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Chapter 1.

Introduction

In these lecture notes we treat central parts of theoretical computer science, i.e., those aspects
of computer science that represent “eternal truths”. These truths have been established once
and for all on the solid rock of mathematics and logic; they will not change any more by any
kind of technological advances. In particular, we will deal with two core questions:

David Hilbert
(1862–1943)

• computability: based on formal models of computing, we will discuss what is computable
and what is not;

• complexity: using precise models of computational costs, we will investigate how
efficiently certain computing problems can be solved.

In the following, we will give a short historical account.

Computability The question of computability has its roots in a time before the actual
development of electronic computers. In the early 1920s, the influential mathematician

John von Neumann
(1903–1957)

David
Hilbert suggested a work program for the development of a formal logical system for all of
mathematics together with a proof that this system is consistent (no contradictory mathematical
statements can be derived) and complete (all true mathematical statements can be derived). A
mathematical statement would be thus true if and only if it could be formally derived in the
system. In 1928 Hilbert also formulated the Entscheidungsproblem, namely to devise for such a
system a mechanical procedure which can decide in a finite amount of time whether a given
mathematical statement can be derived or not (i.e., whether the statement is true or not). Hilbert
was convinced that a complete, consistent, and decidable formal logical system for mathematics
could be found such that then mathematics could be reduced to mechanical computation.

Kurt Gödel
(1906–1978)

Hilbert’s program seemed to be on a good way when John von Neumann proved in 1925
that first order predicate logic is consistent and Kurt Gödel proved in 1929 in his completeness
theorem that this logic is also complete. However, it received a severe blow when in 1931
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Kurt Gödel also proved in his first incompleteness theorem that arithmetic cannot be captured
by any system that is both complete and consistent; furthermore he showed in his second
incompleteness theorem that no sufficiently powerful consistent formal system can show its
own consistency.
The program was ultimately destroyed, when in 1936 and 1937

Alonzo Church
(1903–1995)

Alonzo Church and Alan
Turing independently showed that the Entscheidungsproblem for first order predicate logic
could not be solved in two computational models they had devised for that purpose: the lambda
calculus (Church) and a machine model (Turing) which was later called the Turing machine.
Since Church and Turing could also show that their models had the same computational power,
they conjectured that their models already covered any possible kind of computation (the
Church-Turing-Thesis). Turing’s proof was of particular influence, because it also showed
that it can in general not be decided whether a Turing machine will eventually halt or not.

Alan Turing
(1912–1954)

Turing’s machine model thus represented the first link between abstract mathematics/logic and
the emerging field of computer science; furthermore, it already imposed some fundamental
limits on this new field, five years before the first electronic computer was built!
The field of theoretical computer science started to flourish. Based on prior

Stephen Kleene
(1909–1994)

work on the
formal modeling of neural networks in the 1940s, in the 1950s numerous variants of the
computational model of finite state machine (short: automata) were developed by Stephen
Kleene, George Mealy, Edward Moore, and others. In 1959, Michael Rabin and Dana Scott
clarified the field by introducing a simple automaton model that captured the essence of the
idea; furthermore they introduced the influential concept of nondeterminism into automata
theory (Rabin and Scott received for their work in 1976 the ACM Turing Award, the “Nobel
prize” in computer science named in honor of Turing).

Michael Rabin (1931–)

Dana Scott (1932–)

Finite state machines have become one
of the cornerstones of theoretical computer science, because (while being more restricted than
Turing machines) they are still rich enough to describe many interesting kinds of applications
and because many properties of finite state machines are decidable which are undecidable for
Turing machines.

Complexity Later on, it was more and more realized that solutions to computational problems
must not only be effective (i.e., mechanically calculable) but also efficient (i.e., calculable with
reasonable time and memory resources). The foundations of complexity theory were laid in the
early 1960s by Alan Cobham and Jack Edmonds (who both popularized the complexity class P
of problems solvable by deterministic Turing machines in polynomial time); the field was later
influenced by the work of Juris Hartmanis and Richard Stearns (who received the ACM Turing
Award in 1993). A core question of complexity theory (and still the most famous unsolved
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problem in theoretical computer science) became P ?
= NP , i.e., whether nondeterministic

Turing machines can solve more problems in polynomial time than deterministic ones can.
The answer to this problem is of fundamental theoretical, practical, but also philosophical
consequence: it would answer the question whether constructing a solution to a problem is
indeed more complex than just checking whether a proposed solution is correct.

Alan Cobham
(1927–2011)

The question P ?
= NP led to the class of NP-complete problems; if any of these problems

could be solved deterministically in polynomial time, then all problems that can be solved
nondeterministically in polynomial time could be also solved deterministically so. In 1971,
Stephen Cook proved that there indeed exists an NP-complete problem, the satisfiability
problem in propositional logic; in 1972, Richard Karp showed that actually many more problems
are NP-complete

Stephen Cook (1939–)

(Cook received the Turing Award in 1982, Karp in 1985).

The area of complexity theory is still an active area of research. For instance, before 2002
many researchers conjectured (but could not prove) that there is no polynomial time algorithm
which is able to decide whether a given number is prime or not. However, in 2002 exactly
such an algorithm (the AKS primality test) was invented by Manindra Agrawal, Neeraj Kayal
and Nitin Saxena. Also the newly emerging area of quantum computing imposes particular
challenges to complexity theory; quantum computers can solve certain problems more efficiently
than classical computers but the exact range of these problems is still unclear.

Lecture Notes The remainder of this document is structured in two parts according to the
two

Richard Karp (1935–)

core questions we consider. In Part I Computability, we first deal with the important but
limited model of finite state machines and discuss its abilities and constraints; we then turn
our attention to the more powerful model of Turing machines and equivalent computational
models; finally we investigate the limits of computability by showing that not every computing
problem is indeed solvable in these models. In Part II Complexity, we first investigate the
notion of computational complexity; we will subsequently discuss the analysis of the complexity
of computational methods and finally elaborate the border between practically feasible and
infeasible computations in more detail.

Manindra Agrawal
(1966–)

These lecture notes are inspired by their predecessor [10] which was in turn based on [5];
however we have substantially revised the presentation and also added new material. An
important source was [4] which contains a very readable German introduction into the field;
also [8] and [9] were consulted. Our presentation of the complexity analysis of algorithm uses
material from [2, 3, 7, 1, 6].

© 2012– Wolfgang Schreiner.
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Chapter 2.

Finite State Machines and Regular
Languages

Suppose you want to model the behavior of a vending machine which operates as follows: the
machine delivers a drink if you enter 1€, either by inserting a single 1€ coin or by inserting
two 50¢ coins. After entering the first 50¢ coin, the machine does not allow you to enter 1€,
because it cannot give change. However, you may abort the transaction by pressing a button;
you will then receive your coin back. The behavior of this machine can be depicted by the
following diagram (whose form will be explained later in more detail):

start wait drink
50¢

1€

50¢

abort

From this diagram you can read that there are infinitely many sequences of interactions that
can persuade the machine to deliver a drink, e.g.

1€
50¢ 50¢
50¢ abort 1€
50¢ abort 50¢ abort 1€
50¢ abort 50¢ abort 50¢ 50¢
. . .

You might realize that all these sequences follow a common pattern: they end either with the
single action “1€” or with the pair of actions “50¢ 50¢”; before that there may be arbitrarily
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many repetitions of “50¢ abort”. Such a sequence can be described in a more abstract form
(which will be explained later in more detail) as

(50¢ abort)∗(1€ + 50¢ 50¢)

You might wonder whether for every automaton of the kind shown above it is possible to
describe in an analogous way the sequence of interactions leading to some form of “success”.

In this chapter, we will formalize and answer this question: auto mata give rise to finite-state
machines whose sequences of interactions can be described by regular languages. We will
investigate the properties and the relationships of these two concepts.

2.1. Deterministic Finite State Machines

We start with an auxiliary definition.

Definition 1 (Alphabet) An alphabet Alphabetis a finite set of elements called symbols
Symbol

.

Then the core concept of this section is defined as follows.

Definition 2 (DFSM) A deterministic finite-state machine deterministischer
endlicher Automat

(short DFSM) M is a 5-tuple
(Q,Σ, δ,q0,F) with the following components:

• The state set ZustandsmengeQ, a finite set of elements called states
Zustand

.

• An input alphabet EingabealphabetΣ, an alphabet whose elements we call input symbols
Eingabesymbol

.

• The transition function Überführungsfunktionδ : Q × Σ→ Q, a function that takes a state and an input symbol
as an argument and returns a state.

• The start state Anfangszustandq0 ∈ Q, one of the elements of Q.

• A set of accepting states akzeptierender Zustand(also called final states

Endzustand

) F ⊆ Q, a subset of Q.

In the following, we will denote a DFSM simply by the term automaton (endlicher) Automat.
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automaton sequence accepted

tapeabortabort

sequence of symbols

1€50¢50¢

Figure 2.1.: A Deterministic Finite-State Machine

The behavior of such an automaton is illustrated by Figure 2.1 (which uses as its symbol set
the set of interactions {50¢,1€,abort} of the vending machine described at the beginning of
the chapter). The automaton operates on an input tape that contains a finite sequence of input
symbols. At every time the automaton is in a certain state; every execution step of the automaton
consists of reading one symbol from the tape by which the tape is moved one position to the left.
Based on the current state and its input symbol, the transition function δ determines the next
state of the automaton in which the next symbol is read. When all symbols have been read, the
automaton indicates by a signal whether it is in an accepting state, i.e., whether it accepts the
sequence. The essence of above definition is therefore the transition function δ which defines
the behavior of M: if δ(q, x) = q′, then this means that, if M is in state q and reads symbol x, it
performs a transition into state q′.

The tape can be interpreted as an input medium whose content (the symbol sequence) is first
fully constructed and then given to the automaton. One might however also construct this input
step by step during the execution of the automaton, i.e., after the execution of every step the
automaton waits for the the next input to arrive; this corresponds to a sequence of “on the fly”
interactions with the automaton as described at the beginning of this chapter. One might even
think of the tape as an output medium where the automaton announces to the environment its
readiness to engage in a particular interaction (which then the environment has to accept to
make progress). The selection of an appropriate interpretation of the model depends on the
application context; the mathematical formalism remains the same for every interpretation.

The transition function is usually defined by a table with a line for every state q and a column
for every symbol x such that the corresponding table entry denotes δ(q, x):

© 2012– Wolfgang Schreiner.
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M = (Q,Σ, δ,q0,F)
Q = {q0,qa,qr}

Σ = {a,b,0,1,?}
F = {qa}

δ a b 0 1 ?
q0 qa qa qr qr qr
qa qa qa qa qa qr
qr qr qr qr qr qr

q0 qa

qr

a,b

0,1,?

a,b,0,1

?

a,b,0,1,?

Figure 2.2.: A Deterministic Finite-State Machine

δ . . . x . . .
...

q δ(q, x)
...

The transition function can be also depicted by a directed graph (see Figure 2.2):

• Every state is depicted by a vertex.

• For every transition δ(q, x) = q′, an arc with label x is drawn from state q to state q′. If
there are multiple transitions from q to q′, a single arc is drawn with multiple labels.

• The start state is marked by a small incoming arrow.

• Every accepting state is marked by a double outline.

Definition 3 (Word, Concatenation, Closure, Language)

• A word Wortw over an alphabet A is a finite (possibly empty) sequence w = a1a2 . . . an of
symbols ai from A (for some n ≥ 0 and all 1 ≤ i ≤ n).

• We denote by |w | the word length (Wort)längen.

• We denote, for 0 ≤ k ≤ |w |, by w ↓ k the word prefix (Wort)präfixa1a2 . . . ak of w.
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• The empty wordleeres Wort is denoted by ε.

• By w1 · w2 (or simply w1w2) we denote the word concatenation(Wort)verkettung (short concatena-
tionVerkettung ) of word w1 = a1a2 . . . an and word w2 = b1b2 . . . bm to the word w1 · w2 =

a1a2 . . . anb1b2 . . . bm.

• For every k ≥ 0, the repetitionWiederholung wk denotes the k-fold concatenation w · w · . . . · w

(including the special cases w0 = ε and w1 = w).

• The finite closureendlicher Abschluss A∗ is the set of all words over A.

• Every subset L ⊆ A∗ is called a languageSprache over A.

Definition 4 (Extended transition function) Let M = (Q,Σ, δ,q0,F) be a DFSM.We define
the extended transition functionerweiterte

Überführungsfunktion
δ∗ : Q × Σ∗ → Q of M , which takes a state and a word as an

argument and returns a state as a result, inductively over the structure of its argument word. In
more detail, for all q ∈ Q,w ∈ Σ∗,a ∈ Σ, we define δ∗ by the two equations

δ∗(q, ε) := q

δ∗(q,wa) := δ(δ∗(q,w),a)

If, for some states q and q′ and word a1a2 . . . an, we have q′ = δ∗(q,a1a2 . . . an), then there
exists a sequence of states q = q0,q1, . . . ,qn = q′ such that

q1 = δ(q0,a1)

q2 = δ(q1,a2)

. . .

qn = δ(qn−1,an)

which we can depict as

q0 q1 q2 . . . qn−1 qn
a1 a2 a3 an−1 an

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
qn = δ∗(q0,a1a2 . . . an)

© 2012– Wolfgang Schreiner.
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In other words, the word a1a2 . . . an drives automaton M from state q to state q′.

Definition 5 (Language of a DFSM) Let M = (Q,Σ, δ,q0,F) be a DFSM. Then the automa-
ton language die Sprache eines

Automaten
L(M) ⊆ Σ∗ of M is the language over Σ defined by

L(M) := {w ∈ Σ∗ | δ∗(q0,w) ∈ F}

In other words, L(M) is the set of all words that drive M from its start state to some accepting
state. Word w is accepted akzeptiertby M , if w ∈ L(M).

Example 1 (Language of Identifiers) The automaton in Figure 2.2 accepts all words that start
with ‘a’ or ‘b’ and are followed by an arbitrary sequence of ‘a’, ‘b’, ‘0’, ‘1’, i.e., all words that
consist of letters or digits but start with a letter. The automaton thus accepts

a, b, ab, a1, a1b, a101

but not the words “1a” or “a1?”. Taking a bigger alphabet of letters and digits, the language of
this automaton is the language of identifiers in many programming languages. □

Example 2 (Even Numbers) Take the program depicted in Figure 2.3 which reads symbols
from an input stream and returns true if the stream contains an even number of ‘0’ and an even
number of ‘1’ (and no other symbol). The program operates with two Boolean variables e0 and
e1 that have value “true” if the number of ‘0’ respectively ‘1’ read so far is an even number.
The variables are initialized to “true” (0 is an even number); when a symbol is read, the
corresponding variable is negated (an even number becomes an odd number and an odd number
becomes an even number). The program returns true only if the only symbols encountered are
‘0’ and ‘1’ and if both variables are “true”.

The behavior of this program can be modeled by an automaton M , as depicted in Figure 2.3.
The automaton has four states corresponding to the four possible combination of values of the
program variables e0 and e1:

e0 e1

q0 true true
q1 true false
q2 false true
q2 false false
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function EvenZerosAndOnes()
e0, e1 ← true, true
while input stream is not empty do

read input
case input of

0: e0 ← ¬e0
1: e1 ← ¬e1
default: return false

end case
end while
return e0 ∧ e1

end function

M = (Q,Σ, δ,q0,F)
Q = {q0,q1,q2,q3}

Σ = {0,1}
F = {q0}

δ 0 1
q0 q2 q1
q1 q3 q0
q2 q0 q3
q3 q1 q2

q0 q1

q2 q3

1

1
00

1

1

00

Figure 2.3.: Even Number of Zeros and Ones

The start state corresponds to the state of e0 and e1 at the start of the loop. This state is also
the only accepting one, which corresponds to the values that e0 and e1 must have such that the
program may return “true”. Every transition of M corresponds to the negation of one of the
variables in the body of the loop. □

2.2. Nondeterministic Finite State Machines

If a DFSM is in a state q, the next symbol x on the input tape uniquely determines the successor
state q′ = δ(q, x). We are now going to relax this condition such that for given q and x, there is
more than one successor state q′ (but also none) possible. Furthermore, we are going to allow
the automaton to start in one of several possible start states.

We start with an auxiliary definition.
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Definition 6 (Powerset) The power set PotenzmengeP(S) is the set of all subsets of set S:

P(S) := {T | T ⊆ S}

Then the core concept of this section is defined as follows.

Definition 7 (NFSM) A nondeterministic finite-state machine nichtdeterministischer
endlicher Automat

(NFSM) is a 5-tuple M =

(Q,Σ, δ,S,F) with the following components:

• The state set ZustandsmengeQ, a finite set of elements called states
Zustand

.

• An input alphabet EingabealphabetΣ, an alphabet whose elements we call input symbols
Eingabesymbol

.

• The transition function Überführungsfunktionδ : Q × Σ → P(Q), a function that takes a state and an input
symbol as an argument and returns a set of states.

• A set of start states AnfangszustandS ⊆ Q, a subset of Q.

• A set of accepting states akzeptierender Zustand(also called final states

Endzustand

) F ⊆ Q, a subset of Q.

According to above definition, for given state q and symbol x, a NFSM may have no, exactly
one, or more than one successor state q′, depending on whether δ(q, x) is empty, has exactly
one element, or has multiple elements. In the following, we will use the term automaton to
denote both DFSMs and NFSMs (the exact meaning should be clear from the context).
We can define a NFSM by a table or a graph as depicted in Figure 2.4.
An informal interpretation of a NFSM is that, when it is in a state q and reads a symbol x, it

splits itself into multiple copies that simultaneously investigate all successor states in δ(q, x); an
input word is accepted if there is at least one copy that reaches an accepting state.

Example 3 (Nondeterminism) Take the following NFSM over alphabet {0,1}:

q0 q1 q2

0,1

0 0

0,1
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M = (Q,Σ, δ,S,F)
Q = {q0,q1,q2,q3,q4}

Σ = {0,1}
S = {q0}

F = {q2,q4}

δ 0 1
q0 {q0,q3} {q0,q1}
q1 ∅ {q2}
q2 {q2} {q2}
q3 {q4} ∅

q4 {q4} {q4}

q0

q1

q2

q3 q4

0,1

1

1

0,1

0 0 0,1

Figure 2.4.: A Nondeterministic Finite-State Machine

The nondeterministic behavior of the automaton on input 0100 can be visualized as follows:

0

1

0

0

q0

q0 q1

q0

q0 q1

q0 q1

q2

In state q0 on input 0, there exist transitions to q0 and q1; consequently the automaton starts to
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investigate both possibilities in parallel. For the first occurrence of 0, the transition to q1 leads
to a dead end; however for the second occurrence of 0, this transition is the right choice which
ultimately leads to the acceptance state q2. □

Definition 8 (Extended transition function) Let M = (Q,Σ, δ,S,F) be a NFSM. We define
the extended transition function erweiterte

Überführungsfunktion
δ∗ : Q × Σ∗ → P(Q) of M , which takes a state and a word as

an argument and returns a set of states as a result, inductively over the structure of its argument
word. In more detail, for all q ∈ Q,w ∈ Σ∗,a ∈ Σ, we define δ∗ by the two equations

δ∗(q, ε) := {q}

δ∗(q,wa) := {q′′ | ∃q′ ∈ δ∗(q,w) : q′′ ∈ δ(q′,a)}

If, for some states q and q′ and word a1a2 . . . an, we have q′ ∈ δ∗(q,a1a2 . . . an), then there
exists a sequence of states q = q0,q1, . . . ,qn = q′ such that

q1 ∈ δ(q0,a1)

q2 ∈ δ(q1,a2)

. . .

qn ∈ δ(qn−1,an)

which we can depict as

q0 q1 q2 . . . qn−1 qn

. . . . . .
. . .

. . .

a1 a2 a3 an−1 an

a1 a2 a3
an

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
qn ∈ δ∗(q0,a1a2 . . . an)

In other words, the word a1a2 . . . an drives automaton M from state q to state q′ (but potentially
also to other states).

Definition 9 (Language and Acceptance of a NFSM) Let M = (Q,Σ, δ,S,F) be a NFSM.
Then the automaton language die Sprache eines

Automaten
L(M) ⊆ Σ∗ of M is the language over Σ defined by

L(M) = {w ∈ Σ∗ | ∃q ∈ S : δ∗(q,w) ∩ F ≠ ∅}
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Word w is acceptedakzeptiert by M if w ∈ L(M).

Thus a NFSM accepts a word if there exists some path from some start node to some accepting
node such that the edges of the path are labeled by the symbols of the word in the corresponding
sequence.
As can be seen by the following example, it is often easier to give a NFSM that accepts a

certain language than to give a corresponding DFSM.

Example 4 (Finding Subwords) It is easy to see that the NFSM in Figure 2.4 accepts all
words in which the substring 00 or the substring 11 occurs. All words with a substring 00
are recognized via a state sequence that includes state q3, all words with a substring 11 are
recognized via a state sequence that includes state q1.
A word may be recognized by multiple state sequences, e.g. 00111 is recognized by any of

the following sequences:

q0
0
→ q3

0
→ q4

1
→ q4

1
→ q4

1
→ q4

q0
0
→ q0

0
→ q0

1
→ q1

1
→ q2

1
→ q2

q0
0
→ q0

0
→ q0

1
→ q0

1
→ q1

1
→ q2

It is harder to see that the DFSM with the following graph accepts the same language:

q0

q1

q2

q3 q4

1
0

1

0,1

0 0

1

0,1

The idea behind this deterministic automaton is that q1 is reached after a 1 has been recognized
and q3 is reached after a 0 has been recognized; a following symbol of the same kind drives the
automaton to an accepting state while a following symbol of the other kind drives the automaton
from q1 to q3 respectively from q3 to q1. □
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Clearly, a DFSM is just a special case of a NFSM, thus for every language L that is accepted
by some DFSM, there exists also a NFSM M′ that accepts L. The following theorem proved by
Rabin and Scott in 1959 tells us that (somewhat surprisingly) also the converse is true.

Theorem 1 (Subset construction) Teilmengen-
konstruktion

Let M = (Q,Σ, δ,S,F) be a NFSM and let M′ =

(Q′,Σ, δ′,q′0,F
′) be the following DFSM:

Q′ = P(Q)

δ′(q′,a) =
⋃︂
q∈q′
δ(q,a)

q′0 = S

F′ = {q′ ∈ Q′ | q′ ∩ F ≠ ∅}

Then L(M′) = L(M).

This theorem states that nondeterminism does not really add anything to the expressive power
of an automaton: for every NFSM M a corresponding DFSM M′ with the same language can
be constructed as follows: the states of M′ are sets of states of M , the start state of M′ is the set
of start states of M , the accepting states of M′ are those sets that contain accepting states in M;
there exists in M′ a transition from a state q′1 to a state q′2 if there exists in M a transition from
some state q1 ∈ q′1 to some state q2 ∈ q′2.

Proof We show, for every word w = a1a2 . . . an, that w ∈ L(M) if and only if w ∈ L(M′):

⇒ Assume w = a1a2 . . . an ∈ L(M). Then there exists a state sequence q0,q1,q2, . . . ,qn

with q0 ∈ S and qn ∈ F and q1 ∈ δ(q0,a1),q2 ∈ δ(q1,a2), . . . ,qn ∈ δ(qn−1,an). Take the
sequence of state sets Q0,Q1,Q2, . . . ,Qn with Q0 = S, Q1 = δ

′(Q0,a1),Q2 = δ
′(Q1,a2),

. . . , Qn = δ
′(Qn−1,an). We know q0 ∈ S = Q0; according to the definition of δ′, we thus

have q1 ∈ δ(q0,a1) ⊆ δ
′(Q0,a1) = Q1; we thus have q2 ∈ δ(q1,a2) ⊆ δ

′(Q1,a2) = Q2;
. . . ; we thus have qn ∈ δ(qn−1,an) ⊆ δ

′(Qn−1,an) = Qn. Since qn ∈ Qn and qn ∈ F, we
have Qn ∩ F ≠ ∅ and thus w ∈ L(M′).

⇐ Assume w = a1a2 . . . an ∈ L(M′). Then there exists a sequence Q0,Q1,Q2, . . . ,Qn with
Q0 = S and Qn ∩ F ≠ ∅ and Q1 = δ

′(Q0,a1),Q2 = δ
′(Q1,a2), . . . ,Qn = δ(Qn−1,an). Ac-

cording to the definition of δ′, there exists a sequence q0,q1,q2, . . . ,qn with q0 ∈ Q0,q1 ∈
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Q1,q2 ∈ Q2, . . . ,Qn ∈ Qn with q1 ∈ δ(q0,a1),q2 ∈ δ(q1,a2), . . . ,qn ∈ δ(qn−1,an) and
qn ∈ F. Since q0 ∈ Q0 = S, we have w ∈ L(M). □

Since DFSMs and NFSMs have the same expressive power, our sloppy terminology to call
both plainly automata is justified.

Example 5 (Subset construction) We apply the subset construction to the automaton in
Figure 2.4. We begin with the starting state {q0}.

{q0}

Since δ(q0,0) = {q0,q3} and δ(q0,1) = {q0,q1}, we extend the graph as follows:

{q0}

{q0,q3} {q0,q1}

0 1

We extend the graph according to the outgoing transitions from the states inside the newly
generated nodes {q0,q3} and {q0,q1}:

{q0}

{q0,q3} {q0,q1}

{q0,q3,q4} {q0,q1,q2}

0 1

0 1

1

0

We extend the graph according to the outgoing transitions from the states inside the newly
generated nodes {q0,q3,q4} and {q0,q1,q2}:
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{q0}

{q0,q3} {q0,q1}

{q0,q3,q4} {q0,q1,q2}

{q0,q1,q4} {q0,q2,q3}

0 1

0 1

1

0

0 1

1 0

We extend the graph by transitions from the new nodes:

{q0}

{q0,q3} {q0,q1}

{q0,q3,q4} {q0,q1,q2}

{q0,q1,q4} {q0,q2,q3}

{q0,q1,q2,q4} {q0,q2,q3,q4}

0 1

0 1

1

0

0 1

1 00 1

1 0

We extend again by transitions from the new nodes; from these nodes, no new transitions can
be generated, so we finally mark the accepting nodes:
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{q0}

{q0,q3} {q0,q1}

{q0,q3,q4} {q0,q1,q2}

{q0,q1,q4} {q0,q2,q3}

{q0,q1,q2,q4} {q0,q2,q3,q4}

0 1

0 1

1

0

0 1

1 00 1

1 00

1

1 0

The result is a deterministic automaton whose first three states correspond to those of the
previously given one; the remaining six states are all accepting states that cannot be left by any
transition; these correspond to the two accepting states of the previous automaton that could
also not be left. We see that, while the subset construction leads to a deterministic automaton,
the result is not necessarily optimal. □

2.3. Minimization of Finite State Machines

As could be seen from the example in the previous section, multiple deterministic automata
can accept the same language, but considerably differ in their sizes (number of states). In this
section, we will discuss how to minimize the number of states in an automaton while preserving
the language that it accepts.

The construction depends on a notion of “equivalence” of states:

Definition 10 (State Equivalence, Bisimulation) Let M = (Q,Σ, δ,q0,F) be a DFSM. We
define the relation ∼k of M , a binary relation on state set Q, by induction on k:

q1 ∼0 q2 :⇔ (q1 ∈ F ⇔ q2 ∈ F)
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2.3. Minimization of Finite State Machines 37

q1 ∼k+1 q2 :⇔ ∀a ∈ Σ : δ(q1,a) ∼k δ(q2,a)

We define the the bisimulation Bisimulationrelation ∼ of M , a binary relation on Q, as

q1 ∼ q2 ⇔ ∀k ∈ N : q1 ∼k q2

If q1 ∼ q2, we say that states q1 and q2 are state equivalent (zustands)äquivalent.

By this definition we have q1 ∼k q2 if starting with q1 the same words of length k are accepted
as if starting with q2. We have q1 ∼ q2 if the same words of arbitrary length are accepted. It
can be shown that, if q1 ∼k q2 for k = |Q |, then q1 ∼ q2, i.e., if two states are equivalent for
words whose length equals the number of states, then the two states are equivalent for words of
arbitrary length.
If an automaton has two equivalent states, they may be merged into one; the resulting

automaton is smaller but has the same language as the original one. Based on this principle, we
will construct an algorithm for the minimization of automata. This algorithm decomposes the
state set of the given automaton into partitions (clusters) of equivalent states. Each partition
then represents a state of the minimized automaton.
We start with an auxiliary notion which is illustrated in Figure 2.5.

Definition 11 (State Partition) Let M = (Q,Σ, δ,q0,F) be a DFSM. Let S ⊆ P(Q) be a set
of partitions of state set Q, p ∈ S be a partition in S, and s ∈ p be a state in p. Then the state
partition (Zustands)partition[s]Sp is defined as

[s]Sp = { t ∈ p | ∀a ∈ Σ,q ∈ S : δ(t,a) ∈ q⇔ δ(s,a) ∈ q}

In other words, [s]Sp consists of all those states of p from which every transition leads to the
same partition in S as the corresponding transition does from state s.

Let us assume we have a set S of partitions such that the elements in each partition are in
relation ∼k (for some k ∈ N), i.e., they cannot be distinguished by any word of length k. Given
a partition p ∈ S and a state s ∈ p, we can by the notion introduced above split p into two
partitions: one is [s]Sp while the other one contains all other states of p. Since all states in the
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a a a

ts

δ(s,a) δ(t,a)

p

S

[s]Sp

q

Figure 2.5.: A State Partition

original partition p are in relation ∼k , i.e., they cannot be distinguished from s by any word of
length k, the states of [s]Sp are in relation ∼k+1. This is because the application of the transition
function reaches for all input symbols states which are in the same target partition and therefore
cannot be distinguished by any input word of length k.

On the other hand, the states in [s]Sp can be distinguished from the other states in p by a word
of length k + 1, since for some input symbol the transition function yields two states which
are in different partitions and therefore can be distinguished by input words of length k. If we
construct [s]Sp for every state s ∈ p, we can thus “break up” p into a number of partitions such
that the states in each partition are exactly those states which are in relation ∼k+1.

Based on this idea, the algorithm Partition in Figure 2.6 partitions the state set of a DFSM
into clusters of equivalent states by repeatedly breaking up previously constructed clusters of
states which are in relation ∼k into clusters of states in relation ∼k+1 until the states in the
clusters are in relation ∼, i.e., they are equivalent. In more detail, starting with the partitioning
P0 = {F,Q\F} (whose elements consist of those states that are in relation ∼0), the algorithm
constructs a sequence of partitionings P0,P1,P2, . . . ,Pn of state set Q where every Pk consists
of those clusters whose elements are in relation ∼k . We have n ≤ |Q |, because ∼|Q | equals ∼,
i.e., after at most |Q | iterations no new cluster can be constructed and the algorithm terminates.
Using Partition as a sub-algorithm, the algorithm Minimize in Figure 2.6 minimizes a

given DFSM. First, Minimize removes all unreachable states from state set Q of the original
automaton M and partitions the remaining states into clusters of equivalent states. These
clusters become the states of the minimized automaton M′; the initial state q′0 is the cluster
which contains the initial state q0 of M; the set of accepting states F′ contains those clusters that
hold some accepting state of M . The transition relation δ′ of M′ maps cluster q′ and symbol a

to that cluster to which all the elements q of q′ are mapped by the transition relation M of a.
Such a cluster exists because the elements of every cluster are state equivalent. The result is an
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function Partition(Q,Σ, δ,q0,F)
P← {F,Q\F}
repeat

S ← P
P← ∅
for p ∈ S do

P← P ∪ {[s]Sp | s ∈ p}
end for

until P = S
return P

end function

function Minimize(Q,Σ, δ,q0,F)
Q← {q ∈ Q | ∃w ∈ Σ∗ : δ∗(q0,w) = q}
Q′← Partition(Q,Σ, δ,q0,F)
for q′ ∈ Q′,a ∈ Σ do

set δ′(q′,a) to that partition q′′ of Q′

where ∀q ∈ q′ : δ(q,a) ∈ q′′

end for
let q′0 be that partition of Q′ where q0 ∈ q′0
F′← {q ∈ Q′ : q ∩ F ≠ ∅}
return (Q′,Σ, δ′,q′0,F

′)

end function

Figure 2.6.: Minimization of a DFSM

automaton which has different states q1 and q2 only if q1 ≁ q2.

Theorem 2 (DFSM Partitioning and Minimization) Let M = (Q,Σ, δ,q0,F) be a DFSM. Zerlegung

Minimierung

1. Partition(M) returns the smallest partitioning of the state set of M into clusters of
equivalent states.

2. Minimize(M) returns a DFSM with the smallest number of states whose language
is L(M).

Based on above concepts, we can also determine whether two automata M1 and M2 have
the same language: we apply algorithm Partition to a combination of M1 and M2, i.e., an
automaton whose state set is the (disjoint) union of the state sets of M1 and M2: if the start states
q0 of M1 and q′0 of M2 end up in the same cluster, we have q0 ∼ q0 and thus L(M1) = L(M2).
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Example 6 (Minimization) Take the DFSM constructed in Example 5 from a NFSM by the
subset construction (we have renamed the states for simplicity):

q0

q1 q2

q3 q4

q5 q6

q7 q8

0 1

0 1

1

0

0 1

1 00 1

1 00

1

1 0

The minimization algorithm starts with a partitioning into two clusters

p0 := {q0,q1,q2}

p3 := {q3,q4,q5,q6,q7,q8}

All transitions from a state in p3 lead to cluster p3, thus this cluster need not be split any more.
However we have to further split p0: since

δ(q0,0) = q1 ∈ p0

δ(q1,0) = q3 ∈ p3

we have to put q0 and q1 into different clusters. Likewise, since

δ(q0,1) = q2 ∈ p0

δ(q2,1) = q4 ∈ p3

we have to put q0 and q2 into different clusters. Finally, since

δ(q1,0) = q3 ∈ p3

δ(q2,0) = q1 ∈ p0
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we have to put q1 and q2 into different clusters. Consequently, cluster p0 is split into three
singleton clusters:

p0 := {q0}

p1 := {q1}

p2 := {q2}

These clusters cannot be split any more, thus the algorithm terminates. The minimized
automaton is as follows:

p0

p1 p2

p3

0 1

0 1

1

0

0,1

This automaton is even smaller than the DFSM presented in Example 4 which accepts the same
language of words of 0 and 1 which contain 00 or 11. □

2.4. Regular Languages and Finite State Machines

We are now going to introduce a mechanism to define the class of regular languages.

Definition 12 (Regular Expression) Let Σ be an alphabet. The set of regular expressions regulärer Ausdruck

Reg(Σ) over Σ is inductively defined as follows:

• ∅ ∈ Reg(Σ) and ε ∈ Reg(Σ).

• If a ∈ Σ, then a ∈ Reg(Σ).

• If r1,r2 ∈ Reg(Σ), then (r1 · r2) ∈ Reg(Σ) and (r1 + r2) ∈ Reg(Σ).

• If r ∈ Reg(Σ), then (r∗) ∈ Reg(Σ).
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For Σ = {a1, . . . ,an}, the set Reg(Σ) can be also described by the following grammar rule

r ::= ∅ | ε | a1 | . . . | an | (r · r) | (r + r) | (r∗)

To avoid the heavy use of parenthesis, we assume that ∗ binds stronger than · which in turn
binds stronger than +; e.g. rather than writing

(a + (b · (c∗)))

we typically write
a + b · c∗

We also often drop the · symbol and just write

a + bc∗

Definition 13 (Language Concatenation and Closure) Let Σ be an alphabet and L1, L2 ⊆

Σ∗ be languages over Σ. We define the following operations on languages:

• The language concatenation(Sprach)verkettung (short concatenation
Verkettung

)

L1 ◦ L2 := {w1 · w2 | w1 ∈ L1 ∧ w2 ∈ L2}

• The finite language closureendlicher
(Sprach)abschluss

(short finite closure

endlicher Abschluss

)

L∗ :=
∞⋃︂

i=0
Li

(i.e., L∗ = L0 ∪ L1 ∪ L2 ∪ . . .) where

L0 := {ε}

Li+1 := L ◦ Li

Thus L1 ◦ L2 contains all words that can be decomposed in a prefix from L1 and a suffix from
L2; furthermore, L∗ contains all words that are concatenations of finitely many words from L

(including the empty word ε which represents the zero-fold concatenation).
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Definition 14 (Language of Regular Expressions) Let Σ be an alphabet. Then the regular
expression language die Sprache eines

regulären Ausdrucks
L(r) ⊆ Σ∗ of regular expression r ∈ Reg(Σ) is inductively defined as

follows:

• L(∅) := ∅.

• L(ε) := {ε}.

• L(a) := {a}.

• L(r1 · r2) := L(r1) ◦ L(r2).

• L(r1 + r2) := L(r1) ∪ L(r2).

• L(r∗) := L(r)∗.

We notice L(r1 · (r2 · r3)) = L((r1 · r2) · r3), i.e., the concatenation operator “·” is associative
with respect to language building. Therefore the setting of parentheses in a concatenation does
not matter and we typically write r1 · r2 · r3 or just r1r2r3.

Definition 15 (Regular Language) Let Σ be an alphabet and L ⊆ Σ∗ be a language over Σ.
Then L is a regular language reguläre Sprache(over Σ), if there exists a regular expression r ∈ Reg(Σ) over Σ
such that

L = L(r)

Example 7 (Regular Languages) The language of the automaton depicted in Figure 2.2 is
regular; it is denoted by the regular expression

(a + b)(a + b + 0 + 1)∗

Also the language of the automaton depicted in Figure 2.4 is regular; it is denoted by the regular
expression

(0 + 1)∗(00 + 11)(0 + 1)∗

The language of the vending machine depicted at the beginning of this chapter is regular; it is
denoted by the regular expression
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(50¢ abort)∗(1€ + 50¢ 50¢) □

Above example shows that the languages of some automata are regular; one might wonder
whether this is the case for all automata (which is not self-evident, e.g., it is hard to see what
the regular expression for the language of the automaton depicted in Figure 2.3 might be).

Also the converse question might be of interest: given a regular expression, does there exist
an automaton recognizing this language?

