
Formal Methods in Software Development
Exercise 1 (November 4)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• a section for each part of the exercise with the requested deliverables and optionally
any explanations or comments you would like to make;

2. the RISCAL specification (.txt) file(s) used in the exercise.

Email submissions are not accepted.

1



Exercise 1: Validating and Checking Program Specifications

We consider the following two problems:

1. Given an array a with N > 0 non-negative integer elements, find the maximum element m
of a, i.e., that element m that occurs in a (i.e., at some index of a) and that is greater than
or equal to all elements of a (i.e., the elements at all indices of a).

2. Given an array a with N > 0 non-negative integer elements, find an index p of the
maximum element of a, i.e., a non-negative integer p less than n such that the element at p
is greater than or equal to all elements of a (i.e., the elements at all indices of a).

In the RISCAL specification file maximum.txt you find two procedures maximumElement and
maximumIndex that are supposed to solve these problems, respectively (but the procedures may
contain bugs). The specification is based on two integer types int and elem that bound the
domain of possible array indices respectively elements by constants N and M respectively.

For each of the procedures perform the following tasks (the definitions already given in the
specification file must not be modified unless explicitly noted):

(a) Formalize the procedure’s precondition and postcondition as predicates.

Here do not use the arithmetic quantifier max but only the predicate logic quantifiers ∀ and
∃ (translate above specification from natural language to logic). Hint: a formula (∀v:T
with F. G) is equivalent to (∀v:T. F ⇒ G) and a formula (∃v:T with F. G) is
equivalent to (∃v:T. F ∧ G); you may use either notation.

(b) Use the precondition and postcondition to implicitly define a function and check whether
the computed results are as desired.

(c) Formulate a theorem that states that some input satisfies the precondition and check this
theorem.

(d) Formulate a theorem that states that not every input satisfies the precondition and check
this theorem.

(e) Formulate a theorem that states that, for every input that satisfies the precondition, there
exists some output that satisfies the postcondition, and check that theorem.

(f) Formulate a theorem that states that, for every input that satisfies the precondition, not
every output satisfies the postcondition, and check that theorem.

(g) Formulate a theorem that states that, for every input that satisfies the precondition, the
output is uniquely defined by the postcondition, and check that theorem.

(h) Annotate the procedure with preconditions and postconditions and check the correctness
of the procedure for all possible inputs; if a condition is a conjunction, it is recommended
to use multiple annotation clauses.

Perform all checks with moderately large values N > 0 and M ≥ 0.

2



Perform the function execution (b) with translation option “Nondeterminism” selected; for all
other checks you may unselect this option.

If a theorem is not valid, give an explanation of why the theorem is not valid and whether this
indicates an error in your specification or not. For this purpose, select the visualization option
“Tree” and investigate the evaluation of the theorem.

If the execution of a procedure gives an error, give an explanation of why this is the case and
whether this indicates an error in the procedure or not. For this purpose, select the visualization
option “Trace” and investigate an execution of the procedure exhibiting the error. If the error
indicates a bug in the procedure, fix this bug.

The deliverables for this exercise consists of the following items:

1. a nicely formatted copy of the extended specification (included as text, not as screenshots);

2. the outputs of the checks (included as text, not as screenshots);

3. if a check gives an error, a screenshot of the visualization exhibiting that error, an expla-
nation of the error, and a justified statement that describes whether this indicates an error
in your specifications or not;

4. if you fixed a bug in a procedure, a clear indication and explanation of that fix.

3


