algebra A.

- Assignment $\alpha: X \rightarrow A$ of X in A :
- Family $\alpha=\left(\alpha_{s}\right)_{s \in S}$ of functions $\alpha_{s}: X_{s} \rightarrow A(s)$.
- Every variable is mapped to an A-value of the corresponding sort.
- Value $A(\alpha)(t)$ of term t for assignment α :
- If $t=x$ with $x \in X_{s}$, then $\alpha_{s}(x)$.
- If $t=n$ with $\omega=n: \rightarrow s \in \Omega$, then $A(\omega)$.
- If $t=n\left(t_{1}, \ldots, t_{k}\right)$ with $\omega=n: s_{1} \times \ldots \times s_{k} \rightarrow s \in \Omega$ and, for $1 \leq i \leq k, t_{i} \in T_{\Sigma(X), s_{i}}$, then $A(\omega)\left(A(\alpha)\left(t_{1}\right), \ldots, A(\alpha)\left(t_{k}\right)\right)$.
- Value $A(t)$ of ground term t.
- $A(\alpha)(t)$ for any assignment α.
- Value of ground term does not depend on assignment.

Semantics maps terms to algebra values.

Algebra Logic

General logical framework for specifying ADTs.

- (Algebra) Logic L : for each signature Σ,
- a set $L(\Sigma)$ of Σ-formulas.
- a relation $=_{\Sigma} \subseteq A \lg (\Sigma) \times L(\Sigma)$ between Σ-algebras and Σ-formulas (the satisfaction relation for Σ).
- If $A \not{ }^{-} \varphi$, we say " φ is valid in A " or " A satisfies φ ".
- L must satisfy the isomorphism condition:
- If $A \simeq B$, then $\left(A \models_{\Sigma} \varphi\right.$ iff $B \models_{\Sigma} \varphi$).
- For any signature Σ, Σ-formula φ, Σ-algebras A and B.
- L cannot distinguish between isomorphic algebras.
- L has no more information about A and B than visible in Σ.

We will investigate three specific logics.

Equational Logic EL

- Formulas $E L(\Sigma)$:
- $E L(\Sigma)=\{\forall X . t=u \mid X$ is a set of variables for Σ, $t, u \in T_{\Sigma(X), s}$ for some sort s of $\left.\Sigma\right\}$.
- May drop " $\forall X$ ", if $X=\operatorname{Var}(t) \cup \operatorname{Var}(u)$.
- Satisfaction Relation $\vDash \Sigma$:
- $A=\Sigma \forall X . t=u$ iff for all assignments $\alpha: X \rightarrow A$:

$$
A(\alpha)(t)=A(\alpha)(u)
$$

- For each Σ-algebra A and equation $\forall X . t=u \in E L(\Sigma)$.

The logic of universally quantified equations.

Example

Take "classical" NATBOOL-algebra $A($ with $A(n a t)=\mathbb{N})$.

$$
\begin{aligned}
& A \neq x+1=1+x \\
& A \neq(x \leq 0 \wedge \neg x \leq 0)=\text { False } \\
& A \neq x=x \\
& A \not \models x=y
\end{aligned}
$$

Note: predicate \leq is operation of sort bool.

Conditional Equational Logic CEL

- Formulas $\operatorname{CEL}(\Sigma)$:
- $\operatorname{CEL}(\Sigma)=\left\{\forall X . t_{1}=u_{1} \wedge \ldots \wedge t_{k}=u_{k} \Rightarrow t_{k+1}=u_{k+1} \mid\right.$
X is a set of variables for Σ,
$t_{i}, u_{i} \in T_{\Sigma(X), s_{i}}$, for some sort $\left.s_{i}\right\}$.
- Drop " $\forall X$ ", if $X=\operatorname{Var}\left(t_{1}\right) \cup \operatorname{Var}\left(u_{1}\right) \cup \ldots \cup \operatorname{Var}\left(t_{k+1}\right) \cup \operatorname{Var}\left(u_{k+1}\right)$.
- Satisfaction Relation $\vDash \Sigma$:
- $A \models_{\Sigma} \forall X . t_{1}=u_{1} \wedge \ldots \wedge t_{k}=u_{k} \Rightarrow t_{k+1}=u_{k+1}$ iff for all assignments $\alpha: X \rightarrow A$:
if $A(\alpha)\left(t_{1}\right)=A(\alpha)\left(u_{1}\right)$ and \ldots and $A(\alpha)\left(t_{k}\right)=A(\alpha)\left(u_{k}\right)$ then

$$
A(\alpha)\left(t_{k+1}\right)=A(\alpha)\left(u_{k+1}\right)
$$

The logic of universally quantified conditional equations.

Example

Take "classical" NATBOOL-algebra $A($ with $A(n a t)=\mathbb{N}$) augmented by operation - : nat \times nat \rightarrow nat.

$$
\begin{aligned}
& A=x \leq y=\text { True } \Rightarrow(y-x)+x=y \\
& A=x+y=z \Rightarrow z-y=x \\
& A \models x \leq y=\text { False } \Rightarrow y \leq x=\text { True }
\end{aligned}
$$

Note: only equalities allowed as atomic predicates.