Example 8 (Regular Languages) Let r be the regular expression

ε + 1(0 + 1(0 + 1)∗0)∗

Then the following NFSM M has language L(r).

q0 q1

q2

1
0

10

0,1

Since ε ∈ L(r), the start state q0 of M is accepting. Since 1 ∈ L(r), we have a transition from q0

to another accepting state q1. Since the 1 may be followed by an arbitrary repetition of 0, we
have a transition from q1 to itself. Since any element of this repetition may be also 10, we have
another path from q1 to itself via intermediate state q2. Since the two symbols of 10 may be
separated by arbitrary many repetitions of 0 or 1, we have corresponding transitions from q2 to
itself. □

Again, the question arises whether above example demonstrates a general principle, i.e., whether
for every regular expression an automaton exists that has the same language as the expression.
Actually, for this question as well as for the one raised above, the answer is “yes”.

Theorem 3 (Equivalence of Regular Expressions and Automata)

1. For every regular expression r over Σ, there exists an automaton M with input alphabet Σ
such that L(M) = L(r).

2. For every automaton M with input alphabet Σ, there exists a regular expression r over Σ
such that L(r) = L(M).
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We will sketch the proof of this theorem by the construction of an automaton from a regular
expression and vice versa.

Proof (Proof of Part 1 of Theorem 3) Let r be a regular expression over Σ; we show by
induction on the structure of r the construction of a NFSM M with input alphabet Σ such that
L(M) = L(r). M has exactly one start state and arbitrarily many accepting states (one of which
may be also the start state).
In the course of the following constructions, it is sometimes necessary to require from an

automaton M that it does not have transitions back to its the start state. If M happens to have
such transitions, i.e., if it has form

M

q0 . . .

q1

q2

· · ·

· · ·

· · ·

· · ·

q3

q4

then we can replace M by the following automaton M′ that has the same language as M but not
any transitions back to its start state:

M′

q′0 q0 . . .

q1

q2

· · ·

· · ·

· · ·

· · ·

q3

q4

Essentially, M′ adds a new start state q′0 that is accepting, if and only if q0 is accepting, and that
has transitions to the same states as the original start state q0; all of the transitions back to q0

are thus not any more transitions to the start state.
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The construction of M from r is performed according to the following cases:

• Case r = ∅: M is the following automaton with a single non-accepting state:

M

• Case r = ε: M is the following automaton with a single accepting state:

M

• Case r = a (for some a ∈ Σ): M is the following automaton with two states, one of
which is accepting:

M
a

• Case r = r1 · r2: By the induction hypothesis, we have two automata M1 and M2 such
that L(M1) = L(r1) and L(M2) = L(r2). The automata have general form

M1

q0

· · ·

· · ·

q1

q2

qx

qy

qz
M2

q′0

· · ·

· · ·

q′1

q′2

q′x

q′y

q′z

where q0 is the start state of M1 and q′0 is the start state of M2 (both may or may not
be accepting). We may assume that there are no transitions to the start states q′0 of M2;
otherwise M2 has to be transformed as explained above.

Here q1,q2 in M1 represent all the nodes (there may be arbitrarily many) from which there
is a transition to some accepting state qx,qy,qz in M1 (there may be arbitrarily many).
Likewise, q′1,q

′
2 in M2 represent all the nodes (there may be arbitrarily many) from which

there is a transition to some accepting state q′x,q
′
y,q
′
z of M2.

As shown in Figure 2.7, automaton M is then defined by linking a copy of M2 to every
accepting state qx,qy,qz of M1, i.e., in every copy of M2, q′0 is identified with one of these
states; qx,qy,qz become accepting in M if q′0 is accepting in M2.
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M

q0 M1

· · ·

· · ·

q1

q2

qx

qy

qz

M2

· · ·

· · ·

q′1

q′2

q′x

q′y

q′z

M2

· · ·

· · ·

q′1

q′2

q′x

q′y

q′z

M2

· · ·

· · ·

q′1

q′2

q′x

q′y

q′z

Figure 2.7.: Case r = r1 · r2
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M

q0

· · ·

M1

· · ·

· · ·

M2

· · ·

q1

q2

q′1

q′2

qx

qy

qz

q′x

q′y

q′z

Figure 2.8.: Case r = r1 + r2

Due to this linkage, it is important that M2 does not have a transition back to its
start state: otherwise M might, after following a path through M2, return to some of
the states qx,qy,qz and then (since there may exist in M1 paths that lead from these
states back to themselves) continue by following a path through M1 before returning to
M2. Consequently, executions of M1 and M2 might be arbitrarily interleaved such that
L(M) ≠ L(M1) ◦ L(M2). Our construction therefore ensures that after M has entered the
execution of some copy of M2 no more execution of some part of M1 is possible.

• Case r = r1 + r2: By the induction hypothesis, we have two automata M1 and M2 such
that L(M1) = L(r1) and L(M2) = L(r2). The automata have general form

M1

q0

· · ·

· · ·

q1

q2

qx

qy

qz
M2

q′0

· · ·

· · ·

q′1

q′2

q′x

q′y

q′z
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where we may assume that there are no transitions to the start states q0 of M1 and q′0
of M2 (which may or may not be accepting); otherwise M1 respectively M2 have to be
transformed as explained above.

As shown in Figure 2.8, automaton M is then constructed by parallel composition of M1

and M2, i.e., their start states q0 and q′0 are identified; this state becomes accepting in M

if q0 in M1 or q′0 in M2 is accepting. Due to this composition, it is important that M1

and M2 must not return to their start states because otherwise executions of M1 and M2

might be arbitrarily interleaved.

• Case r = r∗1: By the induction hypothesis, we have an automaton M1 such that L(M1) =

L(r1). This automaton has general form

M1

q0

· · ·

· · ·

q1

q2

qx

qy

qz

where the start state q0 of M1 may or may not be accepting.

Then M has the following form where for every transition to an accepting state in M1 an
additional transition to q0 is created; furthermore, q0 becomes the only accepting state
of M:

M

q0

· · ·

· · ·

q1

q2

qx

qy

qz
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Now those nodes qx,qy,qz (which were accepting in M1 but are not any more in M) can
be erased from which no path leads to q0 ; if this is the case for all of them, the resulting
automaton has the following form:

M

q0

· · ·

· · ·

q1

q2

This construction is the only one that introduces transitions to the start state; if the resulting
automaton shall serve as a building block for the composition of another automaton from
a regular expression that contains r∗1 , then a new start state q′0 has to be introduced as
described in the beginning of the proof.

While the correctness of the constructions seems pretty self-evident, it is still necessary to verify
that the languages of the constructed automata represent the languages of the corresponding
regular expressions (we omit the details). □

Example 9 (Automaton from Regular Expression) We apply above construction to the reg-
ular expression (0 + 1)∗(00 + 11)(0 + 1)∗.
The automata corresponding to the regular expressions 0 and 1 are

0
0

1
1

The automaton for 0 + 1 then is

0 + 1
0,1

From this, we construct the automaton for (0 + 1)∗

(0 + 1)∗
0,1

The automata for 00 and 11 are
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00
0 0

11
1 1

From these, we can construct the automaton for 00 + 11 as

00 + 11

0

1

0

1

which can be simplified to

00 + 11

0

1

0

1

Now we construct the automaton for (0 + 1)∗(00 + 11) as

(0 + 1)∗(00 + 11)

0,1
0

1

0

1

Since the construction of the automaton for (0 + 1)∗(00 + 11)(0 + 1)∗ from the automata for
(0+ 1)∗(00+ 11) and (0+ 1)∗ demands that the automaton for (0+ 1)∗ does not have a transition
to its start state, we transform the automaton

(0 + 1)∗
0,1

constructed above accordingly:

(0 + 1)∗
0,1

0,1
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The automaton for (0 + 1)∗(00 + 11)(0 + 1)∗ can now be constructed as

(0 + 1)∗(00 + 11)(0 + 1)∗

0,1
0

1

0

1

0,1

0,1

which can be further simplified to

(0 + 1)∗(00 + 11)(0 + 1)∗

0,1
0

1

0

1

0,1

The result is an optimized version of the automaton presented in Figure 2.4. □

Using the constructions presented up to now, a regular expression can be transformed to a
minimized deterministic automaton by the following sequence of steps:

regular expression T heorem 3
−→ NFSM T heorem 1

−→ DFSM T heorem 2
−→ minimized DFSM

We are now going to complete the proof of Theorem 3.

Proof (Proof of Part 2 of Theorem 3) Let M = (Q, σ, δ,q0,F) be a DFSM; we show the
construction of a regular expression r over Σ such that L(r) = L(M).
We start by defining Rq,p as the set of all words that drive M from state q to state p:

Rq,p := {w ∈ Σ∗ | δ∗(q,w) = p}

Assume that, for arbitrary states q, p ∈ Q, we can construct a regular expression rq,p with
L(rq,p) = Rq,p. We can then define the regular expression r as

r := rq0,p1 + . . . + rq0,pn
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where p1, . . . , pn are all states of F. The language of M is the set of all words that drive M from
start state q0 to some end state p, i.e.

L(M) = Rq0,p1 ∪ . . . ∪ Rq0,pn

Thus by the construction of r and the definition of L(r), we know L(r) = L(M).

We now show that such rq,p can indeed be constructed. Let a1, . . . ,an ∈ Σ denote those
symbols (in some permutation) that drive M from q to p, i.e., δ(q,ai) = p for 1 ≤ i ≤ n. Let
q0, . . . ,q|Q |−1 denote the elements of Q (in some permutation) and let„ for 0 ≤ j ≤ |Q |, Q j

denote the subset {q0, . . . ,q j−1} of Q. Then we define, for 0 ≤ j ≤ |Q |, the set R j
q,p as:

R0
q,p :=

{︄
{a1, . . . ,an}, if q ≠ p

{a1, . . . ,an, ε}, if q = p

R j+1
q,p := {w ∈ Rq,p | ∀1 ≤ k ≤ |w | : δ∗(q,w ↓ k) ∈ Q j+1}

Thus R0
q,p consists of those words of length zero or one that drive M from q to p. For j > 0,

set R j
q,p consists of those words that drive M from q to p such that M passes only states in Q j .

Assume that, for arbitrary states q, p ∈ Q and 0 ≤ j ≤ |Q |, we can construct a regular
expression r j

q,p with L(r j
q,p) = R j

q,p. We can then define the regular expression rq,p as

rq,p := r |Q |q,p

because |Q | > 0 and, by the definition of R j+1
q,p , thus Rq,p = R|Q |q,p .

We now define r j
q,p by induction on j:

r0
q,p :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅, if q ≠ p ∧ n = 0
a1 + . . . + an, if q ≠ p ∧ n ≥ 1
a1 + . . . + an + ε, if q = p

r j+1
q,p := r j

q,p + r j
q,qj
· (r j

qj,qj
)∗ · r j

qj,p

From the definition of r0
q,p and R0

q,p, we have L(r0
q,p) = R0

q,p.

It remains to show that L(r j+1
q,p ) = R j+1

q,p . By the definition of r j+1
q,p , it suffices to show

R j
q,p ∪ R j

q,qj
◦ (R j

qj,qj
)∗ ◦ R j

qj,p = R j+1
q,p

We thus have to show that a word is in set R j
q,p ∪ R j

q,qj
◦ (R j

qj,qj
)∗ ◦ R j

qj,p if and only if it is in
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set R j+1
q,p . This is true, because, if a word drives M from state p to state q via states in Q j+1, it

either drives M from p to q only via states in Q j or we have at least one occurrence of state
q j ∈ Q j+1\Q j along the path:

q . . . qj . . . qj . . . p⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
R j

q,qj

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
(R j

qj,qj
)∗

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
R j

qj,p

In that case, the word consists of a prefix that drives M from q to the first occurrence of q j only
via states in Q j , a middle part that drives M repeatedly from one occurrence of q j to the next
occurrence of q j only via states in Q j and a suffix that drives M from the last occurrence of q j

to p only via states in Q j . □

Above construction of a regular language from an automaton is quite tedious, but there is a
much simpler way based on the following result which was proved by D.N. Arden in 1960.

Theorem 4 (Arden’s Lemma) Let L,U,V be regular languages with ε ∉ U. Then

L = U ◦ L ∪ V ⇔ L = U∗ ◦ V

The relevance of this lemma (which we state without proof) is that it gives us the solution of
a recurrence L = U ◦ L ∪ V for the unknown L as L = U∗ ◦ V ; in an analogous way we can
compute the solution of a regular expression recurrence l = u · l + v (i.e., a regular expression l

which satisfies the property L(l) = L(u · l + v)) as l = u∗ · v.
We can apply this solution technique to the construction of regular expressions from automata

in the following way: for every state q with outgoing transitions to q itself via symbols a0, . . . ,an

and to other states q1, . . . ,qn via symbols b1, . . . , bm

qi

q1

.

.

.

qm

a1, . . . , an

b1

bm

we construct an equation

Xi = (a1 + . . . + an) · Xi + b1 · X1 + . . . + bm · Xm
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Here Xi represents the regular expression of the language that the automaton accepts starting
with state Xi and the other variables represent the analogous regular expressions for their
respective states. As an exception, for every accepting state qa, the equation has form

Xa = (a1 + . . . + an) · Xa + b1 · X1 + . . . + bm · Xm + ε

because from state qa also the empty word ε is accepted.
In the same way, we can construct an equation for every state of the automaton; if the

automaton has s states, we thus get a system of s equations in s unknowns. Our goal is to solve
this equation system for X0, i.e., to compute the regular expression for the initial state q0. By
Arden’s Lemma, we can compute for any Xi the solution

Xi = (a1 + . . . + an)
∗ · (b1 · X1 + . . . + bm · Xm)

respectively for a variable Xa corresponding to an accepting state

Xa = (a1 + . . . + an)
∗ · (b1 · X1 + . . . + bm · Xm + ε)

We can substitute this solution in all the other equations and thus get a system of s − 1 equations
in s − 1 unknowns. After the substitution, we choose the equation for some other variable X j .
In this equation, we apply the regular expression transformations

a · ε = a

ε · a = a

a · (b + c) = a · b + a · c

(a + b) · c = a · c + b · c

(these transformations preserve the languages of the regular expressions as can be easily shown
from their definitions) to yield again an equation of the form to which Arden’s Lemma can be
applied. We repeat the process until we have only one equation in the single unknown X0; the
solution of this equation is the regular expression of the language accepted by the automaton.

Example 10 Consider the automaton M

q0 qa

a

b

b

a
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From M , we construct the equation system

X0 = a · X0 + b · Xa

Xa = b · Xa + a · X0 + ε

By Arden’s Lemma we solve the second equation as

Xa = b∗ · (a · X0 + ε)

By substituting this solution into the first equation and further transformation, we get

X0 = a · X0 + b · b∗ · (a · X0 + ε)

= a · X0 + b · b∗ · a · X0 + b · b∗ · ε

= (a + b · b∗ · a) · X0 + b · b∗

By applying Arden’s Lemma again, we get

X0 = (a + b · b∗ · a)∗ · b · b∗

such that L(X0) = L(M). □

A consequence of the translation of automata to regular expressions is the insight that, while
automata are powerful enough to recognize every regular language, they are not powerful
enough to recognize any other language. Languages which cannot be described by regular
expressions are therefore also not in the scope of automata. We will therefore investigate the
expressiveness of regular languages further.

2.5. The Expressiveness of Regular Languages

We start with a result that shows how new regular languages can be constructed from existing
ones, i.e., that the domain of regular languages is closed under certain building operations.

Theorem 5 (Closure properties of Regular Languages)Abschlusseigen-
schaften

Let Σ be an alphabet and L, L1, L2

be regular languages over Σ. Then the following languages are also regular languages over Σ:

1. the complement L = {x ∈ Σ∗ | x ∉ L};
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2. the union L1 ∪ L2 = {x ∈ Σ∗ | x ∈ L1 ∨ x ∈ L2};

3. the intersection L1 ∩ L2 = {x ∈ Σ∗ | x ∈ L1 ∧ x ∈ L2};

4. the concatenation L1 ◦ L2;

5. the finite language closure L∗.

Proof Let Σ be an alphabet and L, L1, L2 be regular languages over Σ.

1. Since L is a regular language over Σ, because of Part 1 of Theorem 3, there exists a DFSM
M = (Q,Σ, δ,q0,F) and L = L(M). We can define a DFSM M′ which is identical to M ,
except that the set of accepting states F′ of M′ is the complement of F, i.e., F′ = Q\F.
Thus M′ accepts every word over Σ∗ that is not accepted by M , i.e. L(M′) = L. Because
of Part 2 of Theorem 3, thus L is a regular language over Σ.

2. Since L1 and L2 are regular languages over Σ, there exist regular expressions r1 and r2

over Σ, such that L1 = L(r1) and L2 = L(r2). Then r1 + r2 is a regular expression over Σ
with L(r1 + r2) = L(r1) ∪ L(r2) = L1 ∪ L2, thus L1 ∪ L2 is a regular language over Σ.

3. We know L1 ∩ L2 = L1 ∪ L2. By parts 1 and 2 of Theorem 5, thus L1 ∩ L2 is a regular
language over Σ.

4. Since L1 and L2 are regular languages over Σ, there exist regular expressions r1 and r2

over Σ such that L1 = L(r1) and L2 = L(r2). Then r1 · r2 is a regular expression over Σ
with L(r1 · r2) = L(r1) ◦ L(r2) = L1 ◦ L2, thus L1 ◦ L2 is a regular language over Σ.

5. Since L is a regular language over Σ, there exists a regular expressions r over Σ such that
L = L(r). Then r∗ is a regular expression over Σ with L(r∗) = L(r)∗ = L∗, thus L∗ is a
regular language over Σ. □

While regular languages can thus be constructed in a quite flexible way, their expressiveness
is limited by the following result.

Theorem 6 (Pumping Lemma) Pumping-Lemma
(Schleifensatz)

Let L be a regular language. Then there exists a natural
number n (called the pumping length

Aufpumplänge
of L) such that every word w ∈ L with |w | ≥ n can be

decomposed into three substrings x, y, z, i.e. w = xyz, such that



58 Chapter 2. Finite State Machines and Regular Languages

1. |y | ≥ 1,

2. |xy | ≤ n,

3. xyk z ∈ L, for every k ≥ 0.

Thus every sufficiently large word of a regular language has a middle part that can be repeated
arbitrarily often (“pumped”) to yield another word of the language.

Proof Let L be a regular language and M = (Q,Σ, δ,q0,F) a DFSM with L = L(M). We
define n := |Q | as the number of states in M. We take arbitrary w ∈ L with |w | ≥ n, i.e.
w = a1a2 . . . am with m ≥ n and define, for every 0 ≤ i ≤ m, pi as

p0 := q0

pi+1 := δ(pi,ai+1)

i.e. p0, p1, . . . , pm is the sequence of states that M passes when accepting w. Since m ≥ n,
there must exist two positions i and j with 0 ≤ i < j ≤ m such that pi = p j , i.e., the sequence
contains a cycle from pi to pi:

p0 . . . pi . . . pm

y = ai+1 . . . aj

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
x = a1 . . . ai

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
z = aj+1 . . . am

Now define x := a1 . . . ai, y := ai+1 . . . a j , z := a j+1 . . . am, i.e., x is the prefix of w read
when M runs from p0 to pi, y is the middle part of w read when M runs from pi to pi, and z is the
suffix of w read when M runs from pi to the accepting state. Since the state sequence pi, . . . , pi

forms a cycle, M accepts, for every k ≥ 0, also the word xyk z. Thus xyk z ∈ L(M) = L. □

The Pumping Lemma can be used to show that a given language L is not regular. The usual
technique is to assume that L is regular, take a sufficiently long word in L, and show that,
by application of the lemma, from this word a longer word can be constructed whose form
contradicts the definition of L; this invalidates the assumption that L is regular.
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Example 11 (Pumping Lemma) Let L = {0i1i | i ∈ N}, i.e. L consists of all words that can
be split into a prefix which contains only 0 and a suffix which contains only 1 such that both
parts have the same length:

L = {ε,01,0011,000111, . . .}

We show that L is not regular. Assume that L is regular. Let n be the pumping length of L.
Take the word w := 0n1n. Since w is by construction in L and satisfies the requirement |w | ≥ n,
we can split w into three parts x, y, z that have the following properties:

xyz = 0n1n (1)

|y | ≥ 1 (2)

|xy | ≤ n (3)

Properties (1) and (3) imply that x and y contain 0 only, while z can contain 0 and 1. Thus we
have four values n1,n2,n3,n4 ∈ N such that x = 0n1 , y = 0n2 , z = 0n31n4 . From the definition
of L and Property (2), we know

n1 + n2 + n3 = n4 (4)

n2 ≥ 1 (5)

By the Pumping Lemma, we know xy2z ∈ L, i.e,

0n102n20n31n4 ∈ L (6)

This implies, by the definition of L,

n1 + 2n2 + n3 = n4 (7)

But we also know

n1 + 2n2 + n3 = (n1 + n2 + n3) + n2
(4)
= n4 + n2

(5)
≥ n4 + 1 > n4 (8)

Properties (7) and (8) represent a contradiction. □

Example 12 (Pumping Lemma) Let L = {0i2 | i ∈ N}, i.e., L consists of all words that
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contain only 0 and whose length is a square number:

L = {ε,0,0000,000000000, . . .}

We show that L is not regular. Assume that L is regular. Let n be the pumping length of L.
Take the word w := 0n2 . Since w is by construction in L and satisfies the requirement |w | ≥ n,

we can split w into three parts x, y, z that have the following properties:

xyz = 0n2
(1)

|y | ≥ 1 (2)

|xy | ≤ n (3)

where (3) implies

|y | ≤ n (4)

Then the Pumping Lemma implies that also the word xy2z ∈ L. Since |xy2z | = |xyz | + |y | =

n2 + |y |, this implies that n2 + |y | is a square number. But we know

n2 < n2 + 1
(2)
≤ n2 + |y | (5)

n2 + |y |
(4)
≤ n2 + n < n2 + 2n + 1 = (n + 1)2 (6)

Together (5) and (6) imply

n2 < n2 + |y | < (n + 1)2 (7)

Thus n2 + |y | is not a square number, which represents a contradiction. □

These examples show that the expressive power of regular languages is limited. They cannot
describe languages whose construction principles depend on more complex properties (such as
general arithmetic) as can be formulated by regular expressions1. Such languages can therefore
also not be recognized by finite-state machines. In the following, we will therefore turn our
attention to more powerful computational models.

1However, be aware that some arithmetic properties can be used to construct regular languages. For instance,
the language {0i | i is even} = {ε,00,0000,000000, . . .} is regular, because it is the language of the regular
expression (00)∗.
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Chapter 3.

Turing Complete Computational Models and
Recursively Enumerable Languages

As shown in Chapter 2, the expressive power of finite-state machines and their associated regular
languages is limited. In this chapter, we are going to explore the more powerful computational
model of Turing machines and their associated recursively enumerable languages. As it turns
out, the expressiveness of this model is the same as that of a couple of other computational
models, each of which may therefore serve as a substitute for Turing machines. In fact, its
power is even equivalent to that of general purpose programming languages; there is no more
powerful computational model known today. The two models finite-state machines and Turing
machines represent the end points of a spectrum of machine models; the Chomsky hierarchy
provides a comprehensive view on the relationship between these and other machine models
and their associated languages.

3.1. Turing Machines

In this section, we discuss a computational model that was introduced by the British mathemati-
cian/logician/computer scientist Alan Turing in 1936.

3.1.1. Basics

We start with the core definition of this section.

Definition 16 (Turing Machine) A Turing machine Turing-MaschineM is a 7-tuple (Q,Γ,␣,Σ, δ,q0,F) with
the following components:
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tape

Turing machine sequence accepted

Figure 3.1.: A Turing Machine

• The state setZustandsmenge Q, a fine set of elements called states
Zustand

.

• An tape alphabetBandalphabet Γ, an alphabet whose elements we call tape symbols
Bandsymbol

.

• The blank symbolLeersymbol ␣ ∈ Γ, an element of Γ.

• An input alphabetEingabealphabet Σ ⊆ Γ\{␣}, a subset of the tape alphabet that does not include the
blank symbol; we call the elements of this alphabet input symbolsEingabesymbol .

• The transition functionÜberführungsfunktion δ : Q × Γ→p Q × Γ × {‘L’, ‘R’}, a partial function that takes a
state and a tape symbol as an argument and may return a state, a tape symbol, and a
“direction” ‘L(eft)’ or ‘R(ight)’.

• The start stateAnfangszustand q0 ∈ Q, one of the elements of Q.

• A set of accepting statesakzeptierender Zustand (also called final states

Endzustand

) F ⊆ Q, a subset of Q.

We will frequently call a Turing machineTuring-Maschine just a machine
(Turing-)Maschine

.
Informally, the behavior of a Turing machine is as depicted in Figure 3.1. The machine

operates on a tape of infinite length which in its initial part holds the inputEingabe , a finite word over
the input alphabet; the rest of the tape is filled with the blank symbol ␣. In the course of the
execution, the tape can be overwritten with arbitrary symbols from the tape alphabet.

In more detail, the machine has a tape headLese-/Schreibkopf which can be used to read and write the symbol
on the tape over which it is currently positioned; initially this is the first symbol of the tape.
Starting from its start state, the machine executes a sequence of steps by repeated application of
the transition function δ(q,a) = (q′,a′, d), which means that in its current state q it reads the
symbol a under the tape head and (simultaneously)
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• switches to its next state q′,

• overwrites a with a symbol a′, and

• moves the tape head into direction d, i.e., one symbol to the left or to the right.

The execution terminates if the Turing machine encounters a combination of state q and input
symbol a for which it cannot make a further step. If q is an accepting state, the input is accepted.
One crucial difference to a finite-state machine is therefore that a Turing machine may not

only read but also write the content of the tape and move over the tape in an arbitrary fashion;
the tape is therefore not only an input medium but also becomes an output medium for the final
result, as well as a storage medium for intermediate results.

Another crucial difference is that, for a given input word, the number of steps of the execution
of a Turing machine is not bounded by the length of the word. The machine may perform
arbitrarily many steps until it terminates; it may even not terminate at all, i.e., run forever. This
seemingly disadvantage is actually the source of the additional power of a Turing machine
compared to a finite-state machine: there is no trivial constraint (like the size of the input) that
limits the number of steps the Turing machine may take for its execution.

Example 13 (Turing Machine) Take the Turing machine defined in Figure 3.2. As for
automata, the transition function can be defined by a table which depicts, for every combination
of state and tape symbol, the triple of successor state, output symbol, and tape head direction; if
no entry is given, the Turing machine terminates for that combination of state and tape symbol.
A state transition graph may be useful to give an overall impression of the behavior of the
Turing machine, but does not entirely define it (unless also the output symbol and the the tape
head direction are included, which however makes the diagram clumsy).
This Turing machine accepts every word of form 0n1n, i.e. all words of even length whose

first half consists only of 0 and whose second half consists only of 1. The machine operates by
replacing the left-most occurrence of 0 by X , moving the tape head right to the first occurrence
of 1, moving the tape head again left to the first occurrence of X and then one position to the
right. Then the execution is repeated in a loop. If the input word is of form 0n1n, the machine
will terminate in an accepting state with tape content XnY n. □

The concept of a Turing machine can be generalized in various ways:

1. it may have a tape which is infinite in both directions;

2. it may have multiple tapes;
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M = (Q,Γ,␣,Σ, δ,q0,F)
Q = {q0,q1,q2,q3,q4}

Γ = {␣,0,1,X,Y }
Σ = {0,1}
F = {q4}

δ ␣ 0 1 X Y
q0 − (q1,X,R) − − (q3,Y,R)
q1 − (q1,0,R) (q2,Y, L) − (q1,Y,R)
q2 − (q2,0, L) − (q0,X,R) (q2,Y, L)
q3 (q4,␣,R) − − − (q3,Y,R)
q4 − − − − −

q0

q1 q3

q2 q4

0
Y

1

0,Y Y
X

0,Y

␣

Y

Figure 3.2.: A Turing Machine
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3. it may be nondeterministic.

None of these extensions increases the expressive power of the concept, since they all can be
simulated by the core form of a deterministic Turing machine with a single tape that is infinite
in only one direction. We only show the most interesting case.

Theorem 7 (Nondeterministic Turing Machine) Let M be a nondeterministic Turing ma-
chine. Then there exists a deterministic Turing machine M′ which accepts the same words
as M .

Proof Let M = (Q,Γ,␣,Σ, δ,q0,F) be a nondeterministic Turing machine, i.e. a Turing
machine with transition function

δ : Q × Γ→ P(Q × Γ × {‘L’, ‘R’})

such that δ(q,a) describes a set of possible successor situations. We then define

r := max
{︁
|δ(q,a)|

|︁|︁ q ∈ Q ∧ a ∈ Γ
}︁

i.e., r is the maximum number of “choices” that M can make in any situation.
We construct a deterministic Turing machine M′ with three tapes (which can be subsequently

transformed to a single tape Turing machine):

• Tape 1 (which will be only read) holds the input of the tape of M .

• On Tape 2, all finite sequences of values 1, . . . ,r are generated (first the one element
sequences, then the two element sequences, and so on).

• Tape 3 is the working tape of M′.

Then M′ mimics the execution of M by iterating the following process:

1. M′ copies the input from Tape 1 to Tape 3.

2. M′ generates the next sequence s = s1s2 . . . sn on Tape 2.

3. M′ starts execution on Tape 3 by performing at most n execution steps. In the i-th step,
M′ applies the transition function δ of M and selects from the resulting set the element
numbered si.
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4. If this leads to a terminating state in F, M’ accepts the input word and the process
terminates; otherwise the process is repeated.

Our machine M’ thus systematically simulates in a deterministic fashion all possible executions
of the nondeterministic machine M; if there is one execution of M that accepts the input, also M′

detects this execution and accepts its input. If there is no such execution, M′ runs forever (i.e.,
does not accept its input). □

3.1.2. Recognizing Languages

We are now going to investigate the relationship between Turing machines and languages.

Definition 17 (Turing Machine Language) Let M = (Q,Γ,␣,Σ, δ,q0,F) be a Turing ma-
chine.

• A configurationKonfiguration of M is a triple (a1 . . . ak,q,ak+1 . . . am) (simply written as
a1 . . . ak q ak+1 . . . am) with state q and tape symbols {a1, . . . ,ak,ak+1, . . . ,am} ⊆ Γ.

A configuration represents a situation in the execution of M: q is the current state
of M, a1 . . . ak represent the portion of the tape left to the tape head, ak+1 represents
the symbol under the head, and ak+2 . . . am represents the portion right to the head.

• The moveZug relation ⊢ is a binary relation on configurations such that

a1 . . . ak q ak+1 . . . am ⊢ b1 . . . bl p bl+1 . . . bm

holds if and only if ai = bi for all i ≠ k + 1 and one of the following holds:

l = k + 1 and δ(q,ak+1) = (p, bl,R), or

l = k − 1 and δ(q,ak+1) = (p, bl+2, L).

In other words, c1 ⊢ c2 holds if, when M is in the situation described by configuration c1,
it can make a transition to the situation described by configuration c2.

We then define

c1 ⊢
0 c2 :⇔ c1 = c2

c1 ⊢
i+1 c2 :⇔ ∃c : c1 ⊢

i c ∧ c ⊢ c2

c1 ⊢
∗ c2 :⇔ ∃i ∈ N : c1 ⊢

i c2
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Thus c1 ⊢
i c2 holds if configuration c1 can be transformed to configuration c2 in i moves

and c1 ⊢
∗ c2 holds if c1 can be transformed to c2 in an arbitrary number of moves.

• The Turing machine language die Sprache einer
Turing-Maschine

L(M) of M is the set of all inputs that drive M from
its initial configuration to a configuration with an accepting state such that from this
configuration no further move is possible:

L(M) :=

{︄
w ∈ Σ∗

|︁|︁|︁|︁ ∃a, b ∈ Γ∗,q ∈ Q : q0 w ⊢
∗ a q b ∧ q ∈ F

∧ ¬∃a′, b′ ∈ Γ∗,q′ ∈ Q : a q b ⊢ a′ q′ b′

}︄

Definition 18 (Recursively Enumerable and Recursive Languages)

1. L is a recursively enumerable language rekursiv aufzählbare
Sprache

if there exists a Turing machine M such that
L = L(M).

2. L is a recursive language rekursive Spracheif there exists a Turing machine M such that L = L(M) and M

terminates for every possible input.

In both cases we also say that M recognizes erkennenL.

From the definition, every recursive language is recursively enumerable, but not necessarily
vice versa. The Turing machine whose existence is required for a recursively enumerable
language L need not terminate for all inputs that are not words of L. We will see in Chapter 4
that there indeed exist languages that are recursively enumerable but not recursive.

The exact relationship between recursively enumerable and recursive languages is captured
by the following theorem.

Theorem 8 (Recursive Language) A language L is recursive if and only if both L and its
complement L are recursively enumerable.

Proof We show both sides of the theorem.
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function M ′(w):
answer ← M(w)
case answer of

yes: return no
no: return yes

end case
end function

no

yes
yes

no

Mw

M′

Figure 3.3.: Proof⇒ of Theorem 8

⇒ Let L be a recursive language. We show that both L and L are recursively enumerable.
Since by definition L is recursively enumerable, it remains to be shown that also L is
recursively enumerable.

Since L is recursive, there exists a Turing machine M such that M halts for every input w:
if w ∈ L, then M accepts w (we write M(w) = yes); if w ∉ L, then M does not accept w
(we write M(w) = no). With the help of M, we can construct the machine M′ whose
behavior is sketched as a program function and illustrated by a diagram in Figure 3.3.

We have by construction, for every input w, M′(w) = yes, if and only if M(w) = no, i.e.,
w ∉ L. Thus L(M′) = L, therefore L is recursively enumerable.

⇐ Let language L be such that both L and L are recursively enumerable. We show that L is
recursive.

Since L is recursively enumerable, there exists a Turing machine M such that L = L(M)

and M halts for every input w ∈ L with answer M(w) = yes. Since L is recursively
enumerable, there exists a Turing machine M such that L = L(M) and M halts for every
input w ∈ L (i.e., w ∉ L) with answer M(w) = yes. With the help of M and M, we can
construct the machine M′′ sketched in Figure 3.4.

In the execution of M′′(w), we simulate the parallel execution of M and M: if w ∈ L,
then M(w) terminates with M(w) = yes and therefore M′′(w) terminates with M′′(w) =

yes; if w ∉ L, then M(w) terminates with M(w) = yes and therefore M′′(w) terminates
with M′′(w) = no. Thus M′′ terminates for every input and L(M′′) = L. Therefore L is
recursive.

Please note that if w ∉ L, the execution of M(w) may not terminate (as indicated by a
loop in the diagram); the correctness of M′′(w) must therefore not depend on the answer
M(w) = no (even if such an answer arises, M′′ may ignore it, i.e., the corresponding
branch of the parallel execution may loop forever). Correspondingly, if w ∉ L, the
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function M ′′(w):
parallel

begin
answer1 ← M(w)
if answer1 = yes then

return yes
else

loop forever
end if

end
begin

answer2 ← M(w)
if answer2 = yes then

return no
else

loop forever
end if

end
end parallel

end function

yes
yes

no
yes

no

no

M

M

M′′

w

Figure 3.4.: Proof⇐ of Theorem 8

execution of M(w)may not terminate such that the correctness of M′′(w)must not depend
on the answer M(w) = no.

In above proof, we have borrowed programming language constructs for the construction of
Turing machines. We will justify in Section 3.2.2 this “abuse of notation”.

Recursive languages are closed under the usual set operations.

Theorem 9 (Closure of Recursive Languages) Let L, L1, L2 be recursive languages. Then
also

• the complement L,

• the union L1 ∪ L2,

• the intersection L1 ∩ L2

are recursive languages.

Proof By construction of the corresponding Turing machines (exercise). □
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3.1.3. Generating Languages

Certain versions of Turing machines may be used to generate languages.

Definition 19 (Enumerator, Generated Language)

• Let M = (Q,Γ,␣,∅, δ,q0,F) be a Turing machine where the tape alphabet Γ contains a
special symbol #. Then M is called an enumeratorAufzähler if it has (additionally to its working
tapeArbeitsband ) an output tape

Ausgabeband
on which M moves its tape head only to the right (or lets it stay in

its current position) and writes only symbols different from the blank symbol ␣.

• The generated languageerzeugte Sprache Gen(M) of enumerator M is the set of all words that M , after
starting with all tapes in an empty state (i.e., filled with the ␣ symbol), eventually writes
on the output tape where the end of each word is marked by the special symbol # (which
itself does not belong to the word any more).

It should be noted that an enumerator M may run forever and that the generated language
Gen(M) may thus be infinite. For instance, if M writes on the output tape the sequence

# 0 # 0 0 # 0 0 0 # 0 0 0 0 # . . .

then Gen(M) = L(0∗).
Then we have the following theorem which justifies the name “(recursively) enumerableaufzählbar ” for

any language that is accepted by a Turing machine.

Theorem 10 (Generated Langues) A language L is recursively enumerable if and only if
there exists some enumerator M such that L = Gen(M).

Proof We show both parts of the theorem.

⇒ Let L be a recursively enumerable language. We show that there exists some enumerator M

such that L = Gen(M).

Since L is recursively enumerable, there exists some Turing machine M′ such that
L = L(M′). We use M′ to build the enumerator M which works as follows (see
Figure 3.5): M produces on its working tape every pair (m,n) of natural numbers m,n ∈ N

(encoded in some form):
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procedure M:
loop

produce next (m,n) on working tape
if M ′(wm) = yes in at most n steps then

write wm to output tape
end if

end loop
end procedure yes

wm M ′

(m,n)

M

(0,0), (1,0), (1,1), (2,0), . . .

write wm

n

wm

Figure 3.5.: Proof⇒ of Theorem 10

(0,0), (1,0), (1,1), (2,0), (2,1), (2,2), (3,0), . . .

Whenever a new pair (m,n) has been produced, M constructs the m-th word wm over the
input alphabet Σ of M (this is easily possible, because all words of Σ can be ordered
by first listing the empty word ε, then all words of length 1, then all words of length
2, etc). Then M′ performs at most n steps of the execution of M(wm). If these steps
lead to the acceptance of wm (i.e., M(wm) = yes) then M′ writes wm to the output tape.
Afterwards, M′ proceeds with the next pair (m,n).

Then Gen(M′) = L(M), i.e., for every word w, w ∈ Gen(M′) ⇔ w ∈ L(M):

⇒ If w ∈ Gen(M′), i.e., M′ writes w to the output tape, then w has been accepted by
M , i.e., w ∈ L(M).

⇐ Ifw ∈ L(M), then there exists some position m such thatw = wm and some number n

of steps in which w is accepted by M . This pair (m,n) is eventually produced by M′

which thus eventually writes w on the output tape, i.e. w ∈ Gen(M′).

⇐ Let L be such that L = Gen(M) for some enumerator M. We show that there exists a
Turing machine M′ such that L = L(M′).

We use enumerator M to build M′ which works as follows (see Figure 3.6): given input w,
M′ invokes M to produce, word for word, the sequence of all words in Gen(M). If w
eventually appears in this sequence, M′ accepts w, i.e. M′(w) = yes. Otherwise, M′ may
not terminate (if M produces infinitely many words).
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function M ′(w):
while M is not terminated do

M writes next word w′ to output tape
if w = w′ then

return yes
end if

end while
return no

end function

yes

no

yesw
w on tape?

M ′

M

Figure 3.6.: Proof⇐ of Theorem 10

Then L(M′) = Gen(M), i.e., for every word w, w ∈ L(M′) ⇔ w ∈ Gen(M):

⇒ If w ∈ L(M′), i.e., M′(w) = yes, then w appears in the sequence generated by M,
i.e. w ∈ Gen(M).

⇐ If w ∈ Gen(M), i.e., w eventually appears in the sequence generated by M, then
input w is accepted by M , i.e. w ∈ L(M′). □

Theorem 10 shows us that generating a recursively enumerable language is exactly as difficult
as recognizing such a language. For any recursively enumerable language, we may therefore
subsequently not only assume an accepting Turing machine but also a generating one.

3.1.4. Computing Functions

In this section, we will investigate how Turing machines can be used to compute mathematical
functions. First we recall some basic notions.

Definition 20 (Functions) Let f ⊆ A × B be a relation between sets A and B (i.e., a set of
pairs (a, b) with a ∈ A and b ∈ B).

1. Relation f is a function(totale) Funktion from A to B, written f : A→ B, if for every value a ∈ A there
is exactly one value b ∈ B such that (a, b) ∈ f .

2. Relation f is a partial functionpartielle Funktion from A to B, written f : A →p B, if for every value
a ∈ A there is at most one value b ∈ B such that (a, b) ∈ f .

3. For a partial function f , we define the domainDefinitionsbereich of f as

domain( f ) := {a | ∃b : (a, b) ∈ f }
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i.e., as the set of all elements a such that there exists an element b with (a, b) ∈ f .

4. For a partial function f , we define the range Wertebereichof f as

range( f ) := {b | ∃a : (a, b) ∈ f }

i.e., as the set of all elements b such that there exists an element a with (a, b) ∈ f .

5. For a partial function f , if (a, b) ∈ f , we write f (a) to denote the result (Funktions-)Ergebnisb of the
application of f to argument (Funktions-)Argumenta.

Please note that every total function f : A→ B is also a partial function f : A→p B with
domain( f ) = A, and every partial function f : A→p B is a total function f : domain(A) → B.
The concept of the “computability” of a mathematical function is now formalized on the

basis of Turing machines.

Definition 21 (Turing Computability) Let Σ and Γ be alphabets that do not contain the
symbol ␣ and f : Σ∗ →p Γ

∗ be a partial function from words over Σ to words over Γ. Then f

is called Turing computable (Turing-)berechenbarif there exists a Turing machine M such that

• for input w (i.e. initial tape content w␣ . . .), M terminates in an accepting state if and
only if w ∈ domain( f );

• for input w, M terminates in an accepting state with output w′ (i.e. final tape content
w′␣ . . .) if and only if w′ = f (w).

For a function to be (Turing) computable, the corresponding Turing machine needs to
terminate for all arguments from the domain of the function with the function result; for all
arguments outside the domain, the machine must not terminate.

A simple argument shows there indeed exist functions from words over Σ to words over Γ that
are not computable by a Turing machine: every Turing machine can be formalized by a finite
description (say a bit string) and all bit strings can be ordered in a (of course infinite) sequence;
thus there is a one to one correspondence between the set of natural numbers (positions in
the sequence) and Turing machines (descriptions in the sequence); thus the set of all Turing
machines is countably infinite abzählbar unendlich. However, by application of Cantor’s diagonal argument1 (which
1http://en.wikipedia.org/wiki/Cantor’s_diagonal_argument

http://en.wikipedia.org/wiki/Cantor's_diagonal_argument
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will also play a role in Chapter 4), one can show that the set of all functions from Σ∗ to Γ∗

is more than countably infinite (the set of all word functions cannot be listed in a sequence
indexed by natural numbers). So not for every word function there can exist a Turing machine
that computes this function, there are simply too many of them!

Nevertheless most functions that are in “daily use” are computable, e.g., the usual arithmetic
functions over (word representations of) the natural numbers.

Example 14 (Turing Computability) We show that the natural number difference

m ⊖ n :=

{︄
m − n if m ≥ n

0 else

is Turing computable, using for the natural number n ∈ N the unary representation

000 . . . 0⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞
n times

∈ L(0∗)

i.e., for input 00␣0 (= 2 ⊖ 1), the output shall be 0 (= 1).
The Turing machine M that computes ⊖ operates as follows (see Figure 3.7):

• In start state q0, the leading 0 is replaced by ␣.

• In state q1, M searches for the next ␣ and replaces it by a 1.

• In state q2, M searches for the next 0 and replaces it by 1, then moves left.

• In state q3, M searches for the previous ␣, moves right and starts from the beginning.

• In state q4, M has found a ␣ instead of a 0; it therefore replaces all previous 1 by ␣.

• In state q5, n is (has become) 0; the rest of the tape is erased.

• In state q6, the computation successfully terminates.

Thus the computation of M on input 00␣0 (= 2 ⊖ 1) yields the following sequence of moves

q000␣0 ⊢ ␣q10␣0 ⊢ ␣0q1␣0 ⊢ ␣01q20
⊢ ␣0q311 ⊢ ␣q3011 ⊢ q3␣011 ⊢ ␣q0011
⊢ ␣␣q111 ⊢ ␣␣1q21 ⊢ ␣␣11q2 ⊢ ␣␣1q41
⊢ ␣␣q41 ⊢ ␣q4 ⊢ ␣0q6.

while input 0␣00 (= 1 ⊖ 2) results in

© 2012– Wolfgang Schreiner.



3.1. Turing Machines 75

M = (Q,Γ,␣,Σ, δ,q0,F)
Q = {q0, . . . ,q6}

Σ = {0}
Γ = {0,1,␣}
F = {q6}

δ 0 1 ␣
q0 (q1,␣,R) (q5,␣,R) (q5,␣,R)
q1 (q1,0,R) (q2,1,R) (q2,1,R)
q2 (q3,1, L) (q2,1,R) (q4,␣, L)
q3 (q3,0, L) (q3,1, L) (q0,␣,R)
q4 (q4,0, L) (q4,␣, L) (q6,0,R)
q5 (q5,␣,R) (q5,␣,R) (q6,␣,R)
q6 − − −

q0

q1

q2

q3 q4

q6

q5

0

0

1,␣

1

0

0,1

␣ 1,␣

␣

0,1 0,1
␣

␣

Figure 3.7.: Computing m ⊖ n
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function M ′(a, b):
b′← M(a)
if b′ = b then

return yes
else

return no
end if

end function

(a, b)
a

b

M
=

yes

no no

yes
M′

b′

Figure 3.8.: Proof⇒ of Theorem 11

q00␣00 ⊢ ␣q1␣00 ⊢ ␣1q200 ⊢ ␣q3110
⊢ q3␣110 ⊢ ␣q0110 ⊢ ␣␣q510 ⊢ ␣␣␣q50
⊢ ␣␣␣␣q5 ⊢ ␣␣␣␣␣q6.

For m > n the computation of m ⊖ n generates leading blanks in the output that still need to be
removed; we leave the corresponding modification of the Turing machine as an exercise. □

The following theorem provides a relationship between Turing computable functions and
Turing recognizable languages.

Theorem 11 (Turing Computability) Apartial function f : Σ∗ →p Γ
∗ is Turing computable,

if and only if the language

L f := {(a, b) ∈ Σ∗ × Γ∗ | a ∈ domain( f ) ∧ b = f (a)}

is recursively enumerable.

Proof We show both directions of the theorem.

⇒ Since f : Σ∗ →p Γ
∗ is Turing computable, there exists a Turing machine M which

computes f . To show that L f is recursively enumerable, we use M to construct the
following Turing machine M′ with L(M′) = L f (see Figure 3.8): M′ takes the input (a, b)
and invokes M on a: if M terminates in an accepting state with output b, M′ accepts the
input, otherwise it does not (if M does not terminate, then also M′ does not terminate).

⇐ Since L f is recursively enumerable, there exists by Theorem 10 an enumerator M with
Gen(M) = L f . We use M to construct the following Turingmachine M′which computes f
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function M ′(a):
while M is not terminated do

M writes pair (a′, b′) to tape
if a = a′ then

return b′

end if
end while
loop forever

end function

yesa
(a, .) on tape?

M ′

M (a, b)

b

Figure 3.9.: Proof⇐ of Theorem 11

(see Figure 3.9): M′ invokes M to generate all pairs (a, b)with a ∈ domain( f )∧b = f (a).
If the argument a of M eventually appears in this enumeration, M returns the corresponding
result b; otherwise M does not terminate. □

As Turing machines provide a mean of computing mathematical functions, we will now
address the question whether there exist other (more powerful) notions of computability of
those than provided by Turing machines.

3.1.5. The Church-Turing Thesis

In computer science, algorithms Algorithmusplays a central role: intuitively, an algorithm denotes a
description of a procedure for carrying out some calculation or task; this description is such
precise that it can be ultimately performed by a machine. A core question of computer science
is to find, for a given computational problem, an algorithm that solves this problem, respectively
to show that no such algorithm does exist. Unfortunately, the notion of an “algorithm” is
actually only an intuitive one; it is not sufficient to perform mathematical proofs about the
(non-)existence of algorithms for given problems.

In 1936, Alonzo Church and Alan Turing therefore came up with two different approaches to
replace the intuitive notion of algorithms by formal computational models:

• Church invented the lambda calculus Lambda-Kalkül, a notation to describe mechanically computable
functions (see Section 3.2.4);

• Turing described a formal concept of machines which we today call Turing machines.

While both concepts looked fundamentally different, Church and Turing could prove that their
computational power was exactly the same, i.e., that the set of mathematical functions that can
be described by the lambda calculus is the same as the set of functions computable by Turing
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machines. This coincidence let Church and Turing conjecture, that their formal models already
capture everything that is algorithmically solvable.

Thesis 1 (Church-Turing Thesis) Every problem that is solvable by an algorithm (in an
intuitive sense) is solvable by a Turingmachine. Consequently, the set of intuitively computable
functions is identical with the set of Turing computable functions.

This statement is not a (provable) theorem but only an (unprovable) thesis, because of exactly
the reason that “algorithm” is not a formal notion. However, the thesis has been subsequently
empirically validated numerous times by showing that the power of many other (seemingly very
different) computational models is exactly the same as the one of Turing machines; in fact, no
more powerful computational model is known.

3.2. Turing Complete Computational Models

In this section, we will sketch various computational models that have been shown to be Turing
completeTuring-vollständig (also called universal

universell
), i.e., to have the same computational power as Turing machines.

We will also discuss some interesting restricted versions that are not Turing complete and
outline their relationships to the Turing complete models.

3.2.1. Random Access Machines

While Turing machines are simple, they are conceptually very different from what we call today
a “computer”. In this section, we will discuss a machine model that is much closer to those
machines with which we operate day by day.

Definition 22 (Random Access Machine) A random access machineRegistermaschine (RAM) is a machine
that consists of the following components (see Figure 3.10):

• an infinite input tape I (whose cells can hold natural numbers of arbitrary size) with a
read head position i ∈ N,

• an infinite output tape O (whose cells can hold natural numbers of arbitrary size) with a
write head position o ∈ N,
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program counter

accumulator

...

...

RP

output tape

input tape

C

A

. . .

. . .O

I

o

i

Figure 3.10.: A Random Access Machine

• an accumulator A which can hold a natural number of arbitrary size,

• a program counter C which can hold a natural number of arbitrary size,

• a program consisting of a finite number of instructions P[1], . . . ,P[m], and

• a memory consisting of a countably infinite sequence of registers R[1],R[2], . . ., each
of which can hold a natural number of arbitrary size.

Initially, the positions i and o are 0, A is 0, C is 1, and all registers R[1],R[2], . . . are 0. In
every step of its execution, the machine reads the instruction P[C], increments C by 1, and
then performs the action indicated by the instruction (the action is undefined if the instruction
is executed on an invalid argument):

Instruction Description Action
IN Read value from input tape into accumulator A := I[i]; i := i + 1
OUT Write value from accumulator to output tape O[o] := A; o := o + 1
LOAD #n Load constant n into accumulator A := n

LOAD n Load content of register n into accumulator A := R[n]

LOAD (n) Load content of register referenced by register n A := R[R[n]]
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START: LOAD #1 A := 1
STORE 1 R[1] := A

READ: LOAD 1 A := R[1]
ADD #1 A := A + 1
STORE 1 R[1] := A
IN A := I[i]; i := i + 1
BEQ 0,WRITE if A = 0 then C :=WRITE
STORE (1) R[R[1]] := A
JUMP READ C := READ

WRITE: LOAD 1 A := R[1]
SUB #1 A := A − 1
STORE 1 R[1] := A
BEQ 1,HALT if A = 1 then C := HALT
LOAD (1) A := R[R[1]]
OUT O[o] := A; o := o + 1
JUMP WRITE C :=WRITE

HALT: JUMP 0 C := 0

Figure 3.11.: Execution of RAM

STORE n Store content of accumulator into register n R[n] := A

STORE (n) Store content into register referenced by register n R[R[n]] := A

ADD #n Increment content of accumulator by constant A := A + n

SUB #n Decrement content of accumulator by constant A := max{0, A − n}

JUMP n Unconditional jump to instruction n C := n

BEQ i,n Conditional jump to instruction n if A = i then C := n

The execution terminates if C gets value 0.

Example 15 (Execution of RAM) We construct a RAM that reads from the input tape a
sequence of natural numbers terminated by 0 and writes the sequence (excluding the 0) in
inverted order to the output tape. The program of the RAM is depicted in Figure 3.11 (for
readability, jump addresses are replaced by symbolic labels).
The RAM uses the memory as a stack which is indexed by the register R[1]. In the read

phase of its execution, the RAM writes into R[2],R[3], . . . the content of the input tape until it
encounters 0. The RAMswitches then to thewrite phasewhere it writes the values . . . ,R[3],R[2]
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to the output tape, until R[1] = 1.
Finally, the RAM jumps to address 0, which terminates the execution. □

The model of random access machines is Turing complete.

Theorem 12 (Turing Machines and RAMs) Every Turing machine can be simulated by a
RAM and vice versa.

Proof We sketch the proofs of both parts of the theorem.

⇒ TheRAMuses some registers R[1], . . . ,R[c−1] for its own purposes, stores in register R[c]

the position of the tape head of the Turing machine and (applying the facilities for indirect
addressing provided by LOAD(n) and STORE(n)) uses the registers R[c+ 1],R[c+ 2], . . .
as a “virtual tape” to simulate the tape of the Turing machine. First, the RAM copies the
input from the input tape into its virtual tape, then it mimics the execution of the Turing
machine on the virtual tape. When the simulated Turing machine terminates, the content
of the virtual tape is copied to the output tape.

⇐ The Turing machine uses 5 tapes to simulate the RAM:

– Tape 1 represents the input tape of the RAM.

– Tape 2 represents the output tape of the RAM.

– Tape 3 holds a representation of that part of the memory that has been written by
the simulation of the RAM.

– Tape 4 holds a representation of the accumulator of the RAM.

– Tape 5 serves as a working tape.

Tape 3 holds a sequence of (address,contents) pairs that represent those registers of the
RAM that have been written during the simulation (the contents of all other registers
can be assumed to hold 0). Every instruction of the RAM is simulated by a sequence of
steps of the Turing machine which reads respectively writes Tape 1 and 2 and updates on
Tape 3 and 4 the tape representations of the contents of the memory and the accumulator.
□

A RAM is quite similar to an actual computer; the main difference is that in a computer
the program is stored in the same memory as the data on which it operates. One can actually
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generate a variant of the RAMmodel, the random access stored program machineRegistermaschine mit
gespeichertem

Programm

(RASP) which
gives up the distinction between P and R (i.e. the program is stored in R and can be modified
during the execution of the RASP). One can then show, that a RAM can still simulate the
execution of the RASP by a program that serves as an interpreter for the RASP instructions (like
a microprogram on a modern microprocessor may interpret the instructions of the processor’s
machine language).

One may even remove from a RASP the instructions with indirect addressing LOAD(n) and
STORE(n). Even with this restriction, it can be shown that a RASP is able to simulate a RAM:
every instruction LOAD(n) respectively STORE(n) is replaced by a dummy instruction which is
at runtime overwritten by its direct addressing counterpart LOAD m respectively STORE m with
calculated register number m. Thus also this restricted form of a RASP is Turing complete.

3.2.2. Loop and While Programs

In this section, we turn to computational models that resemble the programs written in structured
programming languages.

Definition 23 (Loop Program Syntax) A loop programLoop-Programm is an element of the set P which is
inductively defined by the following grammar:

P ::= xi := 0 | xi := x j + 1 | xi := x j − 1 | P; P | loop xi do P end.

where xi and x j denote some variables from the set {x0, x1, x2, . . .} of program variables.

A loop program thus includes most of the core commands of real programming languages:
assignments, sequences, and bounded iteration (the intuitive meaning of the loop construct is
that P is repeated as often as the initial value of xi before entering the loop says).
The meaning of a loop program is determined the memory state after its execution.

Definition 24 (Loop Program Semantics) Given memory m : N → N, i.e., a mapping of
variable numbers to variable contents, and loop program P, the semanticsSemantik [ P ](m) is inductively

© 2012– Wolfgang Schreiner.



3.2. Turing Complete Computational Models 83

defined as the final memory that results from the execution of P with start memory m:

[ xi := 0 ](m) := m[i ← 0]
[ xi := x j + 1 ](m) := m[i ← m( j) + 1]
[ xi := x j − 1 ](m) := m[i ← max{0,m( j) − 1}]
[ P1; P2 ](m) := [ P2 ]([ P1 ](m))

[ loop xi do P end ](m) := [ P ]m(i)(m)

Here m[i ← n] denotes the memory resulting from m by updating variable xi with value n;
[ P ]n(m) is the memory resulting from the n-fold repetition of program P in memory m:

[ P ]0(m) := m

[ P ]n+1(m) := [ P ]([ P ]n(m))

We can easily copy the content of variable x j into variable xi by the loop program

xi := x j + 1; xi := xi − 1

which we will abbreviate as xi := x j . Likewise, we abbreviate by xi := n the loop program

xi := 0; xi := xi+1; xi := xi+1; . . . ; xi := xi+1

which sets variable xi to natural number n. Furthermore, we can simulate a conditional statement
if xi = 0 then Pt else Pe end by the loop program

xt := 1; loop xi do xt := 0; end;
xe := 1; loop xt do xe := 0; end;
loop xt do Pt end; loop xe do Pe end;

where xt and xe denote variables that are not in use in the rest of the program. If xi = 0, then xt

is set to 1 and xe is set to 0, else xt is set to 0 and xe is set to 1. Then Pt and Pe are executed as
often as indicated by xt and xe. We will thus freely use also conditionals in loop programs.
Loop programs can compute functions over the natural numbers in the following sense.

Definition 25 (Loop Computability) A function f : Nn → N over the natural numbers is
loop computable Loop-berechenbarif there exists a loop program P such that for all x1, . . . , xn ∈ N and memory
m : N→ N defined as

m(i) :=
⎧⎪⎪⎨⎪⎪⎩

xi if 1 ≤ i ≤ n

0 else
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we have [ P ](m)(0) = f (x1, . . . , xn).
In other words, when started in a state where the variables x1, . . . , xn contain the arguments

of f (and all other variables contain 0), the program terminates in a state where the variable x0

holds the function result f (x1, . . . , xn).

Since loop programs only allow bounded iteration, i.e., the number of loop iterations must be
known in advance, all loop programs terminate after a finite number of execution steps. Thus
every loop computable function is total. We give some examples.

Example 16 (Loop Computability) We abbreviate by x0 := x1 + x2 the following program
which computes the sum of x1 and x2 (i.e., natural number addition is loop computable).

x0 := x1;
loop x2 do

x0 := x0 + 1
end

Using this program, we can define the program x0 := x1 · x2 to compute the product of x1 and x2

(i.e., natural number multiplication is loop computable):

x0 := 0;
loop x2 do

x0 := x0 + x1

end

Using this program, we can define the program x0 := xx2
1 to compute the value of x1 raised to

the power of x2 (i.e., natural number exponentiation is loop computable):

x0 := 1;
loop x2 do

x0 := x0 · x1

end

□

The previous example shows that by nesting more and more loops arithmetic operations of
higher degree can be implemented: above program x0 := x1 · x2 is actually an abbreviation for
the doubly nested loop
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x0 := 0;
loop x2 do

x0 := x0;
loop x1 do

x0 := x0 + 1
end

end

and the program x0 := xx2
1 is actually an abbreviation for a triply nested loop.

We can extend the computational pattern described above beyond exponentiation by defining,
for a, b ∈ N and n ∈ N\{0}, an operation a ↑n b:

a ↑n b :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ab if n = 1

1 if b = 0

a ↑n−1 (a ↑n (b − 1)) else

Then

a ↑1 b = a · a · . . . · a (b times)

i.e., a ↑1 b = ab, and

a ↑2 b = a ↑1 a ↑1 . . . ↑1 a (b times)

i.e, a ↑2 b = aa . .
.a

(b times), and further on

a ↑3 b = a ↑2 a ↑2 . . . ↑2 a (b times)

for which no other well known notation exists any more. In general, the operation a ↑n b thus
describes the b-fold repeated application of operation ↑n−1 to a.
Then we can generalize the line of thought that started with the example above by the

following theorem.

Theorem 13 (Function a ↑n b and Loops) Let n ∈ N and f : N2 → N, f (a, b) := a ↑n b.
Then

• f is loop computable, and

• every loop program computing f requires at least n + 2 nested loops.
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For instance, this result (which we state without proof) claims that the computation of
a ↑1 b = ab requires three nested loops which corresponds with our observation above.
However, from this positive result we can conclude another negative result.

Theorem 14 (Computability of a ↑n b) The function g : N3 → N,g(a, b,n) := a ↑n+1 b is
not loop computable.

Proof Assume a loop program P which computes g and let n be the maximum number of
nested loops in P. Then for input (a, b,n) the program cannot always compute the correct result
g(a, b,n) = a ↑n+1 b, because this requires, by Theorem 13, at least n + 3 loops. □

This result can also be understood in that, if n is increased, the numbers computed by a ↑n b

become rapidly very big, in fact, too big to be computed by a finite number of bounded loops.
Another function with a similar growth pattern is the Ackermann functionAckermann-Funktion defined as

ack(0,m) := m + 1

ack(n,0) := ack(n − 1,1)

ack(n,m) := ack(n − 1,ack(n,m − 1)), if n > 0 ∧ m > 0

where ack(4,2) is a number with about 20,000 digits. In fact, since one can show that, for all
n,m ∈ N, ack(n,m) = 2 ↑n−2 (m + 3) − 3, also the Ackermann function is not loop computable.
Since the power of bounded loops is apparently limited, we now extend the computational

model by unbounded loops.

Definition 26 (While Program Syntax) A while programWhile-Programm is an element of the set P which
is inductively defined by the following grammar:

P ::= . . . (as in Definition 23) | while xi do P end

The intuitive meaning of the while construct is that P is repeated as long as the value of xi is
not zero. If the value of xi remains non zero forever, the program does not terminate. This
intuition can be formalized as follows.
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Definition 27 (While Program Semantics) Let the state m of a program be either a mem-
ory m : N→ N, or the value m = ⊥ (bottom Bottom) indicating non-termination.
We then define the semantics Semantik[ P ](m) of a while program P as the state that results from

the execution of P when started in state m:

• If the start state m indicates non-termination of a previously executed program, the
whole program does not terminate:

[ P ](m) :=
⎧⎪⎪⎨⎪⎪⎩
⊥ if m = ⊥

[ P ]′(m) else

• Given a memory m, for all commands that also appear in loop programs, the semantics
remains unchanged:

[ . . . ]′(m) := . . . (as in Definition 24)

• The execution of a while loop may result in another memory or in non-termination:

[ while xi do P end ]′(m) :=
⎧⎪⎪⎨⎪⎪⎩
⊥ if Li(P,m)

[ P ]Ti(P,m)(m) else

The predicate Li(P,m) holds if, starting with memory m, by repeated application of
the loop body P the loop variable xi never gets zero. Otherwise Ti(P,m) denotes the
smallest number of iterations after which xi becomes 0:

Li(P,m) :⇔ ∀k ∈ N : [ P ]k(m)(i) ≠ 0

Ti(P,m) := min
{︁
k ∈ N

|︁|︁ [ P ]k(m)(i) = 0
}︁

More general versions of while loop conditions can be simulated by the restricted form
presented above; e.g., we can consider the loop while xi < x j do P end as an abbreviation for

xk := x j − xi;
while xk do P; xk := x j − xi; end

We will now generalize the notion of computability introduced in Definition 25.
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function ack(n,m):
if n = 0 then

return m + 1
else if m = 0 then

return ack(n − 1,1)
else

return ack(n − 1,ack(n,m − 1))
end if

end function

function ack(x1, x2):
push(x1); push(x2)
while size() > 1 do

x2 ← pop(); x1 ← pop()
if x1 = 0 then

push(x2 + 1)
else if x2 = 0 then

push(x1 − 1); push(1)
else

push(x1 − 1); push(x1); push(x2 − 1)
end if

end while
return pop()

end function

Figure 3.12.: The Ackermann Function as a While Program

Definition 28 (While Computability) A function f : Nn →p N is while computableWhile-berechenbar if there
exists a while program P such that for all x1, . . . , xn ∈ N and memory m : N→ N defined as

m(i) :=
⎧⎪⎪⎨⎪⎪⎩

xi if 1 ≤ i ≤ n

0 else

the following holds:

• If x1, . . . , xn ∈ domain( f ), then [ P ](m) : N→ N and [ P ](m)(0) = f (x1, . . . , xn).

• If x1, . . . , xn ∉ domain( f ), then [ P ](m) = ⊥.

In other words, for a defined value of f (x1, . . . , xn), the program terminates with this value in
variable x0. If f (x1, . . . , xn) is undefined, the program does not terminate.

We will now show that while programs are indeed more powerful than loop programs by
sketching how the previously presented Ackermann function, which is not loop computable,
can be computed by a while program. In the left diagram of Figure 3.12 we show the recursive
definition of the Ackermann function as a computer program with recursive function calls; in
the right diagram the corresponding while program is shown (as previously discussed, we may
make use of conditional statements and a loop with arbitrary conditions).
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The core idea of the while program is to simulate the passing of arguments to function calls
and the returning of results by the use of a stack Stapelspeicher, i.e., a sequence of values from which the value
that was added last by a push operation is the one that is returned first by a pop operation. A
recursive call of ack(x1, x2) is simulated by pushing x1 and x2 (in the reverse order) on the
stack; the program iteratively pops these values from the stack and then either replaces them by
the function result (first branch) or by the arguments of a recursive call that will provide the
result (second branch) or by the three arguments of the two nested calls (third branch): in the
last case, the two last arguments for the inner call will be replaced by the result which, together
with the first argument, will provide the argument for the outer call. If there is only one element
left on the stack, this element denotes the overall function result.

This example demonstrates how every program whose only recursive function calls are such
that their results either denote the overall result or the argument of another recursive call can be
translated to a while program; by storing additional information on the stack, even a translation
of every kind of recursive function is possible (we omit the details).
Furthermore, it is interesting to note that, while the Ackermann function could not be

computed by an arbitrary number of bounded loops, it could be computed by a single unbounded
loop. This is actually an consequence of a very general result.

Theorem 15 (Kleene’s Normal Form Theorem) Every while computable function can be
computed by a while program of the following form (Kleene’s normal form Kleenesche

Normalform
)

xc := 1;
while xc do

if xc = 1 then P1

else if xc = 2 then P2

. . .

else if xc = n then Pn

end if
end while

where the program parts P1, . . . ,Pn do not contain while loops.

The variable xc in Kleene’s normal form takes the role of a control variable that determines
which of the n program parts Pi is to be executed next. The program starts with xc = 1; when
xc becomes 0, the program terminates.
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Proof We only sketch the proof whose core idea is to translate a while program into a goto
programGoto-Programm , i.e., a program which consists of a sequence of instructions of form Li: Pi where Li

is a label that is unique for every instruction of the program; Pi can be either an assignment
statement or a conditional jump statement if xi goto L j with the meaning that, if xi ≠ 0, then
the next instruction to be executed is the one with label L j , else it is the one with label Li+1 (see
Section 3.2.4 for more details).
An unconditional jump statement goto L can be then simulated by x j :=1; if x j goto L .

Furthermore, a conditional jump if xi = 0 goto L j can be simulated by the program

yi := 0
if xi goto L

yi := 1
L : if yi goto L j

Now every while program

while xi do P end

can be translated into a goto program

Li : if xi = 0 goto Li+1

P;
goto Li

Li+1 : . . .

Vice versa, every goto program

L1 : P1

L2 : P2

. . .

Ln : Pn

can be translated into a while program in Kleene’s normal form
xc := 1;
while xc do

if xc = 1 then xc := 2; P1

else if xc = 2 then xc := 3; P2

. . .

else if xc = n then xc := 0; Pn

end if
end while
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(xl, xq, xr) := input(x0)
xa := head(xr)

while transition(xq, xa) do
if xq = q1 ∧ xa = a1 then

P1
else if xq = q2 ∧ xa = a2 then

P2
else if . . . then
. . .

else if xq = qn ∧ xa = an then
Pn

end
xa := head(xr)

end
x0 := output(xl, xq, xr)

Figure 3.13.: Proof⇒ of Theorem 16

where we replace every statement Pi of form if xi goto L j by if xi ≠ 0 then xc := j end .
Thus every while program can be first translated into a goto program, which can then be

translated back into a while program in Kleene’s normal form. □

Thus while programs are more powerful than loop programs, but we still have to discuss
their relationship to Turing machines. This relationship is provided by the following result.

Theorem 16 (Turing Machines and While Programs) Every Turing machine can be simu-
lated by a while program and vice versa.

Proof We sketch both directions of the proof.

⇒ The while program simulates the Turing machine with the help of three variables xl ,
xq and xr that describe the current configuration: xq represents the state, xl represents
the part of the tape left to the tape head, and xr represents the part under/right to the
head (excluding the infinite suffix ␣␣ . . .); each of these variables holds an appropriate
encoding of the corresponding part of the Turing machine configuration as a natural
number.

Each of the n transition δ(q,a) = (q′,a′, d) of the Turing machine can be translated into a
sequence of assignments on xl, xs, xr ; we thus get n while loop programs P1, . . . ,Pn. The
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Figure 3.14.: Proof⇐ of Theorem 16

overall program for the simulation of the Turing machine is then sketched in Figure 3.13.
First it initializes from the variable x0, which represents the initial state of the Turing
machine tape, the variables xl, xq, xr . Then it repeatedly reads the head symbol represented
by xr into the variable xa and, based on xq and xa, checks whether there is some transition
possible: if yes, P selects the appropriate transition i and performs the corresponding
program Pi. If there is no more transition possible, the final content of the tape is copied
back to x0.

⇐ By Theorem 15, it suffices to demonstrate how a while program in Kleene’s normal form
can be simulated by a Turing machine. For a program with k variables, the machine uses
k tapes each of which represents in some encoding the content of one program variable.

Each program part Pi is translated into a corresponding fragment of the Turing machine’s
transition function; this fragment starts with some state pi and simulates the sequence of
assignments performed by Pi via corresponding modifications of the tapes; afterwards
it branches to some common state c0 (see Figure 3.14). Likewise each test xc = i is
translated into a transition function fragment that starts in some state ci; if the test
succeeds, it goes to the state pi and to the state ci+1, otherwise.

With these facilities at hand the Turing machine operates as follows: after simulating the
assignment xc := 1, it goes to state c1 to start the simulation of the tests xc = 1, xc = 2, . . .,
until it has determined the number i such that xc = i: it then goes to the state pi which
starts the simulation of Pi. When this simulation is finished, the machine is in state c0

from where it starts the simulation of the test xc = 0; if the test succeeds, the machine
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terminates; otherwise it returns to state c1.

The following theorem is a direct consequence of Theorem 16.

Theorem 17 (While Computability and Turing Computability) Let f : N →p N be a
partial function on natural numbers. Let g : {a}∗ →p {a}∗ be a partial function on repetitions
of some symbol a such that domain( f ) = domain(g) and ∀n ∈ N : g(an) = a f (n), i.e., g maps
repetitions of length n to repetitions of length f (n). Then f is while computable if and only if
g is Turing computable.

The theorem can be also generalized to n-ary functions; every while computable function is
thus (for some suitable encoding of natural numbers) Turing computable and vice versa.

The computer science concepts of loop and while programs demonstrated in this section are
closely related to mathematical concepts which we are now going to investigate.

3.2.3. Primitive Recursive and µ-recursive Functions

We turn our attention to a computational model that is not based on computer science concepts
such as machines or programs but purely on mathematical functions over the natural numbers.
These functions are defined by recursive equations of a certain form which we accept as
“computable” in an intuitive sense.

Definition 29 (Primitive Recursion) The following functions over the natural numbers are
called primitive recursive primitiv recursiv:

• The constant null function 0 ∈ N is primitive recursive2.

• The successor function s : N→ N, s(x) := x + 1 is primitive recursive.

• The projection functions pn
i : Nn → N, pn

i (x1, . . . , xn) := xi are primitive recursive.

• Every function defined by composition

h : Nn → N

h(x1, . . . , xn) := f (g1(x1, . . . , xn), . . . ,gk(x1, . . . , xn))

is primitive recursive, provided that f : Nk → N is primitive recursive and g1, . . . ,gk :
Nn → N are primitive recursive.
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• Every function defined by the primitive recursion scheme

h : Nn+1 → N

h(y, x1 . . . xn) :=
⎧⎪⎪⎨⎪⎪⎩

f (x1, . . . , xn) if y = 0

g(y − 1, h(y − 1, x1, . . . , xn), x1, . . . , xn) else

is primitive recursive, provided that the functions f : Nn → N and g : Nn+2 → N are
primitive recursive.

A mathematical function is therefore primitive recursive if it is one of the basic functions
(constant null, successor, projection) or can be constructed from these functions by a finite
number of applications of the principles of composition and/or primitive recursion. This
primitive recursion principle can be better understood by unwinding the definition:

h(0, x) = f (x)

h(1, x) = g(0, h(0, x), x) = g(0, f (x), x)

h(2, x) = g(1, h(1, x), x) = g(1,g(0, f (x), x), x)

h(3, x) = g(2, h(2, x), x) = g(2,g(1,g(0, f (x), x), x), x)

. . .

h(y, x) = g(y − 1, h(y − 1, x), x) = g(y − 1,g(y − 2, . . . ,g(0, f (x), x), . . . , x), x)

Thus, for y > 0, h(y, x) describes the y-times application of g to a base value f (x), i.e., the
computation of h(y, x) requires the evaluation of y recursive function applications.
Using “pattern matching”, primitive recursion can be also formulated by two equations

h(0, x1 . . . , xn) := f (x1, . . . , xn)

h(y + 1, x1 . . . , xn) := g(y, h(y, x1, . . . , xn), x1, . . . , xn)

or in a more computer-science oriented style as

h(y, x1 . . . xn) :=
case y of

2Formally, 0 : () → N where () denotes the set whose only element is the zero-length tuple (); however, we
simply write the constant 0 to denote the function application 0().
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0 : f (x1, . . . , xn)

z + 1 : g(z, h(z, x1, . . . , xn), x1, . . . , xn)

Example 17 (Primitive Recursive Functions) The addition y + x on natural numbers x, y is
primitive recursive, because we can give the following definition in “pattern matching” style:

0 + x := x

(y + 1) + x := (y + x) + 1

Using the fact that addition is primitive recursive, we can also show that multiplication y · x on
natural numbers x, y is primitive recursive:

0 · x := 0

(y + 1) · x := y · x + x

Thus also exponentiation xy on natural numbers x and y is primitive recursive:

x0 := 1

xy+1 := xy · x □

A function defined by primitive recursion is recursively evaluated a bounded number of
times exactly as a loop in a loop program is iterated a bounded number of times. Thus it seems
possible to convert a loop program into a primitive recursive function.