First-Order Predicate Logic PL

- Formulas $\operatorname{PL}(\Sigma)$:
- If $t, u \in T_{\Sigma(X), s}$ for some sort s of Σ, then $t=u \in P L(\Sigma)$.
- If $\varphi \in P L(\Sigma)$, then $\neg \varphi \in P L(\Sigma)$.
- If $\varphi_{1}, \varphi_{2} \in P L(\Sigma)$, then $\varphi_{1} \wedge \varphi_{2} \in P L(\Sigma)$.
- If s is a sort of Σ, x is a variable of sort s, and $\varphi \in P L(\Sigma)$, then $(\forall x: s . \varphi) \in P L(\Sigma)$.
- Value $A(\alpha)(\varphi)$ of formula φ for assignment $\alpha: \operatorname{free}(\varphi) \rightarrow A$: (free (φ)... the set of free variables of φ)
- $A(\alpha)(t=u)=$ true iff $A(\alpha)(t)=A(\alpha)(u)$.
- $A(\alpha)(\neg \varphi)=$ true iff $A(\alpha)(\varphi)=$ false.
- $A(\alpha)\left(\varphi_{1} \wedge \varphi_{2}\right)=$ true iff $A(\alpha)\left(\varphi_{1}\right)=A(\alpha)\left(\varphi_{2}\right)=$ true.
- $A(\alpha)(\forall x: s . \varphi)=$ true iff $A(\alpha[a / x])(\varphi)=$ true for all $a \in A(s)$.
$\square \alpha[a / x](x)=a ; \alpha[a / x](y)=\alpha(y)$, if $x \neq y$.
- Satisfaction Relation $\models \Sigma$:
- $A \models \Sigma(\varphi)$ iff $A(\alpha)(\varphi)=$ true for all assignments $\alpha:$ free $(\varphi) \rightarrow A$.

Classical predicate logic in a typed framework.

Example

Take "classical" NATBOOL-algebra $A($ with $A(n a t)=\mathbb{N})$.

$$
\begin{aligned}
& A \equiv(\forall x: \text { nat } .(0 \leq x)=\text { True }) \\
& A \equiv \neg(\forall x: \text { nat } .(\forall y: \text { nat } .(x \leq y)=\text { True })) . \\
& A \equiv(\forall x: \text { nat } .(\forall y: \text { nat. }(x \leq y)=\text { True }) \Rightarrow x=0)
\end{aligned}
$$

The connectives $V, \Rightarrow, \Leftrightarrow$ and the quantifier \exists can be introduced as abbreviations of formulas that use \neg, \wedge, \forall (e.g. $a \vee b: \Leftrightarrow \neg(\neg a \wedge \neg b)$).

Models

- A model of a set of formulas $\Phi \subseteq L(\Sigma)$:
- A Σ-algebra A is a model of Φ iff $A=_{\Sigma} \Phi$.
- $A \models_{\Sigma} \Phi$ iff $A \models_{\Sigma} \varphi$ for all $\varphi \in \Phi$.
- Domain (universe) for a signature Σ (a Σ-domain):
- A class \mathcal{U} of Σ-algebras closed under isomorphism.
- Note: a domain is an abstract datatype.
- $\operatorname{Mod}_{\mathcal{U}, \Sigma}(\Phi) \subseteq \mathcal{U}$:
- The class of all algebras of domain \mathcal{U} that are models of Φ.
- If Σ is clear, then we write $\operatorname{Mod}_{\mathcal{U}}(\Phi)$.
- If $\mathcal{U}=\operatorname{Alg}(\Sigma)$, then we write $\operatorname{Mod}_{\Sigma}(\Phi)$.
- If both holds, then we simply write $\operatorname{Mod}(\Phi)$.
- Theorem: $\operatorname{Mod}_{\mathcal{U}, \Sigma}(\Phi)$ is an abstract datatype.
- Logic L, signature Σ, formula set $\Phi \subseteq L(\Sigma), \Sigma$-domain \mathcal{U}.

A set of formulas specifies a subset of a given Σ-domain as an ADT.

Example

$\Sigma \Sigma=(\{s\},\{0: \rightarrow s,+: s \times s \rightarrow s\})$.

- $\Phi=\{x+(y+z)=(x+y)+z$,

$$
x+0=x,
$$

$$
0+x=x
$$

$$
\forall x: s . \exists y: s . x+y=0 \wedge y+x=0\}
$$

- $\operatorname{Mod}_{\Sigma}(\Phi)=\{A \in \operatorname{Alg}(\Sigma) \mid A(s)$ and $A(+)$ form a group with neutral element $A(0)\}$.

Specification of the abstract datatype "group" (polymorphic, because the group may or may not be commutative).