Example 18 Take the loop program

x0 := x1

x2 := 0
loop x1 do

if x0 = x1 ∧ p(x2) = 1 then
x0 := x2

end
x2 := x2 + 1

end

where p is an arbitrary function. This program computes in x0 the smallest natural number n < x1

for which p(n) = 1 holds (respectively x0 = x1, if p(n) ≠ 1 for all n < x1). Assuming that for
input x1 = 5 we get output x0 = 3, the following trace describes the values of the program
variables before/after every iteration of the loop:
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x0 x1 x2

5 5 0
5 5 1
5 5 2
5 5 3
3 5 4
3 5 5

If p is primitive recursive, we can define a primitive recursive function min(x1) := loop(x1, x1)

that computes the same result as the loop program above. This function uses the auxiliary
function loop defined by the following primitive recursion scheme:

loop(x2, x1) :=
⎧⎪⎪⎨⎪⎪⎩

x1 if x2 = 0

if (x2 − 1, loop(x2 − 1, x1), x1) else

The function loop(x2, x1) returns the value that is assigned to program variable x0 for input x1

by x2 iterations of the loop in above program; the definition min(x1) := loop(x1, x1) indicates
that we want to determine the value that is assigned to x0 by x1 iterations. The argument x2

takes the role of the loop iteration counter in above program. If x2 = 0, the loop is not executed
at all and the result is the initial value x1 of variable x0.
If x2 > 0, we compute by the recursive call loop(x2 − 1, x1) the value of x0 after x2 − 1

iterations of the loop. From this, we determine the value of x0 after one more iteration by
application of the selection function

if (x2, x0, x1) :=
⎧⎪⎪⎨⎪⎪⎩

x2 if x0 = x1 ∧ p(x2) = 1

x0 else

This function determines the value that is assigned to the program variable x0 by the if statement
in the loop program above; if is primitive recursive because it can be shown that a function
defined by case distinction is primitive recursive.

The recursive invocations of function loop arising from the evaluation of min(5) = loop(5,5)

loop(0,5) = 5
loop(1,5) = if (0, loop(0,5),5) = if (0,5,5) = 5
loop(2,5) = if (1, loop(1,5),5) = if (1,5,5) = 5
loop(3,5) = if (2, loop(2,5),5) = if (2,5,5) = 5
loop(4,5) = if (3, loop(3,5),5) = if (3,5,5) = 3
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loop(5,5) = if (4, loop(4,5),5) = if (4,3,5) = 3

show that in the sequence of evaluations of loop(x2, x1) = x0 the values (x0, x1, x2) correspond
to the trace of the program variables in above loop program. □

Indeed, the following theorem confirms that such a translation is always possible, even in
both directions.

Theorem 18 (Primitive Recursion and Loop Computability) Every primitive recursive
function is loop computable and vice versa.

Proof We sketch both directions of the proof.

⇒ Let h be a primitive recursive function. We show that h is loop computable by structural
induction over the definition of m.

– If h is one of the basic functions, it is clearly loop computable.

– If h can be defined with the help of primitive recursive functions f ,g1, . . . ,gk as

h(x1, . . . , xn) := f (g1(x1, . . . , xn), . . . ,gk(x1, . . . , xn))

then, by the induction hypothesis, we can assume that f ,g1, . . . ,gk are loop
computable, i.e., there exist loop programs f , g1 , . . . , gk that compute these
functions. We can then construct the loop program

y1 := g1(x1, . . . , xn);
y2 := g2(x1, . . . , xn);
. . .
yk := gk(x1, . . . , xn);
x0 := f (y1, . . . , yk)

which computes h(x1, . . . , xn).

In above code, we denote by a function application of form

b := f (a1, . . . ,an);

the program that first backups the values of x1, . . . , xn and of all variables written by f

into otherwise unused variables, then writes a1, . . . ,an into x1, . . . , xn, executes f ,
copies the result from x0 to b, and finally restores the original values of x1, . . . , xn

and of all variables written by f from the backup. We omit the details.
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– If h can be defined with the help of primitive recursive functions f ,g as

h(y, x1 . . . xn) :=
⎧⎪⎪⎨⎪⎪⎩

f (x1, . . . , xn) if y = 0

g(y − 1, h(y, x1, . . . , xn), x1, . . . , xn) else

then, by the induction hypothesis, we can assume that f ,g are loop computable, i.e.,
there exist loop programs f and g that compute these functions. We can then
construct the loop program

x0 := f (x1, . . . , xn);
xy := 0;
loop y do

x0 := g(xy, x0, x1, . . . , xn);
xy := xy + 1

end

which computes h(y, x1, . . . , xn) (the function applications in the code are interpreted
as shown in the previous case).

This case is of particular interest: it shows that the “outside-in” computation of the
value of the term g(y − 1,g(y − 2, . . . ,g(0, f (x)))) by y primitive recursive calls can
be replaced by the y-times iteration of a loop that computes the value “inside-out”.

⇐ Let h be a loop computable function with k arguments whose loop program P uses variables
x0, x1, . . . , xn (where n ≥ k). Let fP : Nn+1 → Nn+1 be the function that maps the initial values
of these variables before the execution of P to their final values after the execution of P.

We show by induction on the definition of P that fP is primitive recursive. If fP is primitive
recursive, then also h is primitive recursive, because we can define h by composition as

h(x1, . . . , xk) = var0( fP(0, x1, . . . , xk,0, . . . ,0))

where vari(x0, . . . , xn) := xi.
One might note that a primitive recursive function must return a single natural number,

while the result of fP is actually a tuple of such numbers. However, this problem can be easily
solved by encoding each tuple of natural numbers as a single number and by defining the usual
tuple construction and selection operations as primitive recursive functions over numbers. To
simplify our presentation, we do not make this encoding explicit but just assume that we can
freely use this kind of “generalized” number functions.
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• If P is of form xi := k, then

fP(x0, . . . , xn) := (x0, . . . , xi−1, k, xi+1, . . . , xn)

is primitive recursive, because tuple construction is primitive recursive.

• If P is of form xi := x j ± 1, then

fP(x0, . . . , xn) := (x0, . . . , xi−1, x j ± 1, xi+1, . . . , xn)

is primitive recursive, because tuple construction and basic arithmetic on natural numbers
is primitive recursive.

• If P is of form P1; P2, then by the induction assumption, the functions fP1 and fP2 are
primitive recursive. Then also the function

fP(x0, . . . , xn) := fP2( fP1(x0, . . . , xn))

defined by composition of fP1 of fP1 is also primitive recursive.

• If P is of form loop xi do P′ end, then by the induction assumption, the function fP′ is
primitive recursive. Then also the function

fP(x0, . . . , xn) := g(xi, x0, . . . , xn)

is primitive recursive where g is defined by primitive recursion as

g(0, x0, . . . , xn) := (x0, . . . , xn)

g(m + 1, x0, . . . , xn) := fP′(g(m, x0, . . . , xn)) □

By Theorem 13, we know that several (even recursively defined) functions are not loop
computable, notably the function a ↑n b and the Ackermann function. By Theorem 18, we thus
also know that these functions are also not primitive recursive.

However, we have also seen that the model of while programs is more powerful than the one
of loop programs, e.g., it can be used to compute the Ackermann function. We apparently still
lack in our model of recursive functions the counter part of while loops which is needed to
make the model Turing complete. The following definition provides this missing concept.
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Definition 30 (µ-Recursion) A partial function over the natural numbers is mu-recursiveMy-rekursiv

(µ-recursive) if

• it is the constant null function, or the successor function, or a projection function, or

• can be constructed from other µ-recursive functions by composition or primitive
recursion, or

• can be defined as a function h : Nn →p N with

h(x1, . . . , xn) := (µ f )(x1, . . . , xn)

where f : Nn+1 →p N is a µ-recursive function and (µ f ) : Nn →p N is defined as

(µ f )(x1, . . . , xn) := min

{︄
y ∈ N

|︁|︁|︁|︁|︁ f (y, x1, . . . , xn) = 0 ∧

∀z ≤ y : (z, x1, . . . , xn) ∈ domain( f )

}︄
Thus h(x1, . . . , xn) denotes the smallest number y such that f (y, x1, . . . , xn) = 0 and f

is defined for all z ≤ y; the result of h is undefined if no such y exists.

Please note that a µ-recursive function is in general partial because the principle of µ-recursion
is the analogon to the unbounded while loop; like a while loop may yield a non-terminating
program, the µ-operator may yield an undefined function result (think of (µ f ) as the function
that starts a search for the smallest value y such that f (y, x1, . . . , xn) = 0; this search may or
may not terminate).

However, a µ-recursive function may be also total; in particular, since the definition of µ-
recursion subsumes primitive recursion, every primitive recursive function is a total µ-recursive
function. As we will see later, the converse is not true, i.e., by µ-recursion more functions (even
total ones) can be defined than by primitive recursion. The inclusion relationship between the
classes of primitive recursive functions, total µ-recursive functions, and partial µ-recursive
functions is illustrated in Figure 3.15 (every inclusion is proper, i.e., the three classes are all
really different).

Example 19 (µ-Recursive Function Definition) We consider the sequence of numbers de-
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primitive recursive

total µ-recursive

partial µ-recursive

Figure 3.15.: Primitive Recursion and µ-Recursion

rived from the k-fold application

f k(n) = f ( f ( f (. . . f (n))))⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
k applications of f

of the function

f (n) :=
⎧⎪⎪⎨⎪⎪⎩

n
2 if n is even

3n + 1 otherwise

to some start value n ∈ N. For instance, if we take n := 10, we have

f 0(10) = 10

f 1(10) = f ( f 0(10)) = f (10) = 5

f 2(10) = f ( f 1(10)) = f (5) = 16

f 3(10) = f ( f 2(10)) = f (16) = 8

f 4(10) = f ( f 3(10)) = f (8) = 4

f 5(10) = f ( f 4(10)) = f (4) = 2

f 6(10) = f ( f 5(10)) = f (2) = 1

Thus we have f 6(10) = 1. Interestingly, for every n ∈ N, there seems to exist some k ∈ N such
that f k(n) = 1 (the so called “Collatz Conjecture”). We are now interested in defining the
function C(n) whose result is the minimal number k such that f k(n) = 1; as above example
demonstrates, we have C(10) = 6. If for some n no such k should exist (i.e., for starting value n
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above process can be repeated forever without ultimately reaching 1), C(n) is undefined.
The core idea of defining C as a µ-recursive function is as follows (the formally correct

definition will be given below):

C(n) := (µD)(n)

D(k,n) := f k(n) − 1

f k(n) :=
⎧⎪⎪⎨⎪⎪⎩

n if k = 0

f ( f k−1(n)) otherwise

Here f k(n) is defined by primitive recursion where the parameter k determines the number of
recursive applications. By the meaning of the µ-operator, (µD)(n) denotes the smallest k ∈ N

for which D(k,n) = 0; since D(k,n) = 0, if f k(n) = 1, the function C is defined as intended.
Now the formally correct definition of C is as follows:

C(n) := (µD)(n)

D(k,n) := P(E(k,n))

P(n) :=
⎧⎪⎪⎨⎪⎪⎩

0 if n = 0

p2
1(n − 1,P(n − 1)) otherwise

E(k,n) :=
⎧⎪⎪⎨⎪⎪⎩

p1
1(n) if k = 0

F(k − 1,E(k − 1,n),n) otherwise

F(k,m,n) := f (p3
2(k,m,n))

Here P(n) denotes the predecessor n−1 of n (the result is 0, if n = 0) and E(k,n) computes f k(n).
Since thus P and E are indeed primitive recursive functions, the definition of C as a µ-recursive
function is well-formed.
The Collatz Conjecture could be neither proved nor disproved yet; thus it is unknown

whether C is total (and there may or may not exist also a primitive recursive definition of C).□

The close relationship between µ-recursive functions and while programs is stated by the
following theorem.

Theorem 19 (µ-Recursion and While Computability) Every µ-recursive function is while
computable and vice versa.
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Proof We sketch both parts of the proof.

⇒ Let h be a µ-recursive function. We are going to show by induction on the definition of h

the existence of a while program P that computes h.

If h is one of the basic functions or defined by composition or primitive recursion, the
construction is as in the proof of Theorem 18. If h is defined by application of the
µ-operator with the help of a µ-recursive function f : Nn+1 →p N as

h : Nn →p N

h(x1, . . . , xn) := (µ f )(x1, . . . , xn)

then there exists, by the induction hypothesis, a while program to compute

y := f (x0, x1, . . . , xn)

The program P to compute h is then as follows:

x0 := 0;
y := f (x0, x1, . . . , xn);
while y do

x0 := x0 + 1;
y := f (x0, x1, . . . , xn)

end
When started in a state where the variables x1, . . . , xn hold the arguments of h, the variable
x0 holds after the execution of P the value of h.

⇐ Let h : Nk →p N be a while computable function, i.e. there exists a while program P

that uses n + 1 > k variables x0, . . . , xn and computes h. We show that h is a µ-recursive
function defined as

h(x1, . . . , xk) := var0( fP(0, x1, . . . , xk,0, . . . ,0))

where vari(x0, . . . , xn) := xi by proving the existence of a µ-recursive function fP :
Nn+1 →p N

n+1 that maps the initial values of these variables before the execution of P to
their final values after the execution of P; the proof proceeds by induction on the structure
of P.

If P is an assignment, or a sequence, of a bounded loop, then the proof proceeds as in the
proof of Theorem 18. If P is an unbounded loop

while xi do P′ end
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then by the induction hypothesis there exists a µ-recursive function fP′ : Nn →p N
n that

maps the variable values before the execution of P to the values after the execution. Then
fP is defined as

fP(x0, . . . , xn) := g((µgi)(x0, . . . , xn), x0, . . . , xn)

where

gi : Nn+1 → N

gi(m, x0, . . . , xn) := vari(g(m, x0, . . . , xn))

and g is defined as in the proof of Theorem 18:

g(0, x0, . . . , xn) := (x0, . . . , xn)

g(m + 1, x0, . . . , xn) := fP′(g(m, x0, . . . , xn))

Thus g(m, x0, . . . , xn) denotes the values of the program variables after m iterations of P′,
gi(m, x0, . . . , xn) denotes the value of variable i after m iterations, and (µgi)(x1, . . . , xn)

denotes the the minimum number of iterations required to drive variable xi to 0. Then fP
is the value of the program variables after that number of iterations, i.e., when xi for the
first time becomes 0. □

Since the Ackermann function is while computable, it is by Theorem 19 a (total) µ-recursive
function. Furthermore, we have sketched in the previous section, how every recursive function
definition can be translated to a while program (by the use of a variable that simulates a stack of
function calls). Thus every function that can be defined by some recursive definition can be
also be defined in a µ-recursive form (by using a corresponding stack argument).

Since µ-recursive functions correspond to while programs, they also have a normal form.

Theorem 20 (Kleene’s Normal Form Theorem) Every µ-recursive function h can be de-
fined in the following form (Kleene’s normal formKleenesche

Normalform
)

h(x1, . . . , xk) := f2(x1, . . . , xk, (µg)( f1(x1, . . . , xk)))

where f1, f2,g are primitive recursive functions.

Proof Since h is µ-recursive, it is by Theorem 19 computable by a while program, which by
Theorem 15 can be assumed to be in normal form:
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xc := 1;
while xc do . . . end

As shown in the second parts of the proofs of Theorem 18 and Theorem 19, this program P can
be translated into a function fP

fP(x0, . . . , xn) := g((µgc)(init(x0, . . . , xn)), init(x0, . . . , xn))

where init(x0, . . . , xc, . . . , xn) := (x0, . . . ,1, . . . , xn), and (since P does not contain any more
while loops) g and gc are primitive recursive. Then h is defined as

h(x1, . . . , xk) := var0( fP(0, x1, . . . , xk,0, . . . ,0))

i.e., by expanding the definition of fP, as

h(x1, . . . , xk) :=
var0(g((µgc)(init(0, x1, . . . , xk,0, . . . ,0)), init(0, x1, . . . , xk,0, . . . ,0)))

We can then define the primitive recursive functions

f1(x1, . . . , xk) := init(0, x1, . . . , xk,0, . . . ,0)

f2(x1, . . . , xk,r) := var0(g(r, init(0, x1, . . . , xk,0, . . . ,0)))

and consequently have

h(x1, . . . , xk) := f2(x1, . . . , xk, (µgc)( f1(x1, . . . , xk))) □

This section has demonstrated that the principle of recursion has the same computational
power as loop iteration. In fact, all the results shown in the previous section for loop programs
and while programs were historically derived first for primitive and µ-recursive functions
(the theory of computability was originally called recursion theory); later these results were
transferred to the looping constructs that arose in the emerging programming languages.

3.2.4. Further Models

Figure 3.16 summarizes our current picture of computational models and their relationships. In
Chapter 2 we have presented the model of finite-state machines which we have shown to be less
powerful than the model of Turing machines introduced in this chapter. We have shown in the
last sections that there are several equally powerful models such as random access machines,
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Random Access Machines

Turing Machines

While Programs Loop Programs

Primitive Recursive Functions

Finite State Machines

Turing Complete Models

µ-recursive Functions

Theorem 12

Theorem 16

Theorem 18Theorem 19

Figure 3.16.: Computational Models (A −→ B: A can be simulated by B)

while programs, and mu-recursives functions; furthermore we have identified the less powerful
models of loop programs and primitive recursives functions.

To complete the picture, we will in the following shortly sketch various other computational
models which are Turing complete (the list is not exhaustive, there are many more examples).

Goto Programs

We consider programs with jump instructions rather than loop constructs.

Definition 31 (Goto Programs) A goto programGoto-Programm is a finite sequence of instructions

L1 : P1; L2 : P2; . . . ; Pn : An

where every action Pk is inductively defined by the following grammar:

P ::= xi := 0 | xi := x j + 1 | xi := x j − 1 | if xi goto L j

The meaning of a program P is defined by a partial function [ P ](k,m) which maps the initial
state (k,m) of P, consisting of a program counter k ∈ N and memory m : N→ N, to its final
state (unless the program does not terminate):

[ P ](0,m) := m

[ P = . . . ; Pk : xi := 0; . . . ](k,m) := [ P ](k + 1,m[i ← 0])

© 2012– Wolfgang Schreiner.
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[ P = . . . ; Pk : xi := x j + 1; . . . ](k,m) := [ P ](k + 1,m[i ← m[ j] + 1])
[ P = . . . ; Pk : xi := x j − 1; . . . ](k,m) := [ P ](k + 1,m[i ← max{0,m[ j] − 1]})

[ P = . . . ; Pk : if xi goto L j ; . . . ](k,m) :=
⎧⎪⎪⎨⎪⎪⎩

[ P ](k + 1,m), if m(i) = 0

[ P ]( j,m), if m(i) ≠ 0

The proof of Theorem 15 already sketched how while programs can be translated into goto
programs (and vice versa), which shows that this model is indeed Turing complete.

Lambda Calculus

We now discuss the calculus which stood at the beginning of the Church-Turing Thesis.

Definition 32 (Lambda calculus) Lambda-KalkülA lambda term
Lambda-Term

(λ-term) T is defined by the following
grammar:

T ::= xi | (T T) | (λxi .T)

A term of form (λxi .T) is called an abstraction Abstraktion, a term of form (T T) is called an application
Anwendung

.
The meaning of a λ-term is defined by the following reduction relation→:

((λxi .T1)T2) → (T1[xi ← T2])

We denote by T1 →
∗ T2 the existence of a sequence of reductions T1 → . . . → T2. The

final term T2 is in normal form Normalform, if no further reduction is possible.

Intuitively, the abstraction term T1 = (λxi .T) with the binder operator λ represents a function
with parameter xi and resultT ; the application term (T1T2) applies this function to an argumentT2,
which yields the result T[x ← T2], i.e. T where the parameter x has been replaced by argument
T2.

In general, in a given term T different reductions are possible yielding different reduction
sequences T → . . .. However, as claimed by the following theorem (which holds also for
certain other reduction systems), if a reduction sequence terminates in a normal form, then this
form is uniquely defined.
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Theorem 21 (Church-Rosser Theorem) If T1 →
∗ T2 and T1 →

∗ T ′2 such that both T2 and
T ′2 are in normal form, then T2 = T ′2.

Now the claim is that every computable function can be represented by a λ-term such that the
application of the term to an argument yields a reduction sequence that terminates in a normal
form which represents the result of the function. Thus the core question is how the lambda
calculus is able to mimic unbounded computations (as in while loops or µ-recursive functions).
The answer lies in the fact that it is possible to define a λ-term Y (the fixed point operatorFixpunkt-Operatator ) such
that, for any lambda term F, we have the reduction sequence

(Y F) →∗ (F(Y F))

i.e. Y F represents a fixed point of F. With the help of this operator, we can in the λ-calculus
mimic any recursive function definition, e.g.,

f (x) := . . . f (g(x)) . . .

by defining the lambda terms

F : = λh.λx. . . . h(g(x)) . . .

f : = Y F

We then have

f a = (Y F)a→∗ F(Y F)a→∗ . . . (Y F)(g(a)) . . . = . . . f (g(a)) . . .

i.e., the reduction yields the desired recursive application of f ; the lambda calculus is thus
indeed Turing complete.

It remains to give a suitable definition of of the fixed point operator:

Y := (λ f .((λx.( f (xx)))(λx.( f (xx)))))

We leave it to the reader to check that this definition indeed yields (Y F) →∗ (F(Y F)).
The lambda calculus is the formal basis of functional programming languages which consider

computations not as updates of programs states (as in imperative languages) but as constructions
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of result values.

Rewriting Systems

While lambda calculus reduces its terms by a fixed set of rules, we may consider systems that
reduce terms by a user defined rule set.

Definition 33 (Term Rewriting System) A term rewriting system Termersetzungssystemis a set of rules of form

L → R

where L and R are terms such that L is not a variable and every variable that appears in R

must also appear in L. A term T can be rewritten to another term T ′, written as T → T ′, if
there is some rule L → R and a substitution σ (a mapping of variables to terms) such that

• some subterm U of T matches the left hand side L of the rule under the substitution σ,
i.e., U = Lσ,

• T ′ is derived from T by replacing U with Rσ, i.e with the right hand side of the rule
after applying the variable replacement.

We denote by T1 →
∗ T2 is a sequence of rewritings T1 → . . . → T2. The final term T2 is in

normal form Normalform, if no further reduction is possible.

An example of a term rewriting system is

f (x, f (y, z)) → f ( f (x, y), z)

f (x, e) → x

f (x, i(x)) → e

from which we have, for instance, the reduction sequences

f (a, f (i(a), e)) → f ( f (a, i(a)), e) → f (e, e) = e

f (a, f (i(a), e)) → f (a, i(a)) → e

It is not very hard to see that by term rewriting systems we can encode arbitrary recursive
function definitions and that thus the model is Turing complete.
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The set of objects to be reduced need not necessarily be terms; there are e.g. also string
rewriting systems (the objects are strings of symbols) or graph rewriting systems (the objects
are graphs). Rewriting systems have many practical applications, they play a role in automated
theorem proving as well as in software engineering (many tools for the model driven architecture
approach are based on graph rewriting).

3.3. The Chomsky Hierarchy

In Chapter 2, we have introduced the concept of finite-state machines whose languages (the
regular languages) are those that can be also described by regular expressions. In this chapter,
we have introduced Turing machines that recognize the recursively enumerable languages; for
these languages, we are now going to introduce a corresponding alternative description based
on the concept of formal grammars.

Definition 34 (Grammar) A grammarGrammatik G is a quadruple (N,Σ,P,S) consisting of

• a finite set N of elements which we call nonterminal symbolsNonterminalsymbol ,

• a finite set Σ disjoint from N , i.e.,

N ∩ Σ = ∅

whose elements which we call terminal symbolsTerminalsymbol ,

• a finite set P of production rulesProduktionsregel of form l → r such that

l ∈ (N ∪ Σ)∗ ◦ N ◦ (N ∪ Σ)∗

r ∈ (N ∪ Σ)∗

i.e., the left side l and the right side r consist of sequences of nonterminal and/or
terminal symbols where l must contain at least one nonterminal symbol,

• a nonterminal symbols S ∈ N which we call the start symbolStartsymbol .

If a grammar has multiple production rules l → r1, l → r2, . . . , l → rn we may abbreviate
these to a single rule

l → r1 | r2 | . . . | rn
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Definition 35 (Language of a Grammar) Let G = (N,Σ,P,S) be a grammar and w1,w2 ∈

(N ∪ Σ)∗ two words of nonterminal and/or terminal symbols.

• There exists a direct derivation direkte Ableitungw1 ⇒ w2 in grammarG, if there are words u, v ∈ (N∪Σ)∗

of nonterminal and/or terminal symbols such that

w1 = ulv

w2 = urv

and l → r is a production rule of G.

• There exists a derivation Ableitungw1 ⇒
∗ w2 in G if there exists a sequence of zero or more

direct derivations w1 ⇒ . . .⇒ w2 in G.

• A word w ∈ (N ∪ Σ)∗ of nonterminal and/or terminal symbols is a sentential form Satzformin G,
if there is a derivation S ⇒∗ w in G starting with the start symbol S.

• A sentential form w is a sentence Satzif w contains only terminal symbols, i.e. w ∈ Σ∗.

• The language L(G) of grammar G = (N,Σ,P,S) is the set of all its sentences:

L(G) := {w ∈ Σ∗ | S ⇒∗ w}

Example 20 (Finite Grammar Language) Take the grammar G = (N,Σ,P,S) with

N = {S, A,B}

Σ = {a, b, c}

P = {S → Ac, A→ aB, A→ BBb,B→ b,B→ ab}

We then have e.g. the two derivations

S ⇒ Ac⇒ aBc⇒ abc

S ⇒ Ac⇒ BBbc⇒ abBbc⇒ ababbc

The language of the grammar is

L(G) = {abc,aabc, bbbc, babbc,abbbc,ababbc}

i.e. it consists of finitely many words. □
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Example 21 (Infinite Grammar Language) Take the grammar G = (N,Σ,P,S) with

N = {S}

Σ = {‘(’, ‘)’, ‘[’, ‘]’}

P = {S → ε | SS | [S] | (S)}

This grammar has a recursive production rule where the nonterminal symbol S on the left also
occurs on the right which gives rise to infinitely many possible derivations, e.g.

S ⇒ [S] ⇒ [SS] ⇒ [(S)S] ⇒ [()S] ⇒ [()[S]] ⇒ [()[(S)]] ⇒ [()[()]]

Thus the language of the grammar (the so-called Dyck-Language) is infinite; it consists of all
words that have matching pairs of parentheses “()” and brackets “[]”. □

We can now represent regular languages by certain kinds of grammars.

Definition 36 (Right Linear Grammars) A grammar G = (N,Σ,P,S) is right linearrechtslinear if each
rule in P is of one of the forms

• A→ ε

• A→ a

• A→ aB

where A,B ∈ N are nonterminal symbols and a ∈ Σ is a terminal symbol.

Theorem 22 (Regular Languages and Right-Linear Grammars) The languages of right
linear grammars are exactly the regular languages, i.e., for every right linear grammar G, there
exists a finite-state machine M with L(M) = L(G) and vice versa.

Proof We sketch both directions of the proof.

⇒ We construct from the right linear grammar G a NFSM M. The states of M are the
nonterminal symbols of G extended by an additional accepting state q f . The start state
of M is the start symbol of G. The construction of the automaton proceeds according to
the production rules of G:
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– For every rule A→ ε, the state A becomes accepting.

– For every rule A→ a, we add a transition δ(A,a) = q f .

– For every rule A→ aB, we add a transition δ(A,a) = B.

⇐ Let M be a DFSM. We take as the set of nonterminal symbols of G the set of states of M

and as the start symbol the start state of M .

– For every transition δ(q,a) = q′ we add a production rule q→ aq′.

– For every accepting state q, we add a production rule q→ ε. □

If we drop any restriction on the form of the grammar, we get a corresponding equivalence
result for recursively enumerable languages.

Theorem 23 (Recursively Enumerable Languages and Unrestricted Grammars) The
languages of (unrestricted) grammars are exactly the recursively enumerable languages, i.e.,
for every grammar G, there exists a Turing machine M with L(M) = L(G) and vice versa.

Proof We sketch both parts of the proof.

⇒ We construct from the grammar G a 2-tape nondeterministic Turing machine M. This
machine uses the second tape to construct some sentence of L(G): it starts by writing S

on the tape and then nondeterministically chooses some production rule l → r of G and
applies it to some occurrence of l on the tape, replacing this occurrence by r. Then M

checks whether the result equals the word on the first tape. If yes, M accepts the word,
otherwise, it continues with another production rule. If the word can be derived from G,
there is some run of M which detects this derivation, thus L(M) = L(G).

⇐ We can construct from the Turing machine M a grammar G whose sentential forms
encode pairs (w, c) of the input word w and the current configuration c of M; every such
sentential form contains a non-terminal symbol such that by application of a rule, the
sentential form representing the pair of input word and current machine configuration is
replaced by a sentential form of input word and successor configuration. The production
rules of G are defined such that

– from the start symbol of G, every pair (w, c) of an input word w and a corresponding
start configuration c of M can be derived;
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– for every transition of M a corresponding production rule is constructed, such
that if the transition moves configuration c to c′, in G a corresponding derivation
(w, c) ⇒ (w, c′) is possible;

– if in M from a configuration c no further transition is possible and the corresponding
machine state is accepting, then in G the derivation (w, c) ⇒ w is possible (if the
state is not accepting, from (w, c) no derivation is possible).

The sentences of G are thus the words accepted by M , thus L(G) = L(M). □

By the second part of Theorem 23, (unrestricted) grammars represent another Turing complete
computational model.

We have thus constructed a correspondence between two levels of machine models (finite-state
machines and Turing machines), their languages (regular languages and recursively enumerable
languages) and grammars generating these languages (right linear grammars and unrestricted
grammars). These levels are the two ends of a hierarchy of grammars, languages, and machine
models, which was conceived in 1956 by the linguist Noam Chomsky.

Theorem 24 (Chomsky hierarchy)Chomsky-Hierarchie For type i ∈ {0,1,2,3}, let G(i), L(i), and M(i) be the
following sets of grammars, languages and machine models:

Type i Grammar G(i) Language L(i) Machine M(i)

0 unrestricted recursively enumerable Turing machine
1 context-sensitive context-sensitive linear bounded automaton
2 context-free context-free pushdown automaton
3 right linear regular finite-state machine

We say that a grammar/language/machine is of type i if it is in set G(i)/L(i)/M(i).
Then, for every type i, we have:

• L(i) is the set of languages of grammars G(i) and machines M(i).

• For i > 0, the set of languages of type L(i) is a proper subset of the set of languages
L(i − 1), i.e. L(i) ⊂ L(i − 1).

• For i > 0, every machine in M(i) can be simulated by a machine in M(i − 1) (but not
vice versa).

We are now going to complete the missing layers of this hierarchy.
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Definition 37 (Type 2 Grammars and Machines) A grammar G is context-free kontextfreiif every rule
has form A→ r where A ∈ N is a nonterminal symbol.

A pushdown automaton KellerautomatM is a nondeterministic finite-state machine that has an unbounded
stack of symbols as a working memory: in every transition δ(q,a, b) = (q′,w), M reads the
next input symbol a (a may be ε, i.e., M may also not read a symbol) and the symbol b on the
top of stack, and replaces b by a (possibly empty) sequence w of symbols.

The name “context-free” stems from the fact that, given a rule A→ r, in a sentential form
any occurrence of A may be replaced by r , independent of the context (the surrounding terminal
or nonterminal symbols) in which it occurs.

Example 22 (Type 2 Language) The language

L := {aibi | i ∈ N}

is of type 2 (but, as we have already proved by application of the Pumping Lemma, not of
type 3), because it is the language of the following grammar:

S → ε | aSb

We can e.g. construct the derivation

S ⇒ aSb⇒ aaSbb⇒ aaaSbbb⇒ aaabbb □

Context-free languages play a very important role in computer science, e.g.,most programming
languages are of this form; compiler generators take context-free grammars as input and produce
as output parsers, i.e., compiler front ends that read and syntax check source code (such parsers
are in essence implementations of pushdown automata).

Definition 38 (Type 1 Grammars and Machines) A grammar G is context-sensitive kontextsensitivif

• in every rule l → r , we have |l | ≤ |r |, i.e., the length of left side l is less than or equal
the length of right side r ,

• the rule S → ε is only allowed if the start symbol S does not appear on the right hand
side of any rule.
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A linear bounded automatonLinear beschränkter
Automat

M is a nondeterministic Turing machine with k tapes such that,
for an input word of length n, the machine never moves the tape head beyond the first n cells
of each tape.

In contrast to a general Turing machine, a linear bounded automatonLinear beschränkter
Automat

must therefore cope
with a limited amount of space (a fixed multiple of the length of the input word).

Example 23 (Type 1 Language) The language

L := {aibi f i | i ∈ N}

is of type 1 (but not of type 2, as can be shown by a generalized Pumping Lemma for context-free
languages), because it is the language of the following grammar:

S → ε | T,T → ABC | T ABC

BA→ AB,CB→ BC,CA→ AC

AB→ ab, bC → bc, Aa→ aa, bB→ bb, cC → cc

Every nonterminal A,B,C represents one occurrence of a, b, c in the final word. The first two
rules generate an arbitrary number of triples A,B,C. The next three rules sort A,B,C such that
they occur in the right order. The last five rules replace those occurrences of A,B,C that occur
in the right order by a, b, c.
We can then e.g. construct the derivation

S ⇒ T ⇒ T ABC ⇒ ABCABC ⇒ ABACBC ⇒ AABCBC ⇒ AABBCC

⇒ AabBCC ⇒ aabBCC ⇒ aabbCC ⇒ aabbcC ⇒ aabbcc □

It is not hard to see that the language {aib j f k | k = ack(i, j)} where ack denotes the
Ackermann function is a type 0 language; one can also show that it is not a type 1 language. We
thus have now examples of languages for each type of the Chomsky hierarchy:

• Type 3: {(ab)n | n ∈ N}

• Type 2: {anbn | n ∈ N}

• Type 1: {anbn f n | n ∈ N}

• Type 0: {aib j f k | k = ack(i, j)}

None of these languages of type i is also of type i + 1.
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3.4. Real Computers

We have in this chapter presented Turing machines and various equivalent computational models
and proved their superiority over finite-state machines. But what is the core reason of this
superiority? In a nutshell, while a finite-state machine has only a bounded number of states, the
other models support computations with arbitrarily many states:

• in a Turing machine, these states are represented by the content of the tape (which is
infinitely long and may thus hold symbol sequences of arbitrary length);

• in a random access machine, these states are represented by the content of the memory
(which has infinite size and may thus hold arbitrarily many natural numbers each of which
may be even of arbitrary size);

• in a while program respectively µ-recursive function, the states are represented by
variables that may hold natural numbers of arbitrary size and may thus encode arbitrarily
large data structures.

Furthermore, while in finite-state machines the length of a computation is a priori bounded by
the size of the input, computations in these models may run for an arbitrary amount of time and
even not terminate at all (this is the price that a model has to pay to become Turing complete).
One may now ask what kind of model actually captures the computational power of a real

computer. Unfortunately, the answer is not so simple:

• One may argue that a real computer is made of various components such as processor,
memory, and communication devices, which are in turn composed of finitely many digital
elements. Since the state of a computer in every clock cycle is determined by the current
Boolean values of all these elements, it can be only in finitely many different states and is
thus only a finite-state machine. In particular, a real computer cannot simulate the infinite
tape of a Turing machine, i.e., it is not Turing complete. It can also not implement natural
numbers of arbitrary size and thus not unbounded arithmetic.

This more hardware-oriented view of a computer is taken by model checkers, programs
that verify whether a finite state (hardware/software) system satisfies certain correctness
properties by investigating all possible executions of the system.

• However, one may also argue that a computer has in principle access to an arbitrary
amount of memory (e.g. by the technique of virtual memory which is backed by an
arbitrary amount of disk space). Allowing arbitrarily much memory, a computer is Turing
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complete, in particular, it can simulate the arbitrarily large initial part of the tape that is
written by a Turing machine. We can in a computer also represent arbitrarily big natural
numbers by sequences of memory words and thus implement unbounded natural number
arithmetic (this is exactly what computer algebra systems do).

This more idealized view of a computer is taken by algorithm theory, which considers
that, always when a concrete computer runs out of memory during a computation, we
can add on demand more memory to let the computation run through.

Whether we consider a real computer as a finite-state machine or as a Turing complete
computational model, is a matter of the point of view respectively of the goal of the consideration.
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Chapter 4.

Limits of Computability

In Chapter 3, we have investigated the power of Turing machines and other Turing complete
computational models. In this chapter, we will explore their limits by showing that there exist
computational problems that are not solvable in these models. We restrict our consideration
mainly to decision problems, i.e., problems that have “yes/no” answers and define what it means
to decide such problems. We then discuss the “mother of all undecidable problems”, the famous
halting problem. Subsequently, we show that also other problems are undecidable (by reducing
the halting problem to these problems); finally, we can even prove that all non-trivial questions
about the behavior of Turing machines are undecidable.

4.1. Decision Problems

In this chapter, we focus on the following kind of computational problems.

Definition 39 (Decision Problem) Let Σ be an alphabet. A decision problem Entscheidungsproblem(short problem
(Entscheidungs)pro-
blem

)
P ⊆ Σ∗ over Σ∗ is a property of words over Σ (i.e., a subset of Σ∗). We write P(w) to indicate
that word w ∈ Σ∗ has property P, i.e., that w ∈ P.

Typically, a decision problem P is defined by a formula

P(w) :⇔ . . . (formula with free variable w)

which is interpreted as defining the set

P := {w ∈ Σ∗ | . . .}
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yesyes

no

w w
P(w)?M MP(w)?

Figure 4.1.: Semi-Decidability versus Decidability

If we read P(w) as the decision question

Does word w have property P?

the set P thus consists of all words w for which the answer to the question is “yes”.

Example 24 (Decision Problem) Let Σ = {0} and the decision problem be

Is the length of w a square number?

Then we can formally define the problem as

P(w) :⇔ ∃n ∈ N : |w | = n2

or, equivalently, as

P := {w ∈ Σ∗ | ∃n ∈ N : |w | = n2}

In other words, P consists of all the words whose length is a square number:

P := {ε,0,0000,000000000, . . .} □

The following definition relates problems to the languages of Turing machines.

Definition 40 (Semi-Decidability and Decidability)

• A problem P is semi-decidablesemi-entscheidbar , if P is a recursively enumerable language.

• A problem P is decidableentscheidbar , if P is a recursive language.

For a semi-decidable problem P, there exists a Turing machine M which accepts a word w if
and only if P(w) holds (see Figure 4.1). If P(w) does not hold, then M may not terminate; thus
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we are only sure to receive an answer to the decision question P(w) in a finite amount of time
only, if the answer is positive; we may wait forever for an answer if this answer were negative.
In contrast, for a decidable problem P, there exists a Turing machine M which always halts
and which accepts w if and only if P(w) holds. Thus we are sure to receive an answer to the
question P(w) in a finite amount of time, be it a positive or a negative one.
We can translate our previously established results about the languages of Turing machines

to the decidability of problems.

Theorem 25 (Decidabilty of Complement) If a problem P is decidable, also its complement
P is decidable.

The complement P is derived from P by negating the question respectively by swapping the
answer: a “yes” to P becomes a “no” to P; a “no” to P becomes a “yes” to P.

Proof This theorem is an immediate consequence of Definition 40 and Theorem 9. □

Theorem 26 (Decidability) Aproblem P is decidable if and only if both P and its complement
P are semi-decidable.

Proof This theorem is an immediate consequence of Definition 40 and Theorem 8. □

We can also characterize decidability in terms of the computability of functions.

Theorem 27 (Decidability and Computability)

• A problem P ⊆ Σ∗ is semi-decidable if and only if the partial characteristic function partielle
charakteristische
Funktion

1′P :
Σ∗ →p {1} with domain(1′P) = P is Turing computable, where

1′P(w) :=
⎧⎪⎪⎨⎪⎪⎩

1 if P(w)

undefined if ¬P(w)
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• A problem P ⊆ Σ∗ is decidable if and only if the characteristic functioncharakteristische
Funktion

1P : Σ∗ → {0,1}
is Turing computable, where:

1P(w) :=
⎧⎪⎪⎨⎪⎪⎩

1 if P(w)

0 if ¬P(w)

Proof We sketch both parts of the proof.

• If P is semi-decidable, there exists a Turing machine M such that, for every word
w ∈ P = domain(1′P), M accepts w. We can then construct a Turing machine M′ which
takes w from the tape and calls M on w. If M accepts w, M′ writes 1 on the tape.

Vice versa, if 1′P is Turing computable, there exists a Turing machine M such that, for
every word w ∈ P = domain(1′P), M accepts w and writes 1 on the tape. We can then
construct a Turing machine M′ which takes w from the tape and calls M on w. If M

writes 1, M′ accepts w.

• The proof of this part proceeds like the proof of the first part, except that M is always
terminating. If M does not accept w, then M′ writes 0; respectively if M writes 0, then M′

does not accept w. □

We will now turn our attention to problems that are not decidable.

4.2. The Halting Problem

The problems which we are mainly going to investigate are decision problems about Turing
machines. Since decision problems have to be expressed over words in some alphabet, we need
a possibility to encode a Turing machine as a word.

Theorem 28 (Turing Machine Code) Let TM be the set of all Turing machines. Then there
exists a function ⟨.⟩ : TM → {0,1}∗ from Turing machines to bit strings, where we call the bit
string ⟨M⟩ ∈ {0,1}∗ the Turing machine codeCode einer

Turing-Maschine
of Turing machine M , such that

1. different Turing machines have different codes, i.e., if M ≠ M′, then ⟨M⟩ ≠ ⟨M′⟩;

2. we can recognize valid Turing-machine codes, i.e., the problem w ∈ range(⟨.⟩) is
decidable.
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Proof The core idea is to assign to all machine states, alphabet symbols, and tape directions
unique natural numbers and to encode every transition δ(qi,a j) = (qk,al, dr) by the tuple of
numbers (i, j, k, l,r) in binary form; we omit the details. □

A Turing machine code is sometimes also called a Gödel number because Kurt Gödel defined
a similar encoding of logic statements for the proof of his incompleteness theorem. Using
Turing machine codes, we can formulate the central problem of this section.

Definition 41 (Halting Problem) The halting problem HalteproblemHP is to decide, for given Turing
machine code ⟨M⟩ and word w, whether M halts on input w:

HP := {(⟨M⟩,w) | Turing machine M halts on input word w}

Here the pair (w1,w2) denotes a word that appropriately encodes both w1 and w2 such that a
Turing machine can extract from the encoding both w1 and w2 again.

While this problem is apparently of central interest in computer science, we have the following
negative result.

Theorem 29 (Undecidability of Halting Problem) The halting problem is undecidable.

For the proof of this theorem, we need some further concepts.

Theorem 30 (Word Enumeration) Let Σ be an alphabet. Then there exists an enumeration
w = (w0,w1, . . .) of all words over Σ, i.e. for every word w′ ∈ Σ∗, there exists an index i ∈ N

such that w′ = wi.

Proof The enumeration w starts with the empty word, then lists the all words of length 1 (of
which there are finitely many), then lists all the words of length 2 (of which there are finitely
many), and so on. By construction every word eventually appears in w. □
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Theorem 31 (Turing Machine Enumeration) There is an enumeration M = (M0,M1, . . .)

of all Turing machines, i.e., for every Turing machine M′ there exists an index i ∈ N such that
M′ = Mi.

Proof Let C = (C0,C1, . . .) be the enumeration of all Turing machine codes in bit-alphabetic
word order. We define Mi as the Turing machine denoted by Ci (which is unique, since different
Turing machines have different codes). Since every Turing machine has a code andC enumerates
all codes, M is the enumeration of all Turing machines. □

With the help of these results, we can prove our core theorem.

Proof (Undecidability of Halting Problem) We define the function h : N × N → {0,1}
such that

h(i, j) :=
⎧⎪⎪⎨⎪⎪⎩

1 if Turing machine Mi halts on input word w j

0 otherwise

If the halting problem were decidable, then h were computable by a Turing machine: given a
Turing machine M that decides the halting problem, we could construct a Turing machine Mh

that computes h as follows: Mh takes its input pair (i, j) and computes ⟨Mi⟩ and w j (by
enumerating the Turing machine codes ⟨M0⟩, . . . , ⟨Mi⟩ and words w0, . . . ,w j). It then passes
the pair (⟨Mi⟩,w j) to M which eventually halts. If M accepts its input, then Mh returns 1, else
it returns 0.

It thus suffices to show that h is not computable by a Turing machine. For this purpose, we
assume that h is computable and derive a contradiction.

First, we define as function d : N→ {0,1} as

d(i) := h(i, i)

i.e., d(i) = 1, if and only if Turing machine Mi terminates on input word wi. The values
d(0) = h(0,0), d(1) = h(1,1), d(2) = h(2,2), . . . are the entries of the diagonal of the table of
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function M(w):
let i ∈ N such that w = wi

case d(i) of
0: return yes
1: loop end loop

end case
end function

yes

1

0
w i

d

M

Figure 4.2.: Proof that the Halting Problem is Undecidable

the values of function h

h j = 0 j = 1 j = 2 . . .

i = 0 h(0,0) h(0,1) h(0,2) . . .
i = 1 h(1,0) h(1,1) h(1,2) . . .
i = 2 h(2,0) h(2,1) h(2,2) . . .
...

...
...

...
. . .

our proof is therefore based on a so called diagonalization argument. Since h is computable,
also d is computable.

Next, we define the Turing machine M depicted in Figure 4.2: M takes a word w and
determines its index i ∈ N in the enumeration of all words, i.e., w = wi. Then M computes d(i):
if the result is 0, M terminates; if the result is 1, M does not terminate.

Now let i be the index of M in the enumeration of all Turing machines (i.e., M = Mi), and
give wi as input to M. By construction, M for input wi halts if and only if d(i) = 0. Since
d(i) = h(i, i), by the definition of h, we have d(i) = 0, if and only if Turing machine Mi does
not halt for input wi. Thus M halts for input wi if and only if Mi does not halt for input wi. But
since M itself is Mi, this represents a contradiction. □

The core “trick” in above proof is that it is possible, by passing to M a word wi with Mi = M ,
to let M draw some conclusion abouts its own behavior. Such a form of “self-reference” leads
to many classical paradoxes (the liar paradox: “A Cretan says: ‘all Cretans lie’.”) and is also at
the core of the proof of Gödel’s incompleteness theorem which states that in any sufficiently
rich formal system there are true statements that are not provable in that system.
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function M(w):
w′← f (w)
return M ′(w′)

end function

yes

nono

yes

 

M ′

M

P′( f (w))? P(w)?
f (w)w

Figure 4.3.: Reduction Proof

4.3. Reduction Proofs

In the following we are going to show that many other interesting problems in computer
science are not decidable. The core proof strategy is expressed by the following definition and
accompanying theorem.

Definition 42 (Reducibility) A decision problem P ⊆ Σ∗ is reduciblereduzierbar to a decision problem
P′ ⊆ Γ∗ (written P ≤ P′) if there is a computable function f : Σ∗ → Γ∗ such that

P(w) ⇔ P′( f (w))

In other words, w has property P if and only if f (w) has property P′.

Theorem 32 (Reduction Proof) For all decision problems P and P′ with P ≤ P′, it holds
that, if P is not decidable, then also P′ is not decidable.

Proof It suffices to show that, if P′ is decidable, then P is decidable. Thus we assume that P′

is decidable and show that P is decidable. Since P′ is decidable, there is a Turing machine M′

that decides P′. We are going to construct a Turing machine M that decides P (see Figure 4.3).
Since P ≤ P′, there is a computable function f such that w ∈ P ⇔ f (w) ∈ P′. Since f is

computable, machine M can take its input w and compute f (w) which it passes to M′. M′

accepts f (w) if and only if P′( f (w)) holds. M accepts w if and only if M′ accepts f (w). □

To show that a problem P′ is not decidable, it thus suffices to show that a problem which has
been previously proved to be not decidable (e.g. the halting problem) is reducible to P′. For
example, we may show that also a restricted form of the halting problem is undecidable.
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function MH (⟨M⟩,w):
⟨M ′⟩ := compute(⟨M⟩,w)
return MR(⟨M ′⟩)

end function

yes

no
 

no

yes

MR

MH

M ′ halts on ϵ? M halts on w?
⟨M⟩,w ⟨M ′⟩

Figure 4.4.: Proof that the Restricted Halting Problem is Undecidable

Theorem 33 (Undecidability of Restricted Halting Problem) Let the restricted halting
problem eingeschränktes

Halteproblem
RHP be to decide, for given Turing machine M , whether M halts for input ε:

RHP := {⟨M⟩ | Turing machine M halts on input word ε}

The restricted halting problem is not decidable.

Proof We prove this theorem by showing that the halting problem is reducible to the restricted
halting problem. Thus we assume that the restricted halting problem is decidable and show that
then also the halting problem is decidable.
Since the restricted halting problem is decidable, there exists a Turing machine MR such

that MR accepts input c, if and only if c is the code of a Turing machine M which halts on
input ε. We can then define the following Turing machine MH , which accepts input (c,w), if
and only if c is the code of a Turing machine M that terminates on input w (see Figure 4.4): if c

is not a well-formed Turing machine code, then MH does not accept its input. Otherwise, MH

constructs from (c,w) the code c′ of the Turing machine M′ which first prints w on its tape
and then behaves like M. In other words, M′ terminates for input ε (which is ignored and
overwritten by w) if and only if M terminates on input w.

Then MH passes c′ to MR:

• If MR accepts c′, then M′ halts on input ε, and thus M halts on input w. In this case, MH

accepts (c,w).

• If MR does not accept c′, then M′ does not halt on input ε and thus M does not halt on
input w. In this case, MH does not accept (c,w).

Since MH thus decides the halting problem, we have a contradiction to Theorem 29. □
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function MH (⟨M⟩,w):
⟨M ′⟩ := compute(⟨M⟩)
return MA(⟨M ′⟩,w)

end function

yes

no
 

no

yes

MA

MH

M ′ accepts w? M halts on w?
⟨M⟩,w ⟨M ′⟩,w

Figure 4.5.: Proof that the Acceptance Problem is Undecidable

Since also the restricted halting problem is apparently reducible to the general halting problem,
both problems are in a certain sense “equally difficult”.

In the same style also other problems can be shown to be undecidable.

Theorem 34 (Undecidability of Acceptance Problem) Let the acceptance problemAkzeptanz-Problem AP be
to decide, for given Turing machine M and word w, whether M accepts w:

AP := {(⟨M⟩,w) | w ∈ L(M)}

The acceptance problem is not decidable.

Proof We prove this theorem by showing that the halting problem is reducible to the acceptance
problem. Thus we assume that the acceptance problem is decidable and show that then also the
halting problem is decidable.
Since the acceptance problem is decidable, there exists a Turing machine MA such that MA

accepts input (c,w), if and only if c is the code of a Turing machine M which accepts w.
We can then define the following Turing machine MH , which accepts input (c,w), if and

only if c is the code of a Turing machine M that halts on input w (see Figure 4.5). If c is not a
well-formed Turing machine code, then MH does not accept its input. Otherwise, MH slightly
modifies c to the code c′ of the Turing machine M′ which behaves as M, except that in those
cases where M halts and does not accept its input w, M′ halts and accepts w. In other words, M′

accepts its input w, if and only if M halts on input w.
Then MH passes (c′,w) to MA:

• If MA accepts (c′,w), then M′ accepts w, and thus M halts. In this case, MH accepts
(c,w).

• If MA does not accept (c,w), then M′ does not accept w and thus M does not halt. In this
case, MH does not accept (c,w).
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Since MH thus decides the halting problem, we have a contradiction to Theorem 29. □

While we may have negative results about the decidability of problems, we may still have
positive results about their semi-decidability.

Theorem 35 (Semi-Decidability of the Acceptance Problem) The acceptance problem is
semi-decidable.

Proof The core idea of the proof is the construction (which we do not show in detail) of the
universal Turing machine universelle

Turing-Maschine
Mu whose language is AP (the language of the acceptance problem is

correspondingly also called the universal language
universelle Sprache

).
This machine Mu is “universal” in the sense that it is an interpreter for Turing machine

codes: given input (c,w), Mu simulates the execution of the Turing machine M denoted by c for
input w:

• If the real execution of M halts for input w with/without acceptance, then also the
simulated execution halts with/without acceptance; thus Mu accepts its input (c,w) if in
the simulation M has accepted w.

• If the real execution of M does not halt for input w, then also the simulated execution
does not halt; thus Mu does not accept its input (c,w).

Thus Mu semi-decides AP. □

With the help of the universal Turing machine, it is also possible to reduce the acceptance
problem to the halting problem: assume that there exists a Turing machine MH which decides
the halting problem. Then we can construct the following Turing machine MA which decides
the acceptance problem: from input (c,w), MA constructs a particular machine Mcw and invokes
MH with input (⟨Mcw⟩, ε) such that MH accepts this input if and only if the Turing machine
with code c accepts input w.

Since MH decides the halting problem, it suffices to construct Mcw such that it halts on
input ε if and only if the Turing machine with code c accepts input w. To achieve this, Mcw

ignores its own input and invokes the universal Turing machine Mu with input (c,w); if Mu halts
and accepts this input, then also Mcw halts and accepts its input. If Mu does not accept its input
(because it does not halt or because it halts in a non-accepting state), then Mcw does not halt.
Thus Mcw halts if and only if Mu accepts input (c,w) which is the case if and only if the Turing
machine with code c accepts input w.
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Since we have also shown in the proof of Theorem 34 that the halting problem can be reduced
to the acceptance problem, both problems are in a certain sense “equivalent”. One may also
use the diagonalization argument presented in the previous section to show directly that the
acceptance problem is not decidable; then it follows from above reduction that the halting
problem is not decidable.

From the semi-decidability of the acceptance problem, we can now derive our first problem
which is not even semi-decidable.

Theorem 36 (The Non-Acceptance Problem) The non-acceptance problem defined as

NAP := {(⟨M⟩,w) | w ∉ L(M)}

is not semi-decidable.

Proof We note that the non-acceptance problem is in essence the complement of the acceptance
problem, i.e.

NAP = AP′

where AP′ = AP ∪ ERR and ERR is the set of all pairs (c,w) where c does not represent a valid
Turing machine code.

Since by Theorem 28, ERR is decidable and by Theorem 35, AP is semi-decidable, also AP′

is semi-decidable. However, by Theorem 34, AP is not decidable, and thus also AP′ is not
decidable.

Since thus AP′ is semi-decidable but not decidable, by Theorem 26, its complement NAP is
not even semi-decidable. □

We can derive corresponding results for the halting problem.

Theorem 37 (Semi-Decidability of the Halting Problem)

• The halting problem is semi-decidable.

• The non-halting problem defined as

NHP := {(⟨M⟩,w) | Turing machine M does not halt for input word w}

is not semi-decidable.
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Proof The first part can be shown by reducing the halting problem to the acceptance problem
in analogy to the proof of Theorem 34; from the semi-decision of the acceptance of w by M′,
we can derive a corresponding semi-decision of the termination of M on input w.

The second part of the theorem follows from the first part and Theorem 26 in the same way
as in the proof of Theorem 36. □

We thus have established the following relationships

Problem semi-decidable decidable
Halting yes no
Non-Halting no no
Acceptance yes no
Non-Acceptance no no

and also shown that the halting problem and the acceptance problem are equally difficult, in the
sense that each problem can be reduced to the other one.

4.4. Rice’s Theorem

In the previous section, we have shown that several interesting properties of the behavior
of a Turing machine (Does it halt? Does it accepts its input?) are not decidable (but only
semi-decidable). Actually, these are only special cases of a general class of properties.

Definition 43 (Property of Recursively Enumerable Language) Let S be a set of recur-
sively enumerable languages (i.e., a property of recursively enumerable languages).

• We call S non-trivial nicht-trivialif there is at least one recursively enumerable language that is
in S and there is at least one recursively enumerable language that is not in S (i.e, some
recursively enumerable languages have the property and some do not have it).

• We call S decidable entscheidbarif the problem

PS := {⟨M⟩ | L(M) ∈ S}

is decidable, i.e., if it is decidable, whether the language of a given Turing machine M

has property S.
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Since a recursively enumerable language is the language of a Turing machine, it characterizes
the input/output behavior of a Turing machine. A property of a recursively enumerable language
should therefore be essentially considered as the property of the input/output behavior of a
Turing machine.

In 1951, Henry Rice was able to prove the following theorem which generalizes the previously
discussed undecidability results in that it severely limits what properties we can decide about
Turing machines.

Theorem 38 (Rice’s Theorem)Satz von Rice Every non-trivial property of recursively enumerable lan-
guages is undecidable.

In other words, there is no Turing machine which for every possible Turing machine M can
decide, whether the language of M has a non-trivial property; thus no non-trivial question about
the input/output behavior of Turing machines (or other Turing complete computational models)
is decidable. Consequently, also no nontrivial property of computable functions is decidable.

But beware: Rice’s Theorem does not rule out that for some given Turing machine a decision
about a non-trivial property of its input/output behavior is possible; e.g., we may prove for
some (indeed infinitely many) Turing machines that they terminate for every possible input.
Nevertheless, it is not possible to devise a general method that allows to perform such a decision
for all possible Turing machines. Furthermore, the theorem does not apply to those properties
of a Turing machine that are not covered by its language respectively input/output behavior
(non-functional properties), e.g., how much time the machine takes or how much space it
consumes for producing its output.

Proof Let S be a non-trivial property of recursively enumerable languages. Without loss
of generality, we may assume that S does not contain the empty language ∅ (otherwise, we
prove that the complement S which does not contain ∅ is not decidable, from which it follows
by Theorem 25, that also S is not decidable). We assume that S is decidable and derive a
contradiction.

Since S is decidable, there is a Turing machine MS which decides S. Let us assume that it is
possible, for every pair (⟨M⟩,w) of the code ⟨M⟩ of a Turing machine M and and word w, to
compute the code ⟨M′⟩ of a Turing machine M′ such that

L(M′) ∈ S ⇔ w ∈ L(M)
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function MA(⟨M⟩,w):
⟨M ′⟩ := compute(⟨M⟩)
return MS(⟨M ′⟩)

end function

yes

nono

yes

  

MS

MA

L(M ′) ∈ S? w ∈ L(M)?
⟨M ′⟩(⟨M⟩,w)

Figure 4.6.: Proof of Rice’s Theorem (Part 1)

function M ′(x):
if w ∈ L(M) then

if x ∈ L(ML) then
return yes

else
loop end loop

end if
else

loop end loop
end if

end function

yes

yes yes

 

M

x

w

ML

M′

w ∈ L(M) ∧

x ∈ L(ML )?

w ∈ L(M)?

x ∈ L(ML )?

Figure 4.7.: Proof of Rice’s Theorem (Part 2)

i.e, that M′ has property S if and only if M accepts w (we will show below that the computation
of ⟨M′⟩ is indeed possible).
Then we can construct a Turing machine MA which decides the acceptance problem (see

Figure 4.6): MA takes its input (c,w). If c is not a valid Turing machine code, then MA does not
accept its input. Otherwise, c is the code ⟨M⟩ of some Turing machine M . Then MA computes
from (⟨M⟩,w) the Turing machine code ⟨M′⟩ which it passes to MS:

• If MS accepts ⟨M′⟩, then L(M′) ∈ S, therefore by construction of M′, w ∈ L(M). In this
case, MA accepts its input.

• If MS does not accept ⟨M′⟩, then L(M′) ∉ S, therefore by construction of M′, w ∉ L(M).
In this case, MA does not accepts its input.

Thus MA decides the acceptance problem, which is a contradiction to Theorem 34.
It remains to show, how MA can compute from (⟨M⟩,w) the Turing machine code ⟨M′⟩.
First, MA enumerates all possible Turing machine codes and applies MS to decide whether

this code has property S. Since S is non-trivial, it is not empty; therefore MA will eventually
detect the code ⟨ML⟩ ∈ S of some Turing machine ML with L(ML) ∈ S.
Then MA constructs the code ⟨M′⟩ of a Turing machine M′ which operates as follows (see

Figure 4.7): M′ ignores for the moment its input word x and applies the universal Turing
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machine Mu to (⟨M⟩,w), i.e., it simulates the execution of M on input w:

• If the simulated execution of M does not accept its input w (e.g., by not halting), then
also M′ does not accept its input x (e.g., by not halting).

• If the simulated execution of M accepts its input w, then M′ applies Mu to simulate the
execution of ML on its input x. if ML accepts x, then also M′ accepts x; if ML does not
accept x (e.g., by not halting), then also M′ does not accept x (e.g., by not halting).

Consequently, M′ accepts its input x only if M accepts w and if ML accepts x. In other words,
if M does not accept w, M′ does not accept any input; if M accepts w, then M′ accepts the
same words as ML; the language L(M′) of M′ therefore is

L(M′) =
⎧⎪⎪⎨⎪⎪⎩
∅ if w ∉ L(M)

L(ML) if w ∈ L(M)

We know ∅ ∉ S and L(ML) ∈ S. Thus L(M′) ∈ S ⇔ w ∈ L(M). □

By Rice’s Theorem, many interesting problems about Turing machines are undecidable:

• The halting problem (also in its restricted form).

• The acceptance problem w ∈ L(M) (also in its restricted form ε ∈ L(M)).

• The emptiness problemLeerheitsproblem : is L(M) empty?

• The problem of language finitenessEndlichkeit einer
Sprache

: is L(M) finite?

• The problem of language equivalenceSprachäquivalenz : L(M1) = L(M2)?

• The problem of language inclusionSpracheinschluss : L(M1) ⊆ L(M2)?

• The problem whether L(M) is regular, context-free, context-sensitive.

By Theorem 25 also the complements of these problems are not decidable; however, some of
these problems (respectively their complements) may be semi-decidable.

It may be also shown that a problem completely unrelated to Turing machines is undecidable,
typically by reducing an undecidable problem about Turing machines to this problem:

• The EntscheidungsproblemEntscheidungsproblem : Given a formula and a finite set of axioms, all in first order
predicate logic, decide, whether the formula is valid in every structure that satisfies the
axioms.
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This problem (formulated byDavidHilbert in 1928) stood at the beginning of computability
theory. It was the trigger for Church and Turing’s work; they were (independently) able
to show in 1936 and 1937 that it is undecidable (it is semi-decidable, i.e., the set of all
valid formulas is enumerable; its complement is not semi-decidable, i.e., the set of all
non-valid formulas is not enumerable).

• Post’s Correspondence Problem Post’sches Korrespon-
denzproblem

: given a sequence of pairs (x1, y1), . . . , (xn, yn) of non-
empty words xi and yi, find a sequence i1, . . . , ik of indices such that

xi1 . . . xik = yi1 . . . yik

• The word problem Wortproblemfor groups: given a group with finitely many generators g1, . . . ,gn,
find two sequences of indices i1, . . . , ik , j1, . . . , jl such that

gi1 ◦ . . . ◦ gik = g j1 ◦ . . . ◦ g jl

• The ambiguity problem Zweideutigkeitspro-
blem

for context-free grammars: are there two different derivations for
the same sentence?

These problems are of practical interest; the theory of decidability/undecidability has thus a
profound impact on many areas in computer science, mathematics, and logic.
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Chapter 5.

Basics of Complexity

We now turn our attention from what can be computed, to how efficiently it can be computed. We
start by general considerations on the analysis of the complexity of computations, then investigate
various notions of asymptotic complexity and their manipulation, and finally illustrate, how
these notions give rise to various complexity classes.

5.1. Complexity of Computations

We are interested in investigating the complexity, i.e, the resource consumption, of computations.
The main resources that we consider are

• time and

• space (memory).

Rather than investigating the complexity for each individual input separately, we consider the
complexity of classes of comparable inputs, namely inputs of the same size. For each such
class we are interested in determining

• the maximum complexity for all inputs of the class, and

• the average complexity for these inputs.

With the help of Turing machines, these intuitive notions can be given a precise meaning.

Definition 44 (Complexity) Let M be a Turing machine with input alphabet Σ that halts for
every input. Let I = Σ∗ be the set of input words and |i | ∈ N be the size of input word i ∈ I.
We define the time consumption t : I → N of M such that t(i) denotes the number

of moves that M makes for input i until it halts. Correspondingly, we define the space
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consumption s : I → N such that s(i) denotes the largest distance from the beginning of the
tape that the tape head of M reaches for input i until M halts.

Then we define the worst-case time complexity Zeitkomplexität im
schlechtesten Fall

(short time complexity

Zeitkomplexität

) T : N→ N and the
worst-case space complexity

Raumkomplexität im
schlechtesten Fall

(short space complexity

Raumkomplexität

) S : N→ N

T(n) := max{t(i) | i ∈ I ∧ |i | = n}

S(n) := max{s(i) | i ∈ I ∧ |i | = n}

as the maximum time/space that M consumes for any input of size n.
Furthermore, let Input be a family of (discrete) randomvariables that describe the distribution

of inputs of each size n in I, i.e., Inputn has a probability function pn
I : I → [0,1] such

that pn
I (i) denotes the probability that, among all inputs of size n, input i occurs.

Then we define the average-case time complexity durchschnittliche
Zeitkomplexität

T : N→ N and the average-case space
complexity

durchschnittliche
Raumkomplexität

S : N→ N

T(n) := E[Timen]

S(n) := E[Spacen]

as the expected values of the random variables Timen and Spacen with probability functions
pn

T : N→ [0,1] and pn
S : N→ [0,1] such that pn

T (t) respectively pn
S(s) denote the probabilities

that the execution of M with an input of size n consumes time t respectively space s (assuming
that inputs of size n from I are distributed according to Inputn).

While we have defined the complexity measures in terms of Turing machines, these notions
can be generalized to any computational model by defining the input size |i | and the time and
space consumption t(i) and s(i) for that model. Apparently, different computational models
thus may yield different complexities for the “same algorithm”; we will investigate in Chapter 7
in more detail the relationship among the complexities of different models.
As the following example shows, the analysis of worst-case complexity is generally much

simpler than the analysis of average-case complexity: while, for given n, in worst-case complexity
it is only one case that has to be considered, it is in average-case complexity a whole set of
cases, such that reasoning about the probabilities of these cases is required.

Example 25 (Find the Maximum) Given a non-empty integer array a, we want to find the
minimum index j such that a[ j] = max{a[i] | 0 ≤ i < length(a)}. The problem is apparently
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solved by the following algorithm in pseudo-code:

j := 0; m := a[ j]; i := 1
while i < length(a)

if a[i] > m then
j := i; m := a[ j]

i := i + 1

1
n

n − 1
N

n − 1

For analyzing the performance of this algorithm, we define as the input size |a| the number
length(a) of elements in a, as t(a) the number of times that each line of the algorithm is executed,
and as s(a) the number of variables used (including the number of elements of a).

Since the algorithm uses three variables i, j, k in addtion to a, its space complexity is

S(n) = S(n) = n + 3

As for the time complexity, we indicate by the numbers shown to the right of the algorithm
above, how often each line is executed for input size n. The only varying quantity is the number
of times N that the line j := i; m := a[ j] is executed.

It is clear that in the worst case N := n − 1, therefore the worst-case time complexity is

T(n) = 1 + n + (n − 1) + (n − 1) + (n − 1) = 4n − 2

For the average case analysis, let us for simplicity assume that a holds n distinct values. Since
N depends only on the relative order of elements in a, we may identify these with the values
{1, . . . ,n}. If we assume that all permutations are equally probable, we have

pn
I (i) :=

1
n!

since there are n! permutations of n values. Thus N becomes a random variable and our goal is
to determine the expected value E[N] of N .

Suppose we can determine the probability pnk that N = k for an array of size n. Then we
have, since 0 ≤ N ≤ n − 1,

pn0 + pn1 + pn2 + . . . + pn,n−1 =
n−1∑︂
k=0

pnk = 1

© 2012– Wolfgang Schreiner.
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Since pnk = 0 for k ≥ n, we can also write the infinite sum

pn0 + pn1 + pn2 + . . . =
∑︂

k

pnk = 1

Then we can compute the expected value of N as the sum of all products of the probability
of N = k and value k, i.e.,

E[N] = pn0 · 0 + pn1 · 1 + pn2 · 2 + . . . =
∑︂

k

pnk · k

Thus our goal is to determine the value of this sum. To do so, we define the function

Gn(z) := pn0 · z0 + pn1 · z1 + pn2 · z2 + . . . =
∑︂

k

pnk · zk

which is called the generating function of the infinite sequence pn0, pn1, . . .. We compute the
derivative of this function

G′n(z) = pn0 · 0 · z−1 + pn1 · 1 · z0 + pn2 · 2 · z1 + . . . =
∑︂

k

pnk · k · zk−1

and consequently have

G′n(1) = pn0 · 0 + pn1 · 1 + pn2 · 2 + . . . =
∑︂

k

pnk · k

Since thus E[N] = G′n(1), our goal is to determine G′n(1).

For n = 1, we know p10 = 1 and p1k = 0 for all k ≥ 1, therefore

G′1(1) = 1 · 0 + 0 · 1 + 0 · 2 + . . . = 0

For n > 1, we know that, if the loop has already found the maximum of the first n − 1 array
elements, the last iteration of the loop will either increment N (if the last element is the largest
among the n elements) or it will leave N as it is (if the last element is not the largest one). In the
first case (which has probability 1/n), the value of N becomes k, only if the value of N is k − 1
for the first n − 1 elements. In the second case (which has probability (n − 1)/n), the value of N

becomes k, only if the value of N is k for the first n − 1 elements. We thus can describe the
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combined probability that the value of N is k for n array elements as

pnk =
1
n
· pn−1,k−1 +

n − 1
n
· pn−1,k

We can determine from the definition of G the corresponding relationship for G as

Gn(z) =
1
n
· z · Gn−1(z) +

n − 1
n
· Gn−1(z)

By simplification, we get
Gn(z) =

z + n − 1
n

· Gn−1(z)

From this we can compute the derivation

G′n(z) =
1
n
· Gn−1(z) +

z + n − 1
n

· G′n−1(z)

We have, for all n,
Gn(1) = pn0 + pn1 + pn2 + . . . =

∑︂
k

pnk = 1

and can therefore derive

G′n(1) =
1
n
· 1 +

1 + n − 1
n

· G′n−1(1)

which we can simplify to
G′n(1) =

1
n
+ G′n−1(1)

Summarizing, we have derived the recurrence relation (see Section 6.2)

G′1(1) = 0

G′n(1) =
1
n
+ G′n−1(1), if n > 1

which can be easily solved as

G′n(1) =
1
2
+

1
3
+ . . . +

1
n
=

n∑︂
k=2

1
k
= Hn − 1

where H(n) =
∑︁n

k=1
1
k denotes the n-th harmonic number. For this number, there exists the

well-known approximation H(n) = ln n + γ + εn where γ ≈ 0.577 is Euler’s constant and εn is
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a positive value less than 1/(2n). We have therefore derived

E[N] = ln n + γ + εn − 1

The algorithm thus has the average-case time complexity

T(n) = 1 + n + (n − 1) + E[N] + (n − 1) = 3n + ln n + εn + γ − 2 □

Generally, in complexity analysis we are not really interested in all the details of the complexity
functions, but we would like to capture their “overall behavior”, especially for large inputs. For
example, rather than stating

T(n) = 3n + ln n + εn + γ − 2

we might just say “T(n) is of the order 3n+ ln n” or, since 3n is much larger than ln n, even “T(n)
is of the order 3n”. Ultimately we may even just focus on the growth of the time complexity as
being in proportion with the input size by stating “T(n) is linear” which is typically expressed as

T(n) = O(n)

In the following, we will discuss the formal underpinning of such approximations.

5.2. Asymptotic Complexity

In this section, we are going to introduce some basic notions that allow us to express the growth
patterns of complexity functions in a succinct way.

Definition 45 (Big-O notation, Big-Ω notation, Big-Θ notation) O-Notation

Omega-Notation

Theta-Notation

Let g : N → R≥0 be a
function from N into the set R≥0 of the non-negative real numbers.

• O(g) denotes the set of all functions f : N→ R≥0 such that

∃c ∈ R>0,N ∈ N : ∀n ≥ N : f (n) ≤ c · g(n)

We write f (n) = O(g(n)) (read “ f (n) is (big) oh of g(n)”) to indicate f ∈ O(g); we also
say that “ f is bounded from above by g”.
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• Ω(g) denotes the set of all functions f : N→ R≥0 such that

∃c ∈ R>0,N ∈ N : ∀n ≥ N : f (n) ≥ c · g(n)

We write f (n) = Ω(g(n)) (read “ f (n) is (big) omega of g(n)”) to indicate f ∈ Ω(g); we
also say that “ f is bounded from below by g”.

• Θ(g) denotes the set of all functions f : N→ R≥0 such that

f ∈ O(g) ∧ f ∈ Ω(g)

We write f (n) = Θ(g(n)) (read “ f (n) is (big) theta of g(n)”) to indicate f ∈ Θ(g); we
also say that “ f is bounded from above and below by g”.

The symbols O,Ω,Θ are called Landau symbolsLandau-Symbol , after the mathematician Edmund Landau
who popularized their use. Among these notions, the most widespread one is f (n) = O(g(n));
it is often also used when actually f (n) = Θ(g(n)) is meant (i.e., also when g(n) is not only a
bound from above but also a bound from below).
One should also note that the statement f (n) = O(g(n)) clearly represents an abuse of

notation, since it does not denote equality of two entities ( f is a function, O(g) is a set) but the
containment of the first entity in the second, i.e., it should be better written f (n) ∈ O(g(n)).
However, this notation has arisen from the practice of reading “=” as “is” (rather than “equals”);
since it has become universally adopted, we will also stick to it.
Furthermore, in f (n) = O(g(n)), f (n) and g(n) are actually not functions but terms with a

single free variable (which need not be “n”). To derive the intended interpretation f ∈ O(g), we
must first determine the free variable and from this the corresponding function definitions. This
may become ambiguous if the terms also involve other symbols that actually denote constants.
We must then deduce from the context the variable and the constants.

Example 26 The statement

Let c > 1. Then xc = O(cx).

should be interpreted as

Let c > 1, f (x) := xc, and g(x) := cx . Then f ∈ O(g). □

© 2012– Wolfgang Schreiner.
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f (n) = O(g(n))

N
n

c · g(n)

f (n)

g(n)

f (n) = Ω(g(n))

n
N

g(n)

f (n)

c · g(n)

f (n) = Θ(g(n))

n
N2

c1 · g(n)

f (n)
g(n)

c2 · g(n)

N1

Figure 5.1.: The Landau Symbols

Intuitively, f (n) = O(g(n)) expresses the fact that function f “does not grow faster” than
function g, i.e., that f is “bounded from above” by g. However:

• The bound need not hold for all arguments; it suffices if it holds from a certain start
value N on. The O notation talks about the asymptotic behavior of the function (when
arguments grow towards infinity), therefore at the beginning finitely many exceptions are
allowed.

• The bound is independent of concrete measurement units, it therefore suffices that it
holds up to a constant c, which we may choose arbitrarily large. Consequently, if
f (n) = O(g(n)), then also c · f (n) = O(g(n)) for arbitrary c.

This intuitive interpretation of f (n) = O(g(n)) is visualized in the first diagram of Figure 5.1.
Analogously, f (n) = Ω(g(n)) expresses the fact that function f “does not grow less” than

function g, i.e, that f is “bounded from below” by g (again, towards the infinity and up to a
multiplicative constant). Finally f (n) = Θ(g(n)) means that f “grows exactly” like g, i.e, that f

is “bounded from above and below” by g. The second and the third diagrams in Figure 5.1
visualize these relationships.

The duality between O and Ω can be also expressed in the following way.

Theorem 39 (Duality of O and Ω) For all f ,g : N→ R≥0, we have

f (n) = O(g(n)) ⇔ g(n) = Ω( f (n))
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Proof We show f (n) = O(g(n)) ⇒ g(n) = Ω( f (n)) by assuming f (n) = O(g(n)) and showing
g(n) = Ω( f (n)). By the definition of Ω, we have to find constants N1, c1 such that

∀n ≥ N1 : g(n) ≥ c1 · f (n)

Since f (n) = O(g(n)), we have constants N2, c2 such that

∀n ≥ N2 : f (n) ≤ c2 · g(n)

Take N1 := N2 and c1 := 1/c2. Then we have, since N1 = N2, for all n ≥ N1,

c2 · g(n) ≥ f (n)

and therefore
g(n) ≥ (1/c2) · f (n) = c1 · f (n).

The proof of g(n) = Ω( f (n)) ⇒ f (n) = O(g(n)) proceeds analogously. □

Example 27 We claim 3n2 + 5n + 7 = O(n2).
To prove this, we have to find constants c and N such that

∀n ≥ N : 3n2 + 5n + 7 ≤ cn2

For n ≥ 1, we have
3n2 + 5n + 7

1≤n
≤ 3n2 + 5n + 7n = 3n2 + 12n

For n ≥ 12, we also have
3n2 + 12n

12≤n
≤ 3n2 + n · n = 4n2

We thus take N := 12 (= max{1,12}) and c := 4 and have for all n ≥ N

3n2 + 5n + 7
1≤n
≤ 3n2 + 5n + 7n = 3n2 + 12n

12≤n
≤ 3n2 + n · n = 4n2 = cn2

□

This example demonstrated a general technique by which for a function defined by a polynomial
expressions all monomials with smaller exponent can be gradually reduced to the monomial
with the highest exponent, i.e., am = O(am′), for all m ≤ m′. We thus have a first general result
about the asymptotic behavior of a class of complexity functions.

© 2012– Wolfgang Schreiner.
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Theorem 40 (Asymptotic Complexity of Polynomial Functions) For all a0, . . . ,am ∈ R,
we have

amnm + . . . + a2n2 + a1n + a0 = Θ(nm)

i.e., every polynomial function is asymptotically bounded from above and from below by the
function denoted by the monomial with the highest exponent.

Proof The proof that the polynomial function is in O(nm) proceeds along the lines sketched by
above example; the proof that it is also in Ω(nm) is straight-forward. □

Another result justifies why in asymptotic complexity functions we may simply write log n

rather than logb n.

Theorem 41 (Logarithms) For arbitrary positive bases a, b ∈ R>0, we have

loga n = O(logb n)

Proof We have to find constants c and N such that

∀n ≥ N : loga n ≤ c · logb n

Take c := loga b and N := 0. Then we have for all n ≥ N

loga n = loga(b
logb n) = (loga b) · (logb n) = c · (logb n) □

The following result exhibits an important relationship between polynomial and exponential
functions.

Theorem 42 (Polynomial versus Exponential) For all real constants a, b ∈ R with b > 1,
we have

na = O(bn)

i.e., every polynomial function with arbitrary high degree is bounded from above by any
exponential function with base greater than one.
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Proof We have to find constants c and N such that

∀n ≥ N : na ≤ c · bn

We know the Taylor series expansion

ex =

∞∑︂
i=0

xi

i!
= 1 + x +

x2

2!
+

x3

3!
+ . . .

Since bn = (eln b)n = en ln b, we have for all n ∈ N

bn =

∞∑︂
i=0

(n ln b)i

i!
= 1 + (n ln b) +

(n ln b)2

2!
+
(n ln b)3

3!
+ . . .

Since b > 1, we have ln b > 0; therefore we know

bn >
(n ln b)a

a!
=
(ln b)a

a!
na

i.e.
na <

a!
(ln b)a

bn

Thus we define N := 0 and c := a!/(ln b)a and are done. □

5.3. Working with Asymptotic Complexity

We summarize the asymptotic equations which we have derived so far.

Theorem 43 (Asymptotic Bounds) The following asymptotic bounds hold:

c · f (n) = O( f (n))

nm = O(nm′), for all m ≤ m′

amnm + . . . + a2n2 + a1n + a0 = Θ(nm)

loga n = O(logb n), for all a, b > 0

na = O(bn), for all a, b with b > 1

Furthermore, the following asymptotic laws can be derived.
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Theorem 44 (Asymptotic Laws) Let f ,g, h : N→ R≥0.

• Reflexivity: f = O( f ), f = Ω( f ), f = Θ( f ).

• Symmetry:

– If f = O(g), then g = Ω( f ).

– If f = Ω(g), then g = O( f ).

– If f = Θ(g), then g = Θ( f ).

• Transitivity:

– If f = O(g) and g = O(h), then f = O(h).

– If f = Ω(g) and g = Ω(h), then f = Ω(h).

– If f = Θ(g) and g = Θ(h), then f = Θ(h).

Proof An easy exercise for the reader. □

As discussed, f (n) = O(g(n) is an abuse of notation, since it actually expresses the property
f ∈ O(g). The following definition sanctions an even more general form of this abuse.

Definition 46 (Asymptotic Notation in Equations) Take an equality of form

A[O1( f (n))] = B[O2(g(n))]

where A and B are arbitrary terms with (possibly multiple) occurrences ofO1,O2 ∈ {O,Ω,Θ}.
Then this equality is to be interpreted as the statement

∀ f ′ ∈ O1( f ) : ∃g′ ∈ O2(g) :

∀n ∈ N : A[ f ′(n)] = B[g′(n)]

Every occurrence of an O term is thus replaced by a function in the corresponding asymptotic
complexity class; functions on the left side of the equation are universally quantified, functions
on the right side are existentially quantified.
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In such an equality, no matter how functions on the left hand side are chosen, there is always
a way to chose functions on the right side to make the equation valid.

Example 28 We already encountered in Example 25 the harmonic number Hn. We have the
relationship

Hn = ln n + γ +O
(︁1
n
)︁

i.e., there is a function f ∈ O(1/n) such that, for all n ∈ N, Hn = ln n + γ + f (n). □

Example 29 The statement

2n2 + 3n + 1 = O(2n2) +O(n) = O(n2)

expresses a conjunction of the two statements

2n2 + 3n + 1 = O(2n2) +O(n)

O(2n2) +O(n) = O(n2)

which are to be interpreted as

∃ f ∈ O(2n2),g ∈ O(n) : ∀n ∈ N : 2n2 + 3n + 1 = f (n) + g(n)

∀ f ∈ O(2n2),g ∈ O(n) : ∃h ∈ O(n2) : ∀n ∈ N : f (n) + g(n) = h(n) □

With the help of this notation, we can express a number of further relationships.

Theorem 45 (Further Asymptotic Equations) The following asymptotic equations hold:

O(O( f (n))) = O( f (n))

O( f (n)) +O(g(n)) = O( f (n) + g(n))

O( f (n)) · O(g(n)) = O( f (n) · g(n))

O( f (n) · g(n)) = f (n) · O(g(n))

O( f (n)m) = O( f (n))m, for all m ≥ 0

Proof A simple exercise for the reader. □
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5.4. Complexity Classes

In this section, we are going to investigate how functions can be categorized according to their
asymptotic growth. For this purpose, we will derive some more complexity notions.

Definition 47 (Little-o notation, Little-ω notation) Klein-O-Notation

Klein-Omega-Notation

Let g : N→ R≥0 be a function from N
into the set R≥0 of the non-negative real numbers.

• Then o(g) denotes the set of all functions f : N→ R≥0 such that

∀c ∈ R>0 : ∃N ∈ N : ∀n ≥ N : f (n) ≤ c · g(n)

We write f (n) = o(g(n)) (read “ f (n) is little oh of g(n)”) to indicate f ∈ o(g); we also
say that “ f is asymptotically smaller than g”.

• Then ω(g) denotes the set of all functions f : N→ R≥0 such that

∀c ∈ R>0 : ∃N ∈ N : ∀n ≥ N : g(n) ≤ c · f (n)

We write f (n) = ω(g(n)) (read “ f (n) is little omega of g(n)”) to indicate f ∈ ω(g); we
also say that “ f is asymptotically larger than g”.

The definitions are similar to that of O and Ω except that the defining property must hold for
all values c ∈ R≥0 (rather than for just some c). In analogy to O and Ω, also o and ω are dual.

Theorem 46 (Duality of o and ω) For all f ,g : N→ R≥0, we have

f (n) = o(g(n)) ⇔ g(n) = ω( f (n))

Proof A simple exercise for the reader. □

The relevance of above definitions becomes clearer by the following theorem.
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Theorem 47 (Properties of o and ω) For all f ,g : N→ R≥0, we have

f ∈ o(g) ⇒ f ∈ O(g) ∧ f ∉ Θ(g)

f ∈ ω(g) ⇒ f ∈ Ω(g) ∧ f ∉ Θ(g)

Proof An exercise for the reader. □

In other words, the notions o and ω are stronger variants of O and Ω: we may think of
f = O(g), f = Ω(g), and f = Θ(g) as function “comparisons” f ≤ g, f ≥ g, and f = g.
Then f = o(g) and f = ω(g) may be thought as the strict comparisons f < g and g < f , i.e.,
they exclude the case that f and g have the same asymptotic growth (however, the analogy is
incomplete, because the implications in above theorem do not hold in the other direction).

With the help of o, the following theorem (which we state without proof) describes disjoint
classes of functions that differ with respect to their asymptotic complexity.

Theorem 48 (Hierarchy of Complexity Classes) Let f ≺ g denote f = o(g), i.e., f is
asymptotically smaller than g. Then we have the following relationships:

1 ≺ log log log n ≺ log log n ≺
√︁

log n ≺ log n ≺ (log n)2 ≺ (log n)3

≺ 3√n ≺
√

n ≺ n ≺ n log n ≺ n
√

n ≺ n2 ≺ n3

≺ nlog n ≺ 2
√

n ≺ 2n ≺ 3n ≺ n! ≺ nn ≺ 2n2
≺ 22n ≺ 22. .

.2

(n times)

Among these classes, the following play a prominent role in computer science.

O(1)O(1)O(1) (Constant) There is an upper limit on the function values. Such a function may, e.g.,
denote the space complexity of an algorithm that works with a fixed amount of memory.

O(log n)O(log n)O(log n) (Logarithmic) The function values grow with the argument, but only very slowly.
This describes the runtime of many very efficient algorithms that operate according
to the divide and conquer principle, e.g., the binary search algorithm. Also the class
O((log n)k) of polylogarithmic functions is similarly well-behaved.

© 2012– Wolfgang Schreiner.



5.4. Complexity Classes 153

O(n)O(n)O(n) (Linear) The function values grow proportionally with the argument. This describes,
e.g., the runtime of algorithm that traverse a data structure once, e.g., linear search.

O(n log n)O(n log n)O(n log n) (Linear-Logarithmic or Linearithmic) The function values grow more than pro-
portionally with the argument, but the extra growth factor is reasonably well behaved.
This describes the runtime of the fast sorting algorithms (average time of Quicksort, worst
time of Heapsort and Mergesort). Also the class O(n(log n)c) of quasi-linear algorithms
has similar behavior.

O(nc)O(nc)O(nc) (Polynomial) The function values may grow rapidly but with a polynomial bound. Only
algorithms in this class are generally considered as still “feasible” or “tractable” for large
inputs, e.g., the multiplication of two matrices with complexity O(n3).

O(cn)O(cn)O(cn) (Exponential) The function values grow extremely rapidly. Problems with such algo-
rithms are in general only solvable for small inputs; this includes the finding of exact
solutions to many optimization problems such as the traveling salesman problem.

O(cdn
)O(cdn
)O(cdn
) (Double Exponential) The function values grow overwhelmingly rapidly. While their
practical application is limited, various interesting algorithms have this complexity, e.g.,
decision procedures for statements about real numbers (e.g., quantifier elimination), or
Buchberger’s algorithm which can be used to solve multivariate polynomial equations.

Various complexity classes are illustrated in Figure 5.2. The left diagram visualizes
complexity functions up to n, the right diagram depicts complexity functions from n up to 2n

(note the different vertical scales). We can see that 2n is substantially different from polynomial
functions in that its slope rapidly grows so much that it seems as if the function would not even
be defined for n > 12; this justifies to consider computations with worst-case time complexity
beyond polynomial as “infeasible” in general (nevertheless, there may be many interesting
special cases for which such computations are feasible).

Correspondingly, the table in Figure 5.2 depicts the largest input size n for which an algorithm
with the given time complexity can produce a result in one second, one minute, and one hour
(assuming that each execution step takes 1 millisecond). We see that the bound grows with a
substantial multiplicative factor for all functions up to polynomial time complexity, but only
grows by an additive term in the case of an exponential time complexity.

We should note that we can achieve the improvement of giving the algorithm 60 times more
time also by investing 60 times more processing power, e.g., by applying a faster processor or (if
the algorithm can be parallelized) multiple processors. However, comparing the gains achieved
by adding more processing power (going to the right within each line of the table) with the
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Time Maximum n for time bound Improvement for
complexity 1s 1m 1h input size n
n 1000 60000 3600000 ∗ 60
n log n 140 4895 204094 ∗ 40 (≈)
n2 31 244 1897 ∗ 7.75 (

√
60)

n3 10 39 153 ∗ 4.91 ( 3√60)
2n 9 15 21 + 5.9 (log2 60)

Figure 5.2.: Complexity Classes

gains achieved by using an algorithm with lower time complexity (going upwards within each
column of the table), we see that improvements in algorithmic complexity vastly outperform
improvements in processing power; computer science’s permanent strive to develop algorithms
with even slightly better asymptotic complexity is thus fully justified.

In Chapter 7, we will investigate in more detail the difference between polynomial complexity
(“feasible” computations) and higher complexity classes (“infeasible” computations).
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Chapter 6.

Analysis of Complexity

In this chapter, we discuss the complexity analysis of several algorithms on the basis of a
simple high-level cost model. We start with the discussion of sums (arising in the analysis of
iterative algorithms) and recurrences (arising in the analysis of recursive algorithms). Later we
investigate the analysis of the important class of divide and conquer algorithms and illustrate
the analysis of algorithms that use the technique of randomization. Finally, we explore the
amortized analysis of sequences of operations that manipulate some data structure. However,
to motivate our further discussions, we first show a small example analysis.

Example 30 Take the program function

static int f(int m) {

if (m == 1) return 1;

int s = 1;

for (int i=0; i<log2(m); i++)

s = s+f(m/2);

return s;

}

which for given argument m calls itself recursively ⌊log2 m⌋ times with argument m/2, i.e, for
argument 2n it calls itself recursively n times with argument 2n−1. We are interested to find out
how many times f is called in total (including the calls arising from the recursive invocations);
actually this number of invocations is also the result of the function. The function might seem
useless, but it can be extended by additional argumens and computations; our analysis will also
be valid for such an extended function (provided that the additional computations do not change
the number of recursive calls).
The tree of recursive function evaluations for the execution of f (16) = f (24) is depicted in

Figure 6.1. We see that the root f (24) has four children f (23) each of which represents the root
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Figure 6.1.: A Recursion Tree

of another subtree (of which only one is shown) with 3 children; each of these 3 children has
2 children each of which has 1 child each of which has 1 child that has no more child.

This tree has height 4, i.e., 5 levels of nodes: at level 0, we have only one node (the root), at
level 1 we have 4 nodes, at level 2 with have 4 · 3 nodes, at level 3 we have 4 · 3 · 2 nodes, at
level 4 we have 4 · 3 · 2 · 1 nodes. So the total number of nodes in the tree, i.e., the total number
of function calls in the execution of f (16), is

1 + 4 + 4 · 3 + 4 · 3 · 2 + 4 · 3 · 2 · 1 = 1 + 4 + 12 + 24 + 24 = 65

While this example yields some insight, we nevertheless want to determine the number of
function calls for arbitrary input m.

To simplify our elaboration, we will assume that m is some power of 2, i.e., m = 2n for
some n. We are now going to determine the number T(n) of function calls in the evaluation of
f (m) = f (2n). From the code, we can easily derive the following recurrence defining T(n):

T(n) :=
⎧⎪⎪⎨⎪⎪⎩

1 if n = 0

1 + n · T(n − 1) else

For argument m = 20 = 1, we have only one function call; for argument m = 2n > 1, we have
one function call plus n = log2 m recursive calls with argument m/2 = 2n−1, each of which
therefore leads to T(n − 1) calls. Our goal is to find an explicit solution to this recurrence.

From the example above, we may get the idea to add the number of nodes in each level of the

© 2012– Wolfgang Schreiner.
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tree of depth n, i.e.

T(n) = 1 + n + n · (n − 1) + n · (n − 1) · (n − 2) + . . . + n · (n − 1) · (n − 2) · · · 2 · 1

This summation pattern can be described by the closed formula

T(n) =
n∑︂

i=0

n!
i!

as can be seen from the explicit evaluation of the summands

n!/n! = 1

n!/(n − 1)! = n

n!/(n − 2)! = n · (n − 1)

n!/(n − 3)! = n · (n − 1) · (n − 2)

. . .

n!/0! = n · (n − 1) · (n − 2) · · · 2 · 1

Wenowwant to verify our guess that this sum represents a solution to the recurrence definingT(n).
We are therefore going to prove

∀n ∈ N : T(n) =
n∑︂

i=0

n!
i!

by induction on n. For the induction base n = 0, the statement clearly holds:

T(0) = 1 = 0!/0! =
0∑︂

i=0

0!
i!

So we assume the induction hypothesis

T(n) =
n∑︂

i=0

n!
i!

and show in the induction step

T(n + 1) =
n+1∑︂
i=0

(n + 1)!
i!
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We then know

T(n + 1) = 1 + (n + 1) · T(n)

= 1 + (n + 1) ·
n∑︂

i=0

n!
i!

= 1 +
n∑︂

i=0

(n + 1) · n!
i!

= 1 +
n∑︂

i=0

(n + 1)!
i!

=
(n + 1)!
(n + 1)!

+

n∑︂
i=0

(n + 1)!
i!

=

n+1∑︂
i=0

(n + 1)!
i!

where the first equation holds because of the defining recurrence and the second equation holds
because of the induction hypothesis; thus we have proved our claim.
However, the explicit solution for T(n) does not yield as much insight as we might have

hoped for; we will therefore strive for an aymptotic characterization of T(n). We get such a
characterization by the derivation

T(n) =
n∑︂

i=0

n!
i!
= n! ·

n∑︂
i=0

1
i!
< n! ·

∞∑︂
i=0

1
i!
= n! · e = O(n!)

where we use the knowledge
∑︁∞

i=0 1/i! = e (Euler’s number). We thus see that the number of
invocations of function f grows with the factorial of n = log2 m. □

6.1. Sums

We start our further considerations with the analysis of Algorithm InsertionSort depicted in
Figure 6.2. This algorithm sorts an integer array a[0 . . . n − 1] of length n ≥ 1 in ascending
order by repeatedly inserting element x = a[i] into the already sorted sequence a[0 . . . i − 1]
(for every 1 ≤ i ≤ n − 1). We define as the input size the length n of a, as the time consumption
the number of times each statement is executed, and as the space consumption the number
of integer values used. It is easy to see that the space complexity of the algorithm is then
S(n) = S(n) = n + 4, because in addition to array a four variables n, i, x, j are used. Our

© 2012– Wolfgang Schreiner.
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procedure InsertionSort(a)
n← length(a)
for i from 1 to n − 1 do

x ← a[i]
j ← i − 1
while j ≥ 0 ∧ a[ j] > x do

a[ j + 1] ← a[ j]
j ← j − 1

end while
a[ j + 1] ← x

end for
end procedure

Cost
1
n
n − 1
n − 1∑︁n−1

i=1 ni∑︁n−1
i=1 (ni − 1)∑︁n−1
i=1 (ni − 1)

n − 1

Figure 6.2.: Insertion Sort

remaining goal is to determine the worst-case time complexity T(n) and the average-case time
complexity T(n) of InsertionSort.

Worst-case time complexity To the right of Figure 6.2 we depict the number of times each
statement is executed where by ni we understand the maximum number of times that the test of
the while loop is executed for value i with 1 ≤ i ≤ n − 1. The total number T(n) of statement
executions is thus

T(n) = 1 + n + (n − 1) + (n − 1) +
(︁n−1∑︂

i=1
ni
)︁
+
(︁n−1∑︂

i=1
(ni − 1)

)︁
+
(︁n−1∑︂

i=1
(ni − 1)

)︁
+ (n − 1)

= 4n − 2 +
n−1∑︂
i=1
(3ni − 2)

In the worst-case scenario, every element x = a[i] has to be inserted at position 0 (this
happens when the input a is sorted in descending order), thus ni = i + 1 (because i + 1 tests
i − 1 ≥ 0, . . . 0 ≥ 0,−1 ≥ 0 have to be performed). We thus have

T(n) = 4n − 2 +
n−1∑︂
i=1
(3 · (i + 1) − 2)

= 4n − 2 +
n−1∑︂
i=1
(3i + 1)
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Our final problem is thus to determine the value of the sum

n−1∑︂
i=1
(3i + 1)

Indeed the core problem of the complexity analysis of algorithms defined in terms of loop
iteration is to solve such sums, i.e., to find closed forms for their values (a closed form is a
form that does not involve the summation symbol). There exist elaborate methods to solve
this problem, but sometimes also high school knowledge suffices. For instance, we should
remember at least the closed form solution for an arithmetic series

n∑︂
i=0
(a + i · d) = (n + 1) · a + d ·

n · (n + 1)
2

respectively for a geometric series

n∑︂
i=0
(a · qi) = a ·

qn+1 − 1
q − 1

Since our example above involves just an arithmetic series, we can derive

n−1∑︂
i=1
(3i + 1) =

n−1∑︂
i=0
(3i + 1) − 1 = n · 1 + 3 ·

(n − 1) · n
2

− 1 =
3n2 − n − 2

2

We thus get

T(n) = 4n − 2 +
3n2 − n − 2

2
=

3n2 + 7n − 6
2

Average-case time complexity To determine the average-case time complexity T(n), we need
to determine the expected value E[Ni] of the random variable Ni that represents the number of
tests of the inner loop for value i. If we assume that all values of a have equal probability, it is
not hard to see that we have equal probability to insert a[i] in any of the positions 0, . . . , i and
thus equal probability for Ni to have values 1, . . . , i + 1. We thus get

E[Ni] =
1

i + 1
·

i+1∑︂
j=1

j =
(i + 2) · (i + 1)

2 · (i + 1)
=

i + 2
2
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and thus

T(n) = 4n − 2 +
n−1∑︂
i=1

(︁
3 ·

i + 2
2
− 2

)︁
= 4n − 2 +

1
2
·

n−1∑︂
i=1
(3i + 2)

where

n−1∑︂
i=1
(3i + 2) =

n−1∑︂
i=0
(3i + 2) − 2

=
(︁
2n + 3 ·

(n − 1) · n
2

)︁
− 2

=
4n + 3n2 − 3n − 4

2

=
3n2 + n − 4

2

We thus have

T(n) = 4n − 2 +
3n2 + n − 4

4
=

16n − 8 + 3n2 + n − 4
4

=
3n2 + 17n − 12

4

For large n, we have T(n) ≃ 3n2

2 and T(n) ≃ 3n2

4 and thus T(n) ≃ T(n)
2 , i.e., the average time

complexity of the algorithm is half of its worst case time complexity. However, we have also
T(n) = T(n) = Θ(n2), i.e., the asymptotic time complexity of InsertionSort is quadratic in the
length of the input array, both in the worst case and in the average case.

If one is interested just in the asymptotic complexity of InsertionSort, we can get this result
much easier by using the approximation

Θ(n)∑︂
i=0
Θ(ik) = Θ(nk+1)

In other words, if we sum up a number times that is linear in the value of n a value that is
polynomial in the summation index with degree k, the result value is polynomial in n with
degree k + 1. Since InsertionSort iterates a linear number of times a loop body of linear
complexity, the total complexity of the algorithm is thus quadratic.
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Figure 6.3.: On-Line Encyclopedia of Integer Sequences (OEIS)

Solving Sums by Guessing and Verifying If we are not able to compute a closed form of
a sum on our own, there is always the possibility to derive by some means first a guess for a
solution and then verify that this guess is correct.

As for the guessing part, we may go to the library to check some reference book, e.g., the
CRC Standard Mathematical Tables and Formulae or the Handbook of Mathematical Functions,
to find a closed solution for a summation problem at hand. Another approach is to determine
by hand the first values of the sum, i.e., the sum with 0 summands, with 1 summands, with 2
summands, and so on. In the case of

n−1∑︂
i=1
(3i + 1)

used in the analysis of the worst-case time complexity of InsertionSort, the values of these
sums are

0,4,4 + 7,4 + 7 + 10,4 + 7 + 10 + 13, . . . = 0,4,11,21,34, . . .

corresponding to n = 1,2,3,4,5, . . .. We may then consult the Handbook of Integer Sequences
to determine what is known about this sequence. Even simpler, we may just visit the On-Line
Encyclopedia of Integer Sequences (OEIS)1 and type in 0,4,11,21,34 to get, as depicted in

1http://oeis.org

© 2012– Wolfgang Schreiner.
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Figure 6.3, the answer
3n2 − n − 2

2
which confirms our derivation above.

Rather than consulting tables, we may also harness the power of modern computer algebra
systems. We may e.g. enter in the computer algebra system Maple

> sum(3*i+1,i=1..n-1);

2

3/2 n - 1/2 n - 1

or in the computer algebra system Mathematica

In[1]:= Sum[3*i+1,{i,1,n-1}]

2

-2 - n + 3 n

Out[1]= -------------

2

to get the same solution. In Mathematica it is also possible to determine the function directly
from the initial values of the integer sequence

In[2]:= FindSequenceFunction[{0,4,11,21,34},n]

(-1 + n) (2 + 3 n)

Out[2]= ------------------

2

similar to the table lookup we have performed above.
No matter how we derived these solutions, by consulting books, tables, or software systems,

we should be always wary that the solutions might not be correct (books and tables can and
indeed do contain wrong information, software systems can and indeed do have bugs). Thus we
need in a second step to verify the solution. This typically leads to a proof by induction.

Example 31 We want to verify the equality

n−1∑︂
i=1
(3i + 1) =

3n2 − n − 2
2

Actually, a little inspection reveals that this equality does not hold for n = 0, because

0−1∑︂
i=1
(3i + 1) = 0 ≠ −1 =

3 · 02 − 0 − 2
2
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We skipped over this detail, because in our analysis above we assumed n ≥ 1 (actually the
algorithm also works for n = 0; we then have T(0) = 2, because only the first two lines of the
algorithm are executed). We are therefore going to prove

∀n ∈ N : n ≥ 1⇒
n−1∑︂
i=1
(3i + 1) =

3n2 − n − 2
2

by induction on n.

• Base case n = 1:
1−1∑︂
i=1
(3i + 1) = 0 =

3 · 12 − 1 − 2
2

• We assume for fixed n ≥ 1

n−1∑︂
i=1
(3i + 1) =

3n2 − n − 2
2

and show
n∑︂

i=1
(3i + 1) =

3 · (n + 1)2 − (n + 1) − 2
2

We have

n∑︂
i=1
(3i + 1) =

n−1∑︂
i=1
(3i + 1) + (3n + 1)

=
3n2 − n − 2

2
+ (3n + 1)

=
3n2 − n − 2 + 6n + 2

2

=
3n2 + 5n

2

We also have

3 · (n + 1)2 − (n + 1) − 2
2

=
3n2 + 6n + 3 − n − 1 − 2

2
=

3n2 + 5n
2

and are therefore done. □
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function BinarySearch(a, x, l,r) ▷ n = r − l + 1
if l > r then

return −1
end if
m← ⌊ l+r

2 ⌋
if a[m] = x then

return m
else if a[m] < x then

return BinarySearch(a, x,m + 1,r)
else

return BinarySearch(a, x, l,m − 1)
end if

end function

Cost
1
1

1
1
1
1
≤ 1 + T(⌊ n

2⌋)

≤ 1 + T(⌊ n
2⌋)

Figure 6.4.: Binary Search

6.2. Recurrences

We continue with the analysis of the algorithm BinarySearch depicted in Figure 6.4. This
algorithm searches in a sorted array a within index interval [l,r] for the position of value x (if x

does not occur at any position of this interval, then the result shall be −1). The algorithm starts
with investigating the middle position m = ⌊ l+r

2 ⌋. If a holds at this position x, the result is m; if
the element at position m is smaller than x, the algorithm continues its search to the right of m

by a recursive call with l = m + 1; if the element is greater than x, it continues its search to the
left of m by a recursive call with r = m − 1. If l > r , then the search interval is empty, and the
algorithm returns −1. Our goal is to determine the worst-case time complexity T(n) and the
average-case time complexity T(n) of BinarySearch in terms of the size n = r − l + 1 of the
search interval.

Worst-case time complexity If the search interval is empty, then only the test l > r and the
return statement are executed, i.e.

T(0) = 2

However, if the search interval is not empty, then in the worst case we have to sum up the costs
of the test l > r , of the assignment m← ⌊ l+r

2 ⌋, of the tests a[m] = x and a[m] < x, and of one
recursive call of the algorithm on a search interval of size ⌊ n

2⌋:

T(n) = 5 + T
(︁
⌊

n
2
⌋
)︁
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All in all, we thus have derived the recurrence (relation)Rekursionsgleichung

T(0) = 2

T(n) = 5 + T
(︁
⌊

n
2
⌋
)︁
, if n ≥ 1

The core problem of the complexity analysis of algorithms defined in terms of recursion is thus
to find closed form solutions for such recurrences. If we assume that n = 2m for some m ∈ N,
we have ⌊ n

2⌋ = 2m−1 and thus

T(2m) = 5 + T(2m−1) = 5 + . . . + 5⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞
m times

+T(1) = 5 + . . . + 5⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞
m+1 times

+T(0) = 5 · (m + 1) + 2

In other words, a call of the algorithm results in m additional recursive calls before the base
case is reached. Since 5 · (m + 1) + 2 = 5m + 7 and m = log2 n, we have

T(n) = 5 · (log2 n) + 7

It is then not difficult to guess that for arbitrary n ≥ 1 we have

T(n) = 5 · ⌊log2 n⌋ + 7

(we will verify this guess at the end of this section).
This complexity also considers the case that the element x does not occur in a; if we assume

that x occurs in a, the algorithm will never call itself recursively with n = 0, i.e., we have only
m − 1 recursive calls. The modified complexity is then

Tfound(n) = 5 · ⌊log2 n⌋ + 2

or, in other words, Tfound(n) = T(n) − 5 (for n ≥ 1).

Average-case time complexity Let us assume n = 2m − 1, e.g. n = 15 and m = 4. In this
case, the algorithm gives rise to the recursion tree of height m − 1 = 3 depicted in Figure 6.5:
the label of each node in the tree indicates the position that is investigated by the corresponding
function call (initially the position 0+14

2 = 7), the left child of every node denotes the first
recursive call in the code of BinarySearch and the right child of a node denotes the second
recursive call. Any execution of BinarySearch that finds x is thus depicted by a path in the
tree starting at the root; each node of the path represents one recursive invocation; the path ends

© 2012– Wolfgang Schreiner.
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Figure 6.5.: Recursion Tree for BinarySearch

with the node whose index represents the position of x.
Let us assume that x appears at every position with the same probability. If x occurs at

position 7, no recursive function call is required to find the element. If x occurs at position 3
or position 11, one recursive call is required; if x occurs at one of the positions 1,5,9,13, two
recursive calls are required; if x occurs at any of the remaining eight positions, three recursive
calls are required. Consequently, for each number i from 0 to m − 1, there are 2i array positions
that lead to i recursive calls (respectively 2i paths in the tree that lead to a node at depth i).

Since there are 2m −1 positions (tree nodes) in total, the average number of recursive function
calls (lengths of paths in the tree) is thus

1
2m − 1

·

m−1∑︂
i=0

i · 2i

The value of
∑︁m−1

i=0 i · 2i for m = 1,2,3,4,5, . . . is

0,2,10,34,98, . . .

We may guess the value of this sum from the On-Line Encyclopedia of Integer Sequences

A036799 2+2^(n+1)*(n-1).

0, 2, 10, 34, 98, ...

(please note that the sum here runs until i = n, thus for the solution of our problem, we have to
substitute m − 1 for n). We may also apply Maple

> sum(i*2^i,i=0..m-1);

m m

m 2 - 2 2 + 2
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to derive the closed form solution

m−1∑︂
i=0

i · 2i = 2m · (m − 2) + 2

We leave the proof that this solution is indeed correct as an exercise to the reader.

We thus have for the average number of recursive function calls

1
2m − 1

·

m−1∑︂
i=0

i · 2i =
1

2m − 1
· (2m · (m − 2) + 2) =

2m · (m − 2)
2m − 1

+
2

2m − 1

which is, for large m, about m − 2. Consequently, we have the average-case time complexity

T found(2m − 1) ≃ 5 · (m − 2) + 2 = 5m − 8

while the worst-case time complexity is

Tfound(2m − 1) = 5 · ⌊log2(2m − 1)⌋ + 2 = 5 · (m − 1) + 2 = 5m − 3

i.e., we have T found(2m − 1) ≃ Tfound(2m − 1) − 5. In other words, for large n the algorithm needs
in the average case one recursive call less than in the worst case. This is not surprising, since of
the 2m − 1 elements in a, already 2m−1 − 1 elements (approximately the half) are detected by
the inner nodes of the call tree, not by its leaves.

If we drop the assumption that x occurs in a, we have to consider 2m−1 additional cases where
one more recursive call is required to detect that x does not occur in a. Assuming that each of
these cases is as likely as finding x in a, we have the average number of recursive function calls

1
2m − 1 + 2m−1 ·

(︁
(

m−1∑︂
i=0

i · 2i) + 2m−1 · m
)︁
=

2m · (m − 2) + 2 + 2m−1 · m
2m − 1 + 2m−1

=
2m−1 · (2m − 4 + m) + 2

2m−1 · (2 + 1) − 1

=
2m−1 · (3m − 4) + 2

2m−1 · 3 − 1

≤
2m−1 · 3 · (m − 1) + 2

2m−1 · 3 − 1

which is, for large m, about m − 1. Compared to the worst case with m recursive calls, we have
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also here one recursive call less and get the average-case time complexity

T(2m − 1) ≈ 5 · (m − 1) + 2 = 5m − 3

while the worst-case time complexity is

T(2m − 1) = 5 · ⌊log2(2m − 1)⌋ + 7 = 5 · (m − 1) + 7 = 5m + 2

We thus also have T(2m − 1) ≃ T(2m − 1) − 5, i.e., save one recursive call in the average case.

The analysis of the average case behavior for an input with size 2m − 1 < n < 2m+1 − 1 is
more complex, because some leaves of the corresponding call tree occur at depth m − 1 and
some at depth m. However, it is not difficult to see that this time complexity is bounded on the
lower end by the average case behavior for a call tree with 2m − 1 nodes and on the upper end
by the average case behavior for a call tree with 2m+1 − 1 nodes. Since the difference is only a
single recursive function call with a cost of 5 units, we refrain from a more detailed analysis of
the general case.

Solving Recurrences by Guessing and Verifying In our analysis of the worst-case time
complexity of Algorithm BinarySearch, we had to solve the recurrence

T(0) = 2

T(n) = 5 + T
(︁
⌊

n
2
⌋
)︁
, if n ≥ 1

As shown below, it is for this recurrence technically easier to use the base case n = 1, i.e.,

T(1) = 7

T(n) = 5 + T
(︁
⌊

n
2
⌋
)︁
, if n > 1

The solutions of T for n = 1,2,3,4,5,6,7,8, . . . are

7,12,12,17,17,17,17,22, . . .

for which the On-Line Encyclopedia of Integer Sequences does unfortunately not give a result.
However, this is not very surprising, because the recurrence involves the special coefficients
7 and 5 for which there might be arbitrary other choices. Taking the related recurrence with
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simpler coefficients

U(1) = 0

U(n) = 1 +U
(︁
⌊

n
2
⌋
)︁
, if n > 1

with solutions for n = 1,2,3,4,5,6,7,8, . . .

0,1,1,2,2,2,2,3, . . .

we get the result

A000523 Log_2(n) rounded down.

0, 1, 1, 2, 2, 2, 2, 3, ...

...

FORMULA ... a(n)=floor(lb(n)).

i.e., U(n) = ⌊log2 n⌋. Since T and U only differ in the coefficients, this should give a hint
to look for a solution of form T(n) = a · ⌊log2 n⌋ + b. From T(1) = 7, we get b = 7; from
T(2) = 12, we get a = 5.

We may also try the power of computer algebra systems, which are usually able to deal
with recurrences of form T(n) = . . .T(n − a) . . . (a difference equationDifferenzengleichung where additionally the
boundary value T(0) must be specified) or T(n) = . . .T(n/q) . . . (a q-difference equationq-Differenzen-

gleichung
where

additionally the boundary value T(1) must be specified). In Maple, we thus get

> rsolve({T(1)=7,T(n)=5+T(n/2)},T(n));

7 ln(2) + 5 ln(n)

-----------------

ln(2)

while Mathematica tells us

In[3]:= RSolve[{T[1]==7,T[n]==5+T[n/2]},T[n],n]

5 Log[n]

Out[3]= {{T[n] -> 7 + --------}}

Log[2]

Thus both systems give us the result T(n) = 5 · (log2 n) + 7. While this is a function with
real values, we may nevertheless guess the corresponding solution over the domain of natural
numbers as T(n) = 5 · ⌊log2 n⌋ + 7.
No matter how we have derived our guess, it ultimately has to be verified.
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Example 32 We have to show that 5 · ⌊log2 n⌋ + 7 is a solution to the recurrence

T(1) = 7

T(n) = 5 + T
(︁
⌊

n
2
⌋
)︁
, if n > 1

i.e, we have to show for all n ∈ N with n ≥ 1,

T(n) = 5 · ⌊log2 n⌋ + 7

We prove this by induction on n. For the induction base n = 1, we have

5 · ⌊log2 1⌋ + 7 = 5 · 0 + 7 = 7 = 5 + 2 = 5 + T(0) = 5 + T
(︁
⌊
1
2
⌋
)︁
= T(1)

Now assume n > 1. By the induction hypothesis, we assume for all m with 1 ≤ m < n

T(m) = 5 · ⌊log2 m⌋ + 7

First, we assume n is even, i.e., n = 2m for some m ∈ N. We then have

T(n) = 5 + T
(︁
⌊

n
2
⌋
)︁
= 5 + T(m) = 5 + (5 · ⌊log2 m⌋ + 7) = 5 · (1 + ⌊log2 m⌋) + 7

= 5 · ⌊1 + log2 m⌋ + 7 = 5 · ⌊log2 7 + log2 m⌋ + 7 = 5 · ⌊log2 2m⌋ + 7

= 5 · ⌊log2 n⌋ + 7

Second, we assume n is odd, i.e., n = 2m + 1 for some m ∈ N. We then have

T(n) = 5 + T
(︁
⌊

n
2
⌋
)︁
= 5 + T(m) = 5 + (5 · ⌊log2 m⌋ + 7) = 5 · (1 + ⌊log2 m⌋) + 7

= 5 · ⌊1 + log2 m⌋ + 7 = 5 · ⌊log2 2 + log2 m⌋ + 7 = 5 · ⌊log2 2m⌋ + 7

= 5 · ⌊log2(n − 1)⌋ + 7 = 5 · ⌊log2 n⌋ + 7

where the last but one equality holds, because n > 1 and n is odd. □

From the proof above, it is easy to see that for arbitrary a, b with a > 0, for a recurrence

T(1) = b

T(n) = a + T
(︁
⌊

n
2
⌋
)︁
, if n > 1
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procedure MergeSort(a, l,r) ▷ n = r − l + 1
if l < r then

m← ⌊ l+r
2 ⌋

MergeSort(a, l,m)
MergeSort(a,m + 1,r)
Merge(a, l,m,r)

end if
end procedure

Cost
1
1
1 + T(⌈n2⌉)
1 + T(⌊ n

2⌋)
O(n)

Figure 6.6.: Mergesort

we have the solution
T(n) = a · ⌊log2 n⌋ + b

In the following section, we will deal with more general recurrences of this kind.

6.3. Divide and Conquer

In this section, we investigate the analysis of algorithms that follow the divide and conquerTeile und Herrsche

principle: they divide their input into a number of smaller parts, call themselves recursively to
solve the problem for each part, and then combine the partial results to the overall results. Since
the algorithms are recursive, they give rise to recurrences that have to be solved. However,
unlike in the previous section, where we took painstaking care of the derivation of their exact
complexity functions, we will now be content with the derivation of asymptotic bounds for
these functions. Such asymptotic bounds can be much easier derived and are in the practice of
algorithm analysis often the only quantities of real interest.

Sorting We start with the analysis of Algorithm MergeSort depicted in Figure 6.6: this
algorithm sorts an array a in the index interval [l,r] of size n = r − l + 1. The algorithm calls
itself twice recursively to sort a in subintervals [l,m] and [m + 1,r], where m is the middle
position in the interval, and then calls an Algorithm Merge that merges the sorted parts in
linear time to the totally sorted array. From the algorithm, we can derive the recurrence

T(n) = 1 + 1 + 1 + T
(︁
⌈
n
2
⌉
)︁
+ 1 + T

(︁
⌊

n
2
⌋
)︁
+O(n)

= T
(︁
⌈
n
2
⌉
)︁
+ T

(︁
⌊

n
2
⌋
)︁
+O(n) + 4

= T
(︁
⌈
n
2
⌉
)︁
+ T

(︁
⌊

n
2
⌋
)︁
+O(n)
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O(n)

O(n2 )

O(n4 )

...

O(1)

...

O(1)

O(n4 )

...

O(1)

...

O(1)

O(n2 )

O(n4 )

...

O(1)

...

O(1)

O(n4 )

...

O(1)

...

O(1)

Figure 6.7.: Recursion Tree for MergeSort

Here we only write the definition for n > 1 with the implicit understanding that the base case
n = 1 can be solved in constant time O(1). We can simplify this recurrence further to

T(n) = 2 · T
(︁n
2
)︁
+O(n)

by writing n
2 rather than ⌊ n

2⌋ respectively ⌈
n
2⌉, because the difference does not really play a role

in asymptotic analysis (we further on assume that n
2 denotes any of these numbers).

To guess a solution of this recurrence, we investigate the recursion tree of height O(log n)

depicted in Figure 6.7 whose nodes are labeled with the asymptotic costs that occur in each call.
At depth 0, we have a single cost O(n), at depth 1, we have twice the costs O(n2 ), at depth 2,
we have four times the costs O(n4 ), and so on. At the leaves of the tree, we have n times the
costs O(1). The execution of MergeSort is depicted by a depth-first left-to-right traversal of
all nodes in the tree, i.e., the complexity of the algorithm is denoted by the sum of all labels.
We estimate the asymptotic worst-case time complexity of MergeSort thus as

T(n) =
O(log n)∑︂

i=0
2i · O

(︁ n
2i

)︁
=

O(log n)∑︂
i=0

O(n) = O(n · log n)

Actually, for the more special form of the recurrence

T(n) =
⎧⎪⎪⎨⎪⎪⎩

1, if n ≤ 1

2 · T
(︁ n

2
)︁
+ n, otherwise
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we can easily prove the exact solution

∀i ∈ N : T(2i) = 2i · (i + 1)

by induction on i:

• Base case: we have T(20) = T(1) = 1 = 20 · 1.

• Induction assumption: we assume T(2i) = 2i · (i + 1).

• Induction step: we have

T(2i+1) = 2 · T(2i) + 2i+1 = 2 · 2i · (i + 1) + 2i+1

= 2i+1 · (i + 1) + 2i+1 = 2i+1 · (i + 2).

For n = 2i, we thus have T(n) = n · (log2 n + 1) = O(n · log n).
In the following, we will verify the general estimation.

Proof We prove that every solution T(n) of the recurrence

T(n) = 2 · T
(︁n
2
)︁
+O(n)

is asymptotically bound by T(n) = O(n · log n). From the recurrence and the definition of O(n),
we know that there exist some c > 0 and N ≥ 1 such that, for all n ≥ N

T(n) ≤ 2 · T
(︁n
2
)︁
+ c · n

From the definition of O(n · log n) = O(n · log2 n), it suffices to show

∃c ∈ R>0,N ∈ N : ∀n ≥ N : T(n) ≤ c · n · log2 n

Thus our goal is to find suitable c′ and N′ for which we are able to prove

∀n ≥ N′ : T(n) ≤ c′ · n · log2 n

Because of the characterization of T by a recurrence, this naturally leads to an induction proof
with base N′. The choice of N′ must be carefully considered. Clearly N′ ≥ 2, because for
n = 1, we have c′ · n · log2 n = 0 which invalidates our goal.
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However, a choice of N′ ≥ 2 is problematic for a recurrence of form T(n) = . . .T(n2 ) . . .,
because the induction step will prove the goal for n based on the induction assumption that
the goal holds for n

2 . This is not a problem for N′ = 1, because every sequence of divisions
by 2 which starts with a number n ≥ 1 eventually leads to the base case n = 1. However, if
N′ ≥ 2 such a sequence may bypass the base case n = N′, e.g., we have (N′ + 1)/2 < N′. We
therefore have to show the goal not only for the base case n = N′ but for all base cases n with
2 ≤ n ≤ N′; furthermore, we must ensure that every sequence of divisions starting with a value
n > N eventually reaches one of these base cases, i.e., that n

2 ≥ 2. Since this is ensured for
N′ ≥ 3, we choose

N′ := max{␣,3,N}

where ␣ is a quantity that will be determined in the course of the proof.

As for the choice of c, we have to consider that we have to prove

T(n) ≤ c′ · n · log2 n

for all 2 ≤ n ≤ N′. Fortunately, for all these n, n · log2 n ≥ 1 holds, thus it suffices to prove
T(n) ≤ c′. Furthermore, since T(2) ≤ T(3) ≤ . . . ≤ T(N′), it suffices to prove

T(N′) ≤ c′

Still c′ might not be large enough. We thus define

c′ := max{␣,T(N′)}

where ␣ is a quantity that will be determined in the course of the proof.

After our initial considerations about the appropriate choice of N′ and c′, we now proceed to
the induction proof itself. By our choice, we have already ensured for all 2 ≤ n ≤ N′

T(n) ≤ c′ · n · log2 n

i.e., the goal holds for all base cases of the induction. To show in the induction step the goal
holds also for n > N′, we assume for all 2 ≤ m < n

T(m) ≤ c′ · m · log2 m
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and show
T(n) ≤ c′ · n · log2 n

If we interpret n
2 as ⌊ n

2⌋, then we have, since n > N′ ≥ N ,

T(n) = 2 · T
(︁
⌊

n
2
⌋
)︁
+ c · n

≤ 2 · c′ · ⌊
n
2
⌋ · log2⌊

n
2
⌋ + c · n

≤ 2 · c′ ·
n
2
· log2

(︁n
2
)︁
+ c · n

= c′ · n · log2
(︁n
2
)︁
+ c · n

= c′ · n · ((log2 n) − 1) + c · n

= c′ · n · (log2 n) + (c − c′) · n ≤ c′ · n · log2 n

where the last inequality holds if c′ ≥ c, because then c − c′ ≤ 0.

If we interpret n
2 as ⌈n2⌉, then we have, since n > N′ ≥ N ,

T(n) = 2 · T
(︁
⌈
n
2
⌉
)︁
+ c · n

≤ 2 · c′ · ⌈
n
2
⌉ · log2⌈

n
2
⌉ + c · n

≤ c′ · (n + 1) · log2
(︁n + 1

2
)︁
+ c · n

= c′ · (n + 1) · (log2(n + 1) − 1) + c · n

≤ c′ · (n + 1) · ((log2 n) +
1
2
− 1) + c · n

where in the last line we use the inequality log2(n + 1) ≤ (log2 n) + 1
2 which holds for all n > 2

and thus for all n ≥ N′ (a fact that has to be established by a separate proof which we omit).
We continue the derivation with

T(n) ≤ c′ · (n + 1) ·
(︁
(log2 n) +

1
2
− 1

)︁
+ c · n

= c′ · (n + 1) ·
(︁
(log2 n) −

1
2
)︁
+ c · n

= c′ · n · (log2 n) +
c′

2
· (2 · (log2 n) − n − 1) + c · n

≤ c′ · n · (log2 n) +
c′

2
· (2 ·

n
4
− n − 1) + c · n

where we use in the last line log2 n ≤ n
4 , which holds for all n ≥ 16 (which has to be established
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by a separate proof which we omit); thus we must ensure N′ ≥ 16. We continue with

T(n) ≤ c′ · n · (log2 n) +
c′

2
· (2 ·

n
4
− n − 1) + c · n

≤ c′ · n · (log2 n) −
c′ · n

4
+ c · n

= c′ · n · (log2 n) +
4c − c′

4
· n ≤ c′ · n · log2 n

where the last inequality holds if c′ ≥ 4c, because then 4c − c′ ≤ 0.
From the analysis of both cases above, we know that N′ ≥ 16 and c′ ≥ 4c = max{c,4c}

suffices tomake the proof succeed and thus define N′ := max{16,N} and c′ := max{4c,T(N′)}.□

The Master Theorem The result derived above is actually a consequence of the following
theorem which allows us to determine asymptotic bounds for the solutions of recurrences that
arise from a large class of divide and conquer algorithms, without requiring further proof of the
correctness of the bounds.

Theorem 49 (Master theorem) Hauptsatz der
Laufzeitfunktionen

Let a ≥ 1, b > 1, and f : N → N. If T : N → N satisfies
the recurrence

T(n) = a · T
(︁n
b
)︁
+ f (n)

where n
b means either ⌊ n

b⌋ or ⌈
n
b⌉, then we have the following results:

• If f (n) = O(n(logb a)−ε) for some ε > 0, then

T(n) = Θ(nlogb a)

• If f (n) = Θ(nlogb a), then
T(n) = Θ(nlogb a · log n)

• If f (n) = Ω(n(logb a)+ε) for some ε > 0 and there exist some c with 0 < c < 1 and some
N ∈ N such that

∀n ≥ N : a · f
(︁n
b
)︁
≤ c · f (n)

then
T(n) = Θ( f (n))
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In each of the three cases of this theorem, the function f is compared with the function nlogb a;
in essence, it is the larger function that determines the solution of the recurrence. If f grows
substantially slower, then the first case applies, and the solution of the recurrence is of the order
of nlogb a. If both functions have the same asymptotic growth, then the second case applies, and
the solution is of the order nlogb a multiplied by a logarithmic factor. It f grows substantially
faster (and f satisfies some side condition), then the third case applies, and the solution is of
the order of f . By the term “substantially” in the first respectively third case, we mean that the
growth rate of f must be polynomially smaller respectively larger than nlogb a, i.e., the function
must grow, for some ε > 0, by a factor of nε asymptotically slower respectively faster than
nlogb a . This leaves some “gaps” between cases 1 and 2 respectively between cases 2 and 3
where the theorem cannot be applied.

The proof of the theorem is based on the analysis of the recursion tree determined by the
recurrence T(n) = a · T(nb) + f (n); this tree of arity a has depth logb n and each of the ai nodes
at depth i has cost f ( n

bi ). The total cost of the tree is thus

logb n∑︂
i=0

ai · f
(︁ n
bi

)︁
The three cases of the theorem correspond to those cases where (1) this sum is dominated by
the cost of level i = logb n (the leaves of the tree), (2) the sum is evenly determined by all levels
of the tree, or (3) the sum is dominated by by the cost of level i = 0 (the root of the tree); we
omit the details of the analysis.

Example 33 For the solution of the recurrence

T(n) = 2 · T
(︁n
2
)︁
+ Θ(n)

we can apply the second case of the master theorem with a = b = 2, because then logb a = 1
and thus Θ(n) = Θ(n1) = Θ(nlogb a). We thus have

T(n) = Θ(nlogb a · log n) = Θ(n1 · log n) = Θ(n · log n)

If we assume that the asymptotic time complexity of Merge is Θ(n), we have thus determined
the asymptotic time complexity of MergeSort. □

Arbitrary Precision Multiplication As another example, let us consider the problem of
multiplying two natural numbers a and b with n digits each, which gives as a result a number c
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function Multiply(a, b)
n← digits(a) ▷ digits(a) = digits(b)
c← 0
for i from n − 1 to 0 do

p← MultiplyDigit(a, bi)
c← Shift(c,1)
c← Add(p, c)

end for
return c

end function

Cost
1
1
n + 1
n · Θ(n)∑︁n−1

i=0 Θ(2n − i − 1)
n · Θ(n)

1

Figure 6.8.: Arbitrary Precision Multiplication (Iterative)

with at most 2n digits; the numbers are represented in a positional number system with some
base d. The classical multiplication algorithm taught in school proceeds in n iterations (see
Figure 6.8). In iteration i, number a is multiplied with digit i of b where digit 0 is the least
significant digit and digit n − 1 the most significant one; the resulting product p is a number
with at most n + 1 digits. We then shift the current value of c (a number with at most 2n − i − 1
digits) by one digit and add p to get the next value of c. The total time complexity thus is

T(n) = 3 + (n + 1) + 2n · Θ(n) +
n−1∑︂
i=0
Θ(2n − i − 1) = Θ(n2)

i.e., it is quadratic in the number of digits.
Now let us attempt a recursive solution to the problem following the divide and conquer

principle. If we assume that n is even, we can split the sequence of the n digits of a into two
subsequences of n

2 digits which represent two numbers a′ (consisting of the more significant
digits of a) and a′′ (consisting of the less significant digits); analogously we split b into two
subsequences which represent numbers b′ and b′′. We then have

a = a′ · d
n
2 + a′′

b = b′ · d
n
2 + b′′

because shifting the first subsequence by n
2 digits to the left and filling up the gap with the

second subsequence gives the original sequence. We then have

a · b = (a′ · d
n
2 + a′′) · (b′ · d

n
2 + b′′)

= a′ · b′ · dn + (a′ · b′′ + a′′ · b′) · d
n
2 + a′′ · b′′
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function Multiply(a, b)
n← digits(a) ▷ digits(a) = digits(b) = 2m

if n = 1 then
c← MultiplyDigit(a0, b0)

else
a′← a n

2 ...n−1; a′′← a0... n2−1
b′← b n

2 ...n−1; b′′← b0... n2−1
u← Multiply(a′, b′)
v ← Multiply(a′, b′′)
w ← Multiply(a′′, b′)
x ← Multiply(a′′, b′′)
y ← Add(v,w)
y ← Shift(y, n

2 )
c← Shift(u,n)
c← Add(c, y)
c← Add(c, x)

end if
return c

end function

Cost
1
1
Θ(1)

Θ(n)
Θ(n)
1 + T(n2 )
1 + T(n2 )
1 + T(n2 )
1 + T(n2 )
Θ(n)
Θ(n)
Θ(n)
Θ(n)
Θ(n)

1

Figure 6.9.: Arbitrary Precision Multiplication (Recursive)

Consequently, to compute the product a · b of two numbers of length n, we need to perform 4
multiplications a′ · b′, a′ · b′′, a′′ · b′ and a′′ · b′′ of numbers of length n

2 and a couple of additions
and shift operations. The corresponding algorithm is depicted in Figure 6.9 (we assume for
simplicity that n is a power of 2 such that repeated division by 2 always gives an exact result).

The time complexity of this algorithm is determined by the recurrence

T(n) = 3 + 4 ·
(︂
1 + T

(︁n
2
)︁ )︂
+ 7 · Θ(n)

= 4 · T
(︁n
2
)︁
+ Θ(n)

To solve this recurrence, we can apply the master theorem for a = 4 and b = 2. We then have
(logb a) = (log2 4) = 2. Since f (n) = O(n) = O(n1) = O(n2−1) = O(n(logb a)−1), the first case
of the theorem applies, and we have

T(n) = Θ(nlogb a) = Θ(n2)

Consequently also the time complexity of the recursive algorithm is quadratic in the number of
digits. Since this algorithm is also more complicated than the iterative algorithm, we therefore
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do not really have any incentive to apply the recursive version. For a long time, it was even
conjectured that there is no algorithm for arbitrary precision multiplication that is asymptotically
faster than the school algorithm.
However, in 1962 Anatolii Karatsuba and Yuri Ofman realized that the equation derived

above can be transformed one step further

a · b = (a′ · d
n
2 + a′′) · (b′ · d

n
2 + b′′)

= a′ · b′ · dn + (a′ · b′′ + a′′ · b′) · d
n
2 + a′′ · b′′

= a′ · b′ · dn +
(︁
(a′ + a′′) · (b′ + b′′) − a′ · b′ − a′′ · b′′

)︁
· d

n
2 + a′′ · b′′

Consequently, we can compute a · b by only 3 multiplications a′ · b′, (a′ + a′′) · (b′ + b′′), and
a′′ · b′′. However, the numbers s = a′ + a′′ and t = b′ + b′′ may be n

2 + 1 digit numbers, i.e.,

s = s n
2
· d

n
2 + s′

t = t n
2
· d

n
2 + t′

where s′ and t′ represent the lower n
2 digits of s and t. But since we have

s · t = (s n
2
· d

n
2 + s′) · (t n

2
· d

n
2 + t′)

= s n
2
· t n

2
· dn + (s n

2
· t′ + t n

2
· s′) · d

n
2 + s′ · t′

we can even in this case compute s · t by a single product s′ · t′ of numbers of length n
2 and a

couple of additional operations of time complexity Θ(n).
The corresponding algorithm is depicted in Figure 6.10 (again we assume for simplicity

that n is a power of 2) which makes use of only three recursive calls (as explained above, the
second call has to deal with the extra complexity of multiplying n

2 + 1 digit numbers). The time
complexity of this algorithm is determined by the recurrence

T(n) = 3 + 2 ·
(︂
1 + ·T

(︁n
2
)︁ )︂
+
(︂
Θ(n) + T

(︁n
2
)︁ )︂
+ 10 · Θ(n)

= 3 · T
(︁n
2
)︁
+ Θ(n)

To solve this recurrence, we can apply the master theorem for a = 3 and b = 2. We then have
logb a = log2 3 where 1.58 < log2 3 < 1.59. Since f (n) = O(n) = O(n1) = O(n(logb a)−ε) for
ε = (log2 3) − 1 > 0.58, the first case of the theorem applies, and we have

T(n) = Θ(nlogb a) = Θ(nlog2 3)
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function Multiply(a, b)
n← digits(a) ▷ digits(a) = digits(b) = 2m

if n = 1 then
c← MultiplyDigit(a0, b0)

else
a′← a n

2 ...n−1; a′′← a0... n2−1
b′← b n

2 ...n−1; b′′← b0... n2−1
s← Add(a′,a′′)
t ← Add(b′, b′′)
u← Multiply(a′, b′)
v ← Multiply’(s, t)
x ← Multiply(a′′, b′′)
y ← Subtract(v,u)
y ← Subtract(v, x)
y ← Shift(y, n

2 )
c← Shift(u,n)
c← Add(c, y)
c← Add(c, x)

end if
return c

end function

Cost
1
1
Θ(1)

Θ(n)
Θ(n)
Θ(n)
Θ(n)
1 + T(n2 )
Θ(n) + T(n2 )
1 + T(n2 )
Θ(n)
Θ(n)
Θ(n)
Θ(n)
Θ(n)
Θ(n)

1

Figure 6.10.: Arbitrary Precision Multiplication (Karatsuba Algorithm)

Since (log2 3) < 2, we have Θ(nlog2 3) = o(n2), i.e., the Karatsuba algorithm performs
asymptotically better than the classical multiplication algorithm. Software systems that have to
perform arithmetic with arbitrarily long integers (such as computer algebra systems) indeed
implement this algorithm.

6.4. Randomization

We are going to analyze the time complexity of Algorithm QuickSort depicted in Figure 6.11
which sorts an array a in index interval [l,r] of size n = r − l + 1 in ascending order. The
algorithm chooses some index p in this interval which determines a pivot value a[p]. It then
calls a subalgorithm Partition that reorders a[l . . . r] such that, for some index m returned
by Partition, a[l . . .m] holds all elements of a less than the pivot, a[m] holds the pivot, and
a[m+1 . . . r] holds all elements of a greater than or equal the pivot. By calling itself recursively
twice on the intervals [l,m − 1] and [m + 1,r], the reordered array is sorted.

We don’t yet specify the exact choice of p, but demand that it can be performed in time O(n),
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procedure QuickSort(a, l,r) ▷ n = r − l + 1
if l < r then

choose p ∈ [l,r]
m← Partition(a, l,r, p) ▷ i = m − l
QuickSort(a, l,m − 1)
QuickSort(a,m + 1,r)

end if
end procedure

Cost
1
O(n)
Θ(n)
1 + T(i)
1 + T(n − i − 1)

Figure 6.11.: Quicksort

because this time is contained in the time Θ(n) that Partition apparently needs to subsequently
reshuffle the array. The time complexity of QuickSort is thus determined by the recurrence

T(n) = T(i) + T(n − i − 1) + Θ(n)

where i := m − l is the size of the interval [l,m − 1] and n − i − 1 is the size of the interval
[m + 1,n]; consequently 0 ≤ i ≤ n − 1.

Worst and Best Case Time Complexity If p is chosen such that i = 0 or i = n − 1 (i.e., one
of the partition intervals is empty), we get the recurrence

T(n) = T(0) + T(n − 1) + Θ(n) = Θ(1) + T(n − 1) + Θ(n) = T(n − 1) + Θ(n)

which can be apparently solved as

T(n) =
n−1∑︂
i=0
Θ(i) = Θ(n2)

In this case, the asymptotic time complexity of QuickSort is the same as that of InsertionSort,
i.e., it is quadratic in the size of (the range of) the array to be sorted. This case represents the
worst-case time complexity of QuickSort (it corresponds to an unbalanced binary recursion
tree where the left child of every node is a leaf and the longest path, the one from the root along
all right children to the right-most leaf, has length n).

However, if p is chosen such that i = n
2 (i.e., both partition intervals have approximately the

same size), we get the recurrence

T(n) = T
(︁n
2
)︁
+ T

(︁n
2
)︁
+ Θ(n) = 2 · T

(︁n
2
)︁
+ Θ(n)
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We then can apply the second case of the master theorem for a = b = 2 to derive

T(n) = Θ(n · log n)

i.e., the asymptotic time complexity of QuickSort is in this case the same as that of MergeSort.
Since it can be shown that sorting an array of length n by comparing its elements needs at least
time Θ(n · log n), this represents the best case (it corresponds to a balanced binary recursion
tree where all paths have length log2 n).

A more detailed complexity analysis reveals that the constant factor attached to n · log n is for
QuickSort smaller than for MergeSort; in practice QuickSort thus outperforms MergeSort
in the best case. Naturally the question arises whether the average-case time complexity of
QuickSort is closer to the worst case or closer to the best case.

Average Case Time Complexity Let us for the moment assume that for i all n values
0, . . . ,n − 1 are equally likely (we will discuss this assumption later). Then the average-case
time complexity is determined by the recurrence

T(n) =
1
n
·

n−1∑︂
i=0
(T(i) + T(n − i − 1) + Θ(n))

=
1
n
·
(︁n−1∑︂

i=0
T(i) + T(n − i − 1)

)︁
+ Θ(n)

=
1
n
·
(︁n−1∑︂

i=0
T(i) +

n−1∑︂
i=0

T(n − i − 1)
)︁
+ Θ(n)

=
1
n
·
(︁n−1∑︂

i=0
T(i) +

n−1∑︂
i=0

T(i)
)︁
+ Θ(n)

=
2
n
·

n−1∑︂
i=0

T(i) + Θ(n)

This recurrence is particularly nasty because it also contains a sum. To derive a guess for its
solution, we consider the more special form

T ′(n) =
2
n
·

n−1∑︂
i=1

T ′(i) + n
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which also avoids the index i = 0 because of step (*) shown below. To get rid of the sum, we
first derive the two equalities

n · T ′(n) = 2 ·
n−1∑︂
i=1

T ′(i) + n2

(n − 1) · T ′(n − 1) = 2 ·
n−2∑︂
i=1

T ′(i) + (n − 1)2

and then, by computing the difference of both sides, the equality

n · T ′(n) − (n − 1) · T ′(n − 1) = 2 · T ′(n − 1) + 2n − 1

By simplification, we get the recurrence

n · T ′(n) = (n + 1) · T ′(n − 1) + 2n − 1

We divide by n · (n + 1) and get the form

T ′(n)
n + 1

=
T ′(n − 1)

n
+

2n − 1
n · (n + 1)

in which the terms involving T ′ have the same “shape” on the left and on the right hand side,
which will help us to solve this recurrence. For this purpose, we compute

n∑︂
i=1

T ′(i)
i + 1

=

n∑︂
i=1

(︂T ′(i − 1)
i

+
2i − 1

i · (i + 1)

)︂
=

n∑︂
i=1

T ′(i − 1)
i

+

n∑︂
i=1

2i − 1
i · (i + 1)

(∗)
=

n−1∑︂
i=0

T ′(i)
i + 1

+

n∑︂
i=1

2i − 1
i · (i + 1)

where in step (*) we shift in the first sum the index by one such that on the left side and on the
right side now the same summand T ′(i)

i+1 appears. By subtracting
∑︁n−1

i=1
T ′(i)
i+1 from both sides we

thus get

T ′(n)
n + 1

=
T ′(0)

1
+

n∑︂
i=1

2i − 1
i · (i + 1)
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respectively

T ′(n) = (n + 1) ·
(︂
T ′(0) +

n∑︂
i=1

2i − 1
i · (i + 1)

)︂
By dropping the multiplicative and additive constants, we may derive the asymptotic bound

T ′(n) = O
(︁
n ·

n∑︂
i=1

1
i
)︁
= O(n · Hn) = O(n · log n)

where Hn denotes the already introduced n-th harmonic number which can be approximated as
ln(n) + 1

2n = O(log n).
Actually, we could have got the same result by solving (a simplified form of) the recurrence

directly with a computer algebra system, e.g. Maple:

> rsolve({T(0)=1,T(n)=(n+1)/n*T(n-1)+1},T(n));

(n + 1) (Psi(n + 2) + gamma)

Here the function Psi(n) denotes Ψ(n) = Hn−1 − γ, i.e. the result is essentially (n+ 1) ·Hn+1 =

O(n · Hn). The corresponding result derived with Mathematica is

In[1]:= RSolve[{T[0]==1,T[n]==(n+1)/n*T[n-1]+1},T[n],n]

Out[1]= {{T[n] -> EulerGamma + EulerGamma n +

PolyGamma[0, 2 + n] + n PolyGamma[0, 2 + n]}}

where Ψ(n) is denoted by PolyGamma[0,n].
We thus estimate that the solution of the recurrence

T(n) =
2
n
·

n−1∑︂
i=0

T(i) + Θ(n)

is in O(n · log n), i.e., that under the assumption that all values of i are equally likely, that the
time complexity of QuickSort is in the average case the same as in the best case. Before
discussing this assumption, we are going to verify our estimation in detail.

Proof We show that the solution of the recurrence

T(n) =
2
n
·

n−1∑︂
i=0

T(i) + Θ(n)
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is in O(n · log n). From the recurrence, we know there exist some N ∈ N and some c ∈ R>0

such that for all n ≥ N′

T(n) ≤
2
n
·

n−1∑︂
i=0

T(i) + c · n

From the definition of O(n · log n), we have to show, for some N′ ∈ N and c′ ∈ R>0, that for
all n ≥ N′

T(n) ≤ c′ · n · log2 n

To ensure that N′ ≥ N and log2 N′ ≥ 1, we choose

N′ := max{2,N}.

Since later in the induction step for value n, we will apply the induction hypothesis to values
2, . . . ,n − 1, we have to show the induction base for all values n ∈ {2, . . . ,N′} (rather than for
n = N′ alone). Since n ≥ 2 and log2 n ≥ 1, to ensure

T(n) ≤ c′ · n · log2 n

it suffices to choose c′ such that c′ ≥ T(n). Since T(2) ≤ . . . ≤ T(N′), it thus suffices to choose

c′ := max{␣,T(N′)}

where ␣is a quantity that will be defined in the remainder of the proof.

In the induction step, we take arbitrary n > N′ and assume that for all i with 2 ≤ i < n

T(i) ≤ c′ · i · log2 i

Our goal is to show that

T(n) ≤ c′ · n · log2 n

We know

T(n) ≤
2
n
·

n−1∑︂
i=0

T(i) + c · n
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=
2
n
·

n−1∑︂
i=2

T(i) +
2
n
·
(︁
T(0) + T(1)

)︁
+ c · n

≤
2
n
·

n−1∑︂
i=2

T(i) + T(0) + T(1) + c · n

≤
2
n
·

n−1∑︂
i=2

T(i) + (T(0) + T(1) + c) · n

=
2
n
·

n−1∑︂
i=2

T(i) + c′′ · n

where c′′ := T(0) + T(1) + c and the last two inequalities hold because n > N′ ≥ 2. Since
N′ ≥ 2, we can apply the induction hypothesis to all summands of

∑︁n−1
i=2 T(i) and thus have

T(n) ≤
2
n
·
(︁n−1∑︂

i=2
c′ · i · log2 i

)︁
+ c′′ · n

=
2 · c′

n · ln 2
·
(︁n−1∑︂

i=2
i · ln i

)︁
+ c′′ · n

(1)
≤

2 · c′

n · ln 2
·
(︁∫ n

2
i · ln i di

)︁
+ c′′ · n

(2)
=

2 · c′

n · ln 2
·
(︁ i2 · ln i

2
−

i2

4
)︁ |︁|︁|︁n

2
+ c′′ · n

=
c′

n · 2 · ln 2
·
(︁
2 · i2 · ln(i) − i2

)︁ |︁|︁|︁n
2
+ c′′ · n

=
c′

n · 2 · ln 2
· (2 · n2 · ln(n) − n2 − 8 · ln 2 + 4) + c′′ · n

≤
c′

n · 2 · ln 2
· (2 · n2 · ln(n) − n2) + c′′ · n

=
c′ · n

2 · ln 2
· (2 · ln(n) − 1) + c′′ · n

Here we use in (1) the fact that the area under the continues curve i · ln i in range 2 ≤ i ≤ n

overapproximates the corresponding discrete sum in range 2 ≤ i ≤ n − 1; in (2) we use∫
i · ln i di = i2

4 · (2 · ln(i) − 1) (please check by derivation). We now have to ensure that

c′ · n
2 · ln 2

· (2 · ln(n) − 1) + c′′ · n ≤ c′ · n · log2 n ⇔

c′

2 · ln 2
· (2 · ln(n) − 1) + c′′ ≤ c′ ·

ln(n)
ln 2

⇔

c′ · (2 · ln(n) − 1) + c′′ · 2 · ln 2 ≤ c′ · 2 · ln(n) ⇔
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c′′ · 2 · ln 2 ≤ c′ · (2 · ln(n) − 2 · ln(n) + 1) ⇔

c′′ · 2 · ln 2 ≤ c′

We thus take c′ := max{c′′ · 2 · ln 2,T(N′)} and are done. □

Ensuring the Average Case Time Complexity As shown above, if we assume that all values
of i = m − l are equally likely, the asymptotic time complexity of QuickSort is in the average
case the same as in the best case. This assumption is satisfied if and only if the choice

choose p ∈ [l,r]

determines a pivot element a[p] that is equally likely to be the element at any of the positions
l, . . . ,r in the sorted array, i.e., if pivot elements are evenly distributed. We thus must discuss
the implementation of the choice in some more detail.
The simplest implementation is the choice of a fixed index in interval [l,r], e.g.,

p← r

However, we then get evenly distributed pivot elements only if all n! permutations of the array
occur with equal probability as inputs. Unfortunately, it is in practice typically hard to estimate
how inputs are distributed; it might, e.g., be frequently the case that QuickSort is called with
arrays that are already sorted, either in the correct (ascending) order or exactly in the opposite
(the descending) order. Both situations yield the extreme cases i = n − 1 respectively i = 0
which result in complexity O(n2).

To make all input permutations evenly likely, we might have the idea to permute the input
array in a random fashion before we pass it to QuickSort. For instance, we may assume the
availability of a a random number generator Random(a, b) that, for a ≤ b, returns an integer in
interval [a, b], with each integer being returned with equal probability. We may then devise the
following procedure Randomize:

procedure Randomize(a)
n← length(a)
for i from 0 to n − 1 do

r ← Random(i,n − 1)
b← a[i]; a[i] ← a[r]; a[r] ← b

end for
end procedure
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In this algorithm, before iteration i of the loop a random permutation of length i has been
constructed whose probability is (n−i)!

n! . When the loop terminates with i = n, thus a random
permutation of length n has been constructed whose probability is 1

n! . If we call Randomize
before calling QuickSort, then the implementation of the choice by p← r cannot cause any
harm; any distribution of inputs becomes by randomization a uniform distribution for which the
average case time complexity O(n · log n) holds.
However, for QuickSort also a simpler and computationally much less costly strategy for

randomization is possible. Rather than randomly permuting the input, we may randomly
permute the choice by computing

p← Random(l,r)

Since p is a random value with equal probability in [l,r], also i becomes a random value with
equal probability in [l,r] and thus the average case time complexity O(n · log n) is ensured.
Randomization is a powerful technique in the toolbox of algorithm design. Whenever in

an algorithm some “choice” has to be made, making a random choice (rather than making an
arbitrary fixed choice) may give us an algorithm whose average case complexity is independent
of any assumption on the distribution of inputs; in particular, we may avoid worst case behaviors
that might otherwise frequently happen. With the help of randomization, we may also develop
probabilistic algorithms that may with a certain probability fail to return a result but that are in
average faster than any deterministic counterparts; in some areas (such as distributed systems)
probabilistic algorithms are even the only means of solving a problem.

6.5. Amortized Analysis

In amortized analysisamortisierte Analyse , the goal is to determine the worst-case time complexity T(n) of a
sequence of n operations, such that the average-case time complexity of a single operation,
also called the amortized cost, can be determined as T(n)

n . The idea is that, even if few of these
operations have a big complexity, by the many other operations that have small complexity, the
average complexity of a single operation may be also small. However, in contrast to the analysis
of average-case time complexity shown in the previous sections, we are actually considering the
worst case for the whole sequence of operations, i.e., we are computing the average performance
of each operation in the worst case. This kind of analysis is typically applied to operations that
manipulate a certain data structure (e.g., a sequence of method calls on an object). We will
investigate for this purpose two techniques, aggregate analysis and the potential method.
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Aggregate Analysis Let us consider the data structure stack with the following operations:

• Push(s, x): push an element x on stack s.

• Pop(s): pop an element from the top of the non-empty stack s.

• MultiPop(s, k): pop k elements from the stack s (if s has l < k elements, then only l

elements are popped).

Operations Push and Pop can be performed in timeO(1), while the complexity of MultiPop(s, k)
is in O(min{l, k}) where l is the number of elements on s. Our goal is to analyze the worst-case
time complexity of an arbitrary sequence of n of these operations performed on a stack s which
is initially empty. Since the size of the stack is at most n and the most time consuming operation
is MultiPop with complexity O(n), a sequence of n operations can be performed in time O(n2).
However, while this analysis gives a correct upper bound, this bound is not tight; we show this
below by a more detailed analysis in which aggregate the costs of all operations in the sequence.
Let us assume that in the sequence of n operations there occur k MultiPop operations.

Consequently, the sequence starts with n0 other operations before MultiPop is called for the
first time, then there follow n1 operations before MultiPop is called for the second time, and so
on, until there are nk−1 operations before MultiPop is called for the last time; the sequence is
then trailed by nk other operations. In total we thus have

n = k +
k∑︂

i=0
ni

operations. If we denote by pi the number of elements actually popped from the stack in call i

of MultiPop, the total cost of the sequence is

T(n) =
k−1∑︂
i=0

O(pi) + (n − k) · O(1) = O
(︁k−1∑︂

i=0
pi
)︁
+O(n)

(1)
= O

(︁k−1∑︂
i=0

ni
)︁
+O(n)

(2)
= O(n) +O(n) = O(n)

Equality (1) is a consequence of
∑︁k−1

i=0 pi ≤
∑︁k−1

i=0 ni, which holds, because the total number of
elements popped from the stack by the k MultiPop operations is bound by the total number
of previously occuring Push operations. Equality (2) follows from

∑︁k−1
i=0 ni ≤ n, which holds,

because the number of Push and Pop operations is bound by the number of all operations.
A sequence of n operations can thus be actually performed in time O(n), i.e., in linear (not
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quadratic) time. The amortized cost of a single operation is thus O(n)
n = O(1), i.e., it is constant.

The costs for the linear time MultiPop operations have thus been outweighted be the average
costs of the constant time Push and Pop operations.

The Potential Method We are now going to repeat the analysis of the sequence of stack
operations in a more general framework that is useful for the analysis of more complex cases.
The framework assigns to every operation i in a sequence of n operations two kinds of costs:

• the actual cost ci, and

• the amortized cost ĉi

such that the sum of the amortized costs of all operations is an upper bound for the sum of the
actual costs, i.e.,

n∑︂
i=1

ĉi ≥

n∑︂
i=1

ci

For a single operation i, however, it may be the case that ĉi < ci; the operation then uses up
ci − ĉi “credit” that has been built up by the other operations. On the contrary, if ĉi > ci, then
operation i saves ĉi − ci credit that may be used up by other operations.

We will calculate the amortized costs with the help of a potential function Φ(s) that maps the
data structure s manipulated by the operations to a real number, the potential of s (essentially
representing the accumulated credit so far). Let s0 denote the initial value of the data structure
and si denote its value after operation i. Then we define for some constant C > 0 (a “scaling
factor” chosen to simplify the later analysis)

Φ(si) := (1/C) ·
i∑︂

j=0
(ĉ j − c j)

such that we have
ĉi − ci = C ·

(︁
Φ(si) − Φ(si−1)

)︁
i.e., it is essentially the difference between the value of Φ after execution of operation i and the
value of Φ before the execution which represents the credit saved/used by the operation. We
can then determine the total sum of the amortized costs as

n∑︂
i=1

ĉi =

n∑︂
i=1

(︂
ci + C ·

(︁
Φ(si) − Φ(si−1)

)︁ )︂
=

n∑︂
i=1

ci + C ·
(︁
Φ(sn) − Φ(s0)

)︁
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where the last equality holds because in the sum, except for the first and the last term, subsequent
terms Φ(si) cancel (the sum telescopes). To ensure

∑︁n
i=1 ĉi ≥

∑︁n
i=1 ci, i.e, that the amortized

costs are an upper bound for the actual costs, it thus suffices to ensure

Φ(sn) ≥ Φ(s0)

i.e., that the potential of the data structure after the execution of the operations is not smaller
than its initial potential.
In the stack example, we define Φ(s) as the number of elements in stack s. Then clearly

Φ(sn) ≥ 0 = Φ(s0)

i.e., the amortized costs described by the potential function represent an upper bound for the
actual costs. Furthermore, we choose C > 0 such that it is an upper bound for the execution
time of Push and Pop and that C · k′ is an upper bound for the execution time of MultiPop(s,
k) where k′ = min{k,m} and m is the number of elements in s (it can be shown that such a C

exists because the complexities of the operations are O(1) respectively O(k′)). We can then
determine the amortized cost

ĉi = ci + C ·
(︁
Φ(si) − Φ(si−1)

)︁
of each operation:

• Push(s, x):
ĉi ≤ C + C ·

(︁
(m + 1) − m

)︁
= C + C = 2 · C

where m is the number of elements on s.

• Pop(s):
ĉi ≤ C + C ·

(︁
(m − 1) − (m)

)︁
= C − C = 0

where m > 0 is the number of elements on s.

• MultiPop(s, k):

ĉi ≤ C · k′ + C ·
(︁
(m − k′) − m

)︁
= C · k′ − C · k′ = 0

where k′ := min{k,m} and m is the number of elements in s.

Unlike in aggregate analysis, we can thus analyze with the potential method the amortized



194 Chapter 6. Analysis of Complexity

cost of each operation in turn. Since each operation has amortized cost O(1), a sequence of n

operations has worst-case time complexity O(n).

Dynamic Tables We are now going to consider an operation Insert(t, x) that inserts a value x

into a table t for which a fixed amount of space is allocated. If this space gets exhausted, more
space is allocated and the elements are copied from the old space to the new one; we say that
the table is expanded. If n elements are to be copied, the worst case complexity of Insert is
thus O(n). Most of the time, however, there is still free space left to accommodate x; if this
is indeed the case, then Insert can be performed in time O(1). Our goal is to determine the
time complexity of a sequence of n Insert operations starting with an empty table (with no
memory allocated yet). Clearly, since the time for a single insert is bound by O(n), a bound for
n operations is O(n2). However, this bound is (hopefully) not tight, thus we are interested to
find a better bound.
For a more detailed analysis, we have to know how much a table of size m is expanded if

Insert detects that it has become full. Clearly it is a bad idea to just expand the table to size
m + 1, because then immediately the next call of Insert will require another expansion. As we
will now show, it is also not much of an improvement to expand to size m + c for some constant
c. By this strategy, for every c calls of Insert an expansion of the table is triggered, where the
i-th expansion requires (i − 1) · c copy operations. If we have n calls of Insert, there occur
⌊ n

c ⌋ expansions and n − ⌊ n
c ⌋ calls that do not trigger an expansion and can be thus performed in

constant time; the total time for n Insert operations is thus

T(n) =
⌈ nc ⌉∑︂
i=1

O
(︁
(i − 1) · c

)︁
+
(︁
n − ⌈

n
c
⌉
)︁
· O(1)

= O
(︁ ⌈ nc ⌉∑︂

i=1
i
)︁
+O(n)

= O(n2) +O(n) = O(n2)

In other words, the asymptotic complexity is still quadratic.
A better strategy is to allocate ⌈m · c⌉ cells for some constant c > 1. A popular choice

is to use c := 2, i.e., to double the size of the space from m to 2 · m, because then after the
allocation still at least 50% of the space is used, so not more space is unfilled than filled.
Then in a sequence of Insert operations numbered i ∈ {1, . . . ,n}, the ones with number
i ∈ {2 = 1 + 1,3 = 2 + 1,5 = 4 + 1,9 = 8 + 1, . . . ,2⌊log2 n⌋ + 1} lead to a costly allocation; more
specifically, in operation 2i + 1 we have to allocate a new table and copy 2i elements from the
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old one. Using aggregate analysis, we can thus determine the total cost for n operations as

T(n) =
⌈log2 n⌉+1∑︂

i=0
O(2i) + (n − ⌈log2 n⌉ − 1) · O(1)

= O
(︁⌈log2 n⌉+1∑︂

i=0
2i )︁ +O(n)

= O
(︁⌊log2 n⌋∑︂

i=0
2i )︁ +O(n)

= O(2n) +O(n) = O(n)

The amortized cost of a single Insert is thus O(n)
n = O(1), i.e., every Insert operation is in

average performed in constant time.
A more detailed analysis becomes possible by the potential method. Let num(t) denote the

number of elements in table t and size(t) denote the number of elements that can be stored in
the table (including the empty slots); by the strategy to double the space when the table gets full,
we always have num(t) ≥ size(t)

2 . Initially num(t) = size(t) = 0; when a new element is inserted
than num(t) is incremented by 1. If more memory is to be allocated, then size(t) is multiplied
by 2. Based on num(t) and size(t), we can define the potential function

Φ(t) := 2 · num(t) − size(t)

for which, since num(t) ≥ size(t)
2 , we know

Φ(t) ≥ 0

The idea of this definition is as follows: immediately after an expansion of table ti−1 to table ti,
we have num(ti) = size(ti)

2 and thus Φ(t) = 0. Whenever a new element is inserted to non-full
ti−1, we have Φ(ti) = 2 + Φ(ti−1). When ti−1 becomes full, we have num(ti−1) = size(ti−1) and
thus Φ(ti−1) = size(ti−1). The size(ti−1) copy operations of the subsequent expansion can be
thus performed at the expense of the credit accumulated since the last expansion.
Based on this definition of Φ, will now analyze in detail the amortized cost

ĉi = ci + C ·
(︁
Φ(ti) − Φ(ti−1)

)︁
of Insert operation number i which applied to table ti−1 yields table ti. Here we choose C

such that it is an upper bound for the time of Insert when ti−1 is not expanded (which can be
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performed in time O(1)) and C · n is an upper bound for the time when ti−1 with n elements has
to be expanded (which can be performed in time O(n)).

• If Insert does not trigger an expansion, then we have num(ti) = num(ti−1) + 1 and
size(ti) = size(ti−1) and thus:

ĉi ≤ C · 1 + C ·
(︁
2 · num(ti) − size(ti) − (2 · num(ti−1) − size(ti−1))

)︁
= C · 1 + C ·

(︁
2 · (num(ti−1) + 1) − size(ti−1) − (2 · num(ti−1) − size(ti−1))

)︁
= C · 1 + C · 2 = 3C

where C · 1 denotes an upper bound for the cost for the insertion of the new element.

• If Insert triggers an expansion, then we have num(ti) = num(ti−1) + 1 and size(ti−1) =

num(ti−1) and size(ti) = 2 · size(ti−1) = 2 · num(ti−1) and thus:

ĉi ≤ C · num(ti−1) + C ·
(︁
2 · num(ti) − size(ti) − (2 · num(ti−1) − size(ti−1))

)︁
= C · num(ti−1) + C ·

(︁
2 · (num(ti−1) + 1) − 2 · num(ti−1) − (2 · num(ti−1) − num(ti−1))

)︁
= C · num(ti−1) + C ·

(︁
2 − num(ti−1)

)︁
= 2C

whereC ·num(ti−1) denotes an upper bound for the cost for copying the num(ti−1) elements
from ti−1 to ti.

In both cases, we thus have ĉi = O(1), i.e., we can expect to perform Insert in constant time.
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Chapter 7.

Limits of Feasibility

In Chapter 5 we have investigated different classes of computational complexity; in this chapter
we will focus on the difference between the class P of those problems whose computations are
considered as feasible, because they can be performed in polynomial time by a deterministic
Turing machine, and the complementary class of those problems that are considered as infeasible.
We start with a discussion on how the complexity of Turing machine computations is related
to that of other Turing complete computational models. Then we elaborate the relationship
of different classes of problems whose solutions have the same complexity; as it turns out, an
important open problem is whether P = NP , i.e., whether the application of nondeterminism
is able to speedup a computation from non-polynomial to polynomial time complexity or not.
The core answer to this question lies with the important class of NP-complete problems which
we will investigate in some more detail.

7.1. Complexity Relationships Among Models

All Turing complete computational models have the same expressive power in that they can
compute the same class of functions. However, the “same” computations performed in different
models may take a different amount of time respectively space, because

1. each model may have a different notion of time and space consumption (the functions t(i)

and s(i) in Definition 44);

2. the encoding of an input in each model may have different size (the function |i | in
Definition 44).

Consequently, the “same” computation may, when it is performed in different computational
models, even lie in different complexity classes.
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Example 34 Take the computation, for given n ∈ N, of the value r := 22n by the algorithm

r := 2; i := 0
while i < n do

r := r ∗ r; i := i + 1

We are going to investigate the complexity of this algorithm on a random access machine under
different cost models.

In a random access machine, every cell of the input tape and every register may hold a natural
number. For above algorithm the machine needs a constant number of registers, thus

S1(n) = O(1)

The algorithm requires n iterations; since the computation of i := i + 1 takes a single instruction,
the time of each iteration is asymptotically dominated by the multiplication r ∗ r .
For determining the time complexity of multiplication, let us first assume a variant of a

random access machine which supports an instruction MUL (r)whichmultiplies the accumulator
with the content of register r. Since we now need only a single instruction to perform the
multiplication, one iteration of the loop takes time O(1). Since we have n iterations, the time
complexity T1(n) of the algorithm in this variant of the random access machine model is

T1(n) = Θ(n)

If we return to our original model of a random access machine which only has the arithmetic
instruction ADD #c that increments the accumulator by constant c, then the computation of n+ n

takes time Θ(n) and the computation of n ∗ n takes time Θ(n2). In our algorithm, the most
time-consuming multiplication is the computation of 22n−1

∗ 22n−1 which takes time Θ(22n). We
can thus determine for the time complexity T2(n) of the algorithm the following bounds:

T2(n) = Ω(22n)

T2(n) = O(n · 22n)

Since T1 and T2 thus fall into widely different complexity classes, we might be inclined to
reconsider how we measure time and space on a random access machine, i.e., what cost model
we use. The first model imposed extremely high demands by requiring the multiplication of
arbitrarily big numbers in a single step. The second model only had extremely low demand by
requiring only the increment by a constant in a single step. Both cost models thus represent the
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opposite ends of a spectrum both of which seem a bit “unrealistic”. We are thus interested in
determining what a “realistic” cost model for a random access machine might be.
First of all, we should find a realistic representation of number n; up to now we considered
|n| := 1, i.e., an arbitrarily large number can be represented in a single tape cell respectively
memory register. In reality, we use for the representation of natural numbers a positional
number system with some base b; in such a system, a number n > 0 can be represented
by l(n) := 1 + ⌊logb n⌋ = Θ(log n) digits; since b is constant, a random access machine can
perform arithmetic on individual digits in time O(1). For measuring the space complexity of the
computation, it is thus realistic to measure the digit length of every number stored in every cell of
the input tape respectively in every register of the memory, i.e. |n| = Θ(log n). Furthermore, in
a positional system, the addition n + n can be performed in time Θ(log n) and the multiplication
n ∗ n in time O((log n)2) (a tight lower bound for the time complexity of multiplication is
not known, it is clearly in Ω(log n) and conjectured to be in Ω((log n) · (log log n))), thus it is
realistic to assign to every addition and every multiplication these costs.

We will now apply this “realistic” cost criterion to our computation. Since we have to store a
fixed amount of numbers, of which the largest is 22n , we get the “realistic” space complexity

S(n) = Θ(log 22n) = Θ(2n)

The sequence of multiplication takes time

O((log 2)2 + (log 4)2 + . . . + (log 22n−1
)2) = O(12 + 22 + . . . + (2n−1)2) = O

(︁n−1∑︂
i=0
(2i)2

)︁
It can be shown that

n−1∑︂
i=0
(2i)2 =

4n − 1
3

We thus get the “realistic” time complexity

T(n) = O(4n)

In comparison with the “unrealistic” models considered before we thus have

S1(n) = o(S(n))

T1(n) = o(T(n)) = o(T2(n))

i.e., we need more space; the required time is between the previously established bounds. □
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The “realistic” cost model presented in the example above is formalized as follows.

Definition 48 (Logarithmic Cost Model of RAM) The logarithmic cost modellogarithmisches
Kostenmodell

of a random
access machine assigns to every number n stored on the input tape or in a register the size

|n| = Θ(log n)

The space complexity of a computation is the maximum, at any time during the computation,
of the sums

∑︁
n |n| of the sizes of all numbers stored in the random access machine. The time

complexity of a computation is the sums of the execution times of all instructions executed by
the machine, where every instruction which involves a number n on a tape or in a register is
assigned time |n| and every other instruction is assigned time 1.

We know already by Theorem 12 that every random access machine can be simulated by a
Turing machine and vice versa. By careful analysis of the simulation, one can establish the
following result (which we state without proof).

Theorem 50 (Complexity of Random Access Machine versus Turing Machine)

• Every computation of a Turing machine with time O(T(n)) can be simulated by a random
access machine with time O(T(n) · logT(n)) (under the logarithmic cost model).

• Every computation of a random accessmachine with timeO(T(n)) (under the logarithmic
cost model) can be simulated by a Turing machine with time O(T(n)4).

Under the logarithmic cost model, the execution times of random access machines and Turing
machines thus only differ by a polynomial transformation, i.e., if the time complexity of a
computation in one model is polynomial, it remains also polynomial in the other model; in
particular, by the simulation we do not cross the boundary between polynomial and exponential
complexity (this would not be true, if we would use the cost model of the derivation of time
T1(n) = O(n) in the example above; a Turing machines needs already Ω(2n) time to write the
result 22n to the output tape).
Similar kinds of analysis have been performed for other Turing complete computational

models. It has turned out that for a “realistic” cost assumption, the simulation of such a
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model by a Turing machine and vice versa does not cost more than a polynomial slowdown,
i.e, if a computation is polynomial in one model it also remains polynomial in the other one;
furthermore, the simulation does not cost more than constant overhead in space. This has led to
the following thesis that was formulated by Cees F. Slot and Peter van Emde Boas in 1984.

Thesis 2 (Invariance Thesis) “Reasonable” machines (i.e., Turing complete computational
models) can simulate each other within a polynomially bounded overhead in time and a
constant-factor overhead in space.

Of course, since the notion “reasonable” is an intuitive one, this is only an unprovable thesis,
not a provable theorem. Furthermore, it is possible that quantum computation disproves the
thesis (quantum algorithms that can solve some problems in polynomial time for which no
classical polynomial time algorithms are known). Nevertheless, there seems to be some kind of
fundamental border between computations that take polynomial time and computations that take
more (in particular exponential) time. The relationship between these classes of computations
will be investigated in the following sections.

7.2. Problem Complexity

We are now going to investigate classes of problems whose solution by a Turing machine have
same asymptotic complexity. In this context, we will also consider nondeterministic Turing
machines which in each step can “fork” their computations into multiple “branches” that are
simultaneously investigated. Therefore we need an appropriate notion of resource consumption
for nondeterministic Turing machines.

Definition 49 (Resource Consumption of Non-Deterministic Turing Machine) The time
consumption t(i) respectively space consumption s(i) of a nondeterministic Turing machine M

is the maximum number of configurations respectively maximum distance from the beginning
of the tape that any run of M for input i has.

This notion of resource consumption is based on the intuition that is visualized in Figure 7.1,
namely that a nondeterministic Turing machine can “simultaneously” investigate multiple
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reject reject

rejectaccept/reject

accept

 

t(i)

Figure 7.1.: Deterministic versus Nondeterministic Time Consumption

branches. However, one may then question the decision to consider the maximum time of all
branches rather than the minimum time of the accepting ones. The rationale for our definition
is that we are less interested in the execution times of an individual non-deterministic Turing
machine but more in the execution times of very large classes of Turing machines such as the
class NP of non-deterministic Turing machines that run in at most polynomial time. One can
show that this class is the same under either of the two possibilities to define the execution time
of a nondeterministic Turing machine. Since the difference does therefore not really matter and
the first definition is easier to handle (because it just depends on upper bounds for all branches),
it is the one that is preferred.
Based on the definitions of t(i) respectively s(i), the worst-case space complexity T(n) and

the worst-case space complexity S(n) of a nondeterministic Turing machine are defined exactly
as in Definition 44 for a classical Turing machine.

Example 35 Wewant to solve the problem ofHamiltonian Cycles: given an undirected graph G

with n nodes, does there exist a cyclic path in G that visits every node exactly once?
A nondeterministic Turing machine M can solve this problem in the following way:

1. M writes non-deterministically n numbers in the range 1 . . . n to the tape.

2. M checks whether the n numbers represent a Hamiltonian cycle in G.

We assume that G is represented on the input tape of M by a sequence of n2 bits that describe,
for every combination of node i and node j, whether i is connected to j. For every input of
length b, we thus have n = O(

√
b) and consequently n = O(b), i.e., the number of nodes n in G

is asymptotically bounded by the length b of the input of M . In the following analysis, we will
thus simply use n rather than b as the size of the input.
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Since number n can be written in time O(n), the first step can be performed in time O(n2). In
the second step, for every number i on the tape, M checks whether i has not yet appeared on
the tape; if yes, M checks whether i and its predecessor on the tape represent adjacent (i.e.,
neighboring) nodes in the graph. If all numbers written to the tape pass this check and if also the
nodes represented by the last number and by the first number are adjacent, then M accepts G.

The second step can be performed by a random access machine M′ in polynomial time:

• M′ can check whether a new number i has already appeared by checking the value of
register R[c + i] (for some appropriate offset c); if its value is 0, the number has not yet
occurred; the value is then set to 1 before the check of the next number. In the logarithmic
cost model, the time for the computation of c + i is O(log n) as is also the time for the
register access; the total time complexity for all checks is thus O(n · log n).

• M′ can check whether two graph nodes are adjacent by first translating the representation
of the at most n2 edges of G on the input tape into a n × n adjacency matrix stored in
the memory and then performing at most n matrix lookups. The total costs are thus
dominated by the matrix construction which, if node i is adjacent to node j, sets the value
of register R[d + i · j] to 1 (for some appropriate offset d). The time for this operation is
dominated by the computation of the product i · j which can be performed in time O(n2).
The total time complexity for the matrix construction is thus in O(n4).

By Theorem 50, then also M can perform this step in polynomial time. Thus M can solve the
whole problem in polynomial time.

On the other side, a deterministic Turing machine has to implement a search for possible
cycles in the graph; the fastest solutions known have exponential time complexity. □

Above example demonstrates that nondeterministic Turing machines can solve a problem by
first guessing a possible solution and then checking whether the guess is correct. If both the
guessing and the checking phase can be performed in polynomial time, then the problem can be
solved in polynomial time, because all possible guesses can be enumerated and simultaneously
investigated in different execution branches. On the other side, a deterministic Turing machine
can solve a problem only by constructing a solution, which is intuitively more difficult than
guessing and checking and thus also takes more time. In the following, we will investigate the
relationship between these two approaches in more detail.
We start with a definition which allows us to categorize problems into classes according to

the resources needed for their solution.
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Definition 50 (Problem Complexity) A decidable problem P has (deterministic/nondeter-
ministic) time complexity

Zeitkomplexität
T(n) respectively (deterministic/nondeterministic) space complexityRaumkomplexität

S(n) if there exists a (deterministic/nondeterministic) Turing machine M that decides P, such
that, for every input w with length n = |w |, M terminates in time O(T(n)) respectively uses
space O(S(n)).

We define DTIME(T(n)), NTIME(T(n)), DSPACE(T(n)), and NSPACE(T(n))

DTIME(T(n)) := {P | P has deterministic time complexity T(n)}

NTIME(T(n)) := {P | P has nondeterministic time complexity T(n)}

DSPACE(T(n)) := {P | P has deterministic space complexity T(n)}

NSPACE(T(n)) := {P | P has nondeterministic space complexity T(n)}

as the classes of all decidable problems with (deterministic/nondeterministic) time complexity
T(n) respectively (deterministic/ nondeterministic) space complexity P(n).

Based on this definition, we can construct a number of important complexity classes (there
are many more classes, the Complexity Zoo1 currently lists almost 500 of them).

Definition 51 (Problem Complexity Classes) We define P , NP , PSPACE, and NSPACE

P :=
⋃︂
i∈N

DTIME(ni)

NP :=
⋃︂
i∈N

NTIME(ni)

PSPACE :=
⋃︂
i∈N

DSPACE(ni)

NSPACE :=
⋃︂
i∈N

NSPACE(ni)

as the classes of all decidable problems that can be solved by a (deterministic/nondeterministic)
Turing machine in polynomial time/space complexity.

Furthermore, we define EXPTIME and NEXPTIME

EXPTIME :=
⋃︂
i∈N

DTIME(2ni )

1https://complexityzoo.uwaterloo.ca/Complexity_Zoo
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NEXPTIME :=
⋃︂
i∈N

NTIME(2ni )

as the classes of all decidable problems that can be solved by a (deterministic/nondeterministic)
Turing machine with exponential time complexity (where the exponent can be a polynomial
ni).

The fundamental role of P is illustrated by the following thesis which was formulated by
Alan Cobham in 1965.

Thesis 3 (Cobham’s Thesis) A problem is tractable, i.e., can be feasibly decided, if it is in
complexity class P .

If we accept this thesis and also the invariance thesis, the class of tractable problems is the
same for every computational model, i.e., “feasibly computable” means “feasibly computable
on any computational device”.
The relationship between P and NP is illustrated by the following notion and theorem.

Definition 52 (Verifier) A verifier PrüferV for a language L is a Turing machine such that

L = {w | V accepts ⟨w, c⟩ for some word c}

i.e., for every word in L, there is some extra input c which we call the certificate Zertifikat, such that V

accepts the pair ⟨w, c⟩. A polynomial time verifier Polynomialzeit-Prüferis a verifier that runs in polynomial time in
the length of w.

The role of the certificate c is to “drive” the execution of V in the decision whether to accept
input w; this point is illustrated in the proof of the following theorem.

Theorem 51 (Polynomial Time Verification) A language L is decided by some nondeter-
ministic Turing machine in polynomial time (i.e., L ∈ NP) if and only if there exists a
polynomial time verifier for L.
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Proof We sketch the proof of both directions of the theorem.

⇒ Let L be decided by a nondeterministic Turing machine M in polynomial time. We
can construct a polynomial time verifier V for L as follows: V takes input ⟨w, c⟩
where c denotes a sequence of choices to be made at each step for the execution of
a nondeterministic Turing machine. V simulates the execution of M on that branch
described by c. If w is in L, then there exists a branch of M that accepts w in polynomial
time and a corresponding certificate c; thus V accepts ⟨w, c⟩ in polynomial time.

⇐ Let V be the polynomial time verifier for V i.e., V terminates in polynomial time T(n)

for an input w of length n. We can construct a non-deterministic Turing machine M that
decides L in polynomial time as follows: on input w, M non-deterministically generates
a certificate c of length T(n) (i.e., every possible certificate is generated in some branch
of the non-deterministic execution) and then simulates the execution of V on ⟨w, c⟩. If
there is some c such that V accepts ⟨w, c⟩ in polynomial time, then also M accepts w in
polynomial time. □

Above theorem formalizes the principle that every problem solution that can be deterministically
verified in polynomial time can be also non-determinstically constructed in polynomial time
and vice versa.
There are various relationships of the complexity classes defined above that immediately

follow from their definition.

Theorem 52 (Some Relationships Between Complexity Classes)

1. P ⊆ NP

2. EXPTIME ⊆ NEXPTIME

3. P ⊆ PSPACE

4. NP ⊆ NSPACE

5. PSPACE ⊆ EXPTIME

Proof Parts 1 and 2 immediately follow from the fact that every deterministic Turing machine
is a special case of a nondeterministic Turing machine.
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P

NEXPTIME

PSPACE = NSPACE

EXPTIME

NP

Figure 7.2.: Problem Complexity Classes

Parts 3 and 4 follow from the fact that every Turing machine, in order to consume one unit of
space, has to write one cell to the tape, i.e., it consumes one unit of time. A Turing machines
therefore cannot consume more memory than time.
Part 5 follows from the fact that, if the space of a Turing machine is constrained by a

polynomial bound O(ni), then the number of configurations of the Turing machine is constrained
by an exponential bound O(2ni ); consequently the Turing machine cannot make more than
exponentially many steps until it halts. □

However, there is also a non-trivial relationship that could be proved by Walter Savitch only
in 1970 (we state the theorem without proof).

Theorem 53 (Savitch’s Theorem) Every problem that is decidable by a nondeterministic
Turing machine with space O(S(n)) is also decidable by a deterministic Turing machine with
space O(S(n)2):

NSPACE(S(n)) ⊆ DSPACE(S(n)2)

Consequently, NSPACE = PSPACE.

Combining the results of Theorem 52 and Theorem 53, we get the following core sequence
of relationships illustrated in Figure 7.2:

P ⊆ NP ⊆ PSPACE = NSPACE ⊆ EXPTIME ⊆ NEXPTIME
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Now, the sad but true fact is that (almost) nothing else is known about the relationship of these
classes. To be fair, it has been proved that

• P ≠ EXPTIME and

• NP ≠ NEXPTIME

i.e., there exist problems that can be decided not faster than with exponential complexity,
both deterministically and nondeterministically. Therefore at least one of the first three subset
relationships and at least one of the last three subset relationships must be a proper one, but it is
unknown which one it is.

In particular, it is not known whether

P ?
= NP

i.e., whether it is indeed easier to guess and check a solution to a problem than to construct the
solution (i.e., P ⊂ NP) or whether both are actually equally complex (i.e., P = NP). While
virtually all theoretical computer scientists believe P ⊂ NP , no one has ever come up with a
correct proof, so the bets are still open. This is arguably the most important unsolved problem
in theoretical computer science; it is one of the Millennium Prize Problems for whose first
correct solution the Clay Mathematics Institute will pay US$1,000,000.

7.3. NP-Complete Problems

In order to show P ≠ NP , it suffices to find a single problem that is inNP but not in P , i.e., a
single problem that can be solved in polynomial time only by a nondeterministic Turing machine.
The search for such a problem apparently focuses on the “hardest” (most time-consuming)
problems in NP . Therefore we need some way to compare problems according to how “hard”
they can be solved.

Definition 53 (Polynomial-Time-Reducibility) A decision problem P ⊆ Σ∗ is polynomial
time-reduciblePolynom-Zeit-

reduzierbar
to a decision problem P′ ⊆ Γ∗ (written P ≤P P′) if there is a function

f : Σ∗ → Γ∗ such that for all w ∈ Σ∗

P(w) ⇔ P′( f (w))

and f can be computed by a deterministic Turing machine in polynomial time.
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P

Figure 7.3.: Polynomial-Time-Reducibility

Intuitively, if P ≤P P′, then a decision of P is “essentially” (up to a polynomial transformation)
not more time-consuming than a decision of P′.

We then have the following result.

Theorem 54 (Polynomial-Time-Reducibility and P/NP) For all decision problems P and
P′ with P ≤P P′, we have

P′ ∈ P ⇒ P ∈ P

P′ ∈ NP ⇒ P ∈ NP

In other words, if P is polynomial time-reducible to P′ and P′ can be decided in polynomial
time by a (deterministic/nondeterministic) Turing machine, then also P can be decided in
polynomial time by a (deterministic/nondeterministic) Turing machine.

Proof We only prove P′ ∈ P ⇒ P ∈ P (the proof of P′ ∈ NP ⇒ P ∈ NP is completely
analogous). We assume P ≤P P′ and P′ ∈ P and show P ∈ P (see also Figure 7.3).
Since P ≤P P′, there exists a function f such that, for every input w, P(w) ⇔ P′( f (w))

and f (w) can be computed in time p1(n) for some polynomial p1 and n := |w |. Since f (w) can
be computed in time p1(n), we have also | f (w)| ≤ p1(n), because p1(n) includes the time that the
Turing machine needs to write f (w) to the tape and this time cannot be smaller than the length
of f (w). Furthermore, since P′ ∈ P , we can decide P′( f (w)) in time p2(| f (w)|) ≤ p2(p1(n))

for some polynomial p2.
The total time for the decision of P(w) is thus bound by the polynomial p1(n) + p2(p1(n))

(the sum of the times for translating w to f (w) and for deciding P′( f (w)), thus P ∈ P . □

We now come to the main definition of this section.
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NPC

NP

Figure 7.4.: NP-Completeness

Definition 54 (NP-Completeness) A problem P′ in complexity class NP is NP-completeNP-vollständig ,
if for every problem P ∈ NP we have P ≤P P′. Furthermore, we define

NPC := {P′ ∈ NP | P′ is NP-complete}

as the class of all NP-complete problems.

Every problem in NP can thus be reduced in polynomial time to any problem in NPC (see
Figure 7.4). The relevance of this class is illustrated by the following theorem.

Theorem 55 (NPC and P = NP) If NPC ∩ P = ∅, then P ≠ NP , and vice versa.
In other words, if noNP-complete problem can be deterministically decided in polynomial

time, then P ≠ NP , and vice versa.

Proof To show the ⇒ direction, we assume P = NP and show NPC ∩ P ≠ ∅. Since
NPC ⊆ NP = P , we haveNPC = NPC ∩ P . SinceNPC ≠ ∅ (see Theorem 57 below), we
also have NPC ∩ P ≠ ∅.

To show the⇐ direction, we assumeNPC∩P ≠ ∅ and showP = NP . SinceNPC∩P ≠ ∅,
there exists a problem P′ such that P′ ∈ NPC and also P′ ∈ P . To show P = NP , it suffices
to show NP ⊆ P . We thus take an arbitrary problem P ∈ NP and show that P ∈ P .
Since P′ ∈ NPC and P ∈ NP , by the definition of NPC, P ≤P P′. Since P ≤P P′ and

P′ ∈ P , by Theorem 54 we know P ∈ P . □
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NP

NPC

P

P = NP

NPC

Figure 7.5.: P versus NP versus NPC

A proof ofP ≠ NP thus may focus on proving thatNPC∩P = ∅, i.e., that noNP-complete
problem can be deterministically decided in polynomial time.
Furthermore, we have the following result:

Theorem 56 (NPC versus P) If NPC ∩ P ≠ ∅, then NPC ⊆ P .
In other words, if some NP-complete problem can be deterministically decided in

polynomial time, then all such problems can be deterministically decided in polynomial time.

Proof If NPC ∩ P ≠ ∅, then there exists some problem P′ such that P′ ∈ NPC and P′ ∈ P .
To showNPC ⊆ P , we take an arbitrary problem P ∈ NPC and show P ∈ P . Since P ∈ NPC
and NPC ⊆ NP , we have P ≤P P′. Since P′ ∈ P , by Theorem 54, also P ∈ P . □

According to Theorems 55 and 56, we have two possibilities (see Figure 7.5):

1. eitherNPC and P are disjoint subsets ofNP ; then P ≠ NP (and, as can be also shown,
NPC ≠ NP);

2. or NPC and P are not disjoint; then NPC ⊆ P = NP (there exists a different notion
of reducibility than the one we have introduced in Definition 53, for which then even
NPC = P = NP holds).

The quest to answer P ?
= NP can be thus reduced to the quest whether there exists some

P ∈ NPC such that also P ∈ P , i.e., whether there exists some NP-complete problem that
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can be decided in polynomial time. Of course, the answer would be immediately “no” if there
did not exist any NP-complete problems at all. However, as shown below, this is not the case.

Definition 55 (Satisfiability) Let a propositional formulaaussagenlogische
Formel

F be an expression formed accord-
ing to the following grammar:

F ::= xi | ¬F | F ∧ F | F ∨ F

i.e., it is formed from boolean variables x0, x1, . . . by the application of the logical connectives
not, and, and or.

A propositional formula F is satisfiableerfüllbar if there exists an assignment of the variables xi in
F to truth values which makes F true. The satisfiability problemErfüllbarkeitsproblem is the problem to decide
whether a propositional formula F is satisfiable.

Example 36 The propositional formula

(x1 ∨ x2) ∧ (¬x2 ∨ x1)

is satisfiable: we can construct the assignment x1 := T, x2 := F and evaluate

(T ∨ F) ∧ (¬F ∨ T)

to T (true). On the other hand, the propositional formula

x1 ∧ ¬x2 ∧ (¬x1 ∨ x2)

is not satisfiable. □

The relevance of the satisfiability problem is illustrated by the following theorem which was
proved by Stephen Cook in 1971:

Theorem 57 (Cook’s Theorem)Satz von Cook The satisfiability problem is NP-complete, i.e., it is an
element of problem class NPC.
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The satisfiability problem was the first problem that was be proved to be NP-complete
(we omit the proof); in the meantime also many other problems were shown to be of this
kind (typically, by proving that the satisfiability problem is polynomial time-reducible to these
problems), for instance:

Hamiltonian Path The (already discussed) problem to determine whether there exists a cyclic
path in a graph that visits every node exactly once.

Traveling Salesman (Decision Version) The problem to decide whether there exists in a
weighted graph a cyclic path of length less than a given maximum.

Graph Coloring The problem to decide, for a given graph and number of colors, whether the
nodes of the graph can be colored such that no adjacent nodes get the same color.

Knapsack The problem to decide, given a collection of items with a certain “weight” and
“value”, which set of items is the most valuable one among those that can be packed into
a “knapsack” with a certain weight limit.

Integer Programming Given an integer matrix A and vectors b, c, to determine, among all
vectors x with A · x ≤ b, the one that maximizes the value c · x.

Currently more than 3000 problems from widely different mathematical areas are known to
be NP-complete. Since each of these problems is polynomial time-reducible to any other of
these problems, an algorithm for solving one problem can be applied (after appropriate problem
reduction) to solve all other problems. This has immediate practical consequences: even if the
satisfiability problem is NP-complete, various SAT-solvers have been developed that solve this
problem by heuristic methods efficiently for large classes of formulas; these solvers can then be
applied to solve problems in many different areas, e.g., integrated circuit design, hardware and
software verification, theorem proving, planning, scheduling, and optimization.

7.4. Complements of Problems

We will finally illuminate the quest for P ?
= NP from another angle, that of co-problems (i.e,

complements of problems). We start with some simple results.

Theorem 58 (co-Problem Reducability) For all decision problems P and P′ with P ≤P P′,
we have

P ≤P P′
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i.e., if P is polynomial time-reducible to P′, than also the co-problem P is polynomial
time-reducible to the co-problem P′,

Proof We assume P ≤P P′ and show P ≤P P′. Thus we have to find a function f that can be
computed by a deterministic Turing machine in polynomial time such that P(w) ⇔ P′( f (w))

which is equivalent to P(w) ⇔ P′( f (w)). From P ≤P P′, we have exactly such a function f

and are therefore done. □

Theorem 59 (P and Co-Problems) A problem P is in P if and only if its co-problem P is
in P:

P = {P |P ∈ P}

In other words, it can be decided by a deterministic Turing machine in polynomial time
whether some input has property P if and only if it can be decided by a deterministic Turing
machine in polynomial time whether some input does not have property P.

Proof If a deterministic Turing machine can decide in polynomial time P, by reverting its
answer it can decide in polynomial time P, and vice versa. □

We now come to the core definition of this section.

Definition 56 (co-NP) co-NP is the class of all problems whose complements are in NP:

co-NP := {P | P ∈ NP}

In other words, for every P ∈ co-NP a nondeterministic Turing machine can decide in
polynomial time whether some input is not in P.

In order to understand why we introduce the class co-NP , it is important to note that, it is not
self-evident, that if a nondeterministic Turing machine M decides a problem P in polynomial
time, that also the complement P can be decided in polynomial time. The reason is that M

accepts some input w if there is at least one accepting run with answer “yes”, i.e., there may be
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also runs of M with answer “no” that do not accept w. If we construct a Turing machine M

that just reverts the “yes” and “no” answers from M, then also M may accept w, but then the
language of M is not the complement P. In order to really decide P, the Turing machine M

may accept an input w only, if M does for input w not have any run with a “yes” answer; since
the number of runs of M may be exponential in the length of w, it is not clear how this can be
decided by any nondeterministic Turing machine in polynomial time.
However, we have the following result:

Theorem 60 (P versus NP and co-NP)

P ⊆ NP ∩ co-NP

In other words, for every problem in P , both the problem and its complement can be decided
by a nondeterministic Turing machine in polynomial time.

Proof We take arbitrary P ∈ P and show P ∈ NP ∩ co-NP . Since P ∈ P , also P ∈ NP . It
thus suffices to show P ∈ co-NP . By Theorem 59, we know P ∈ P . Since P ⊆ NP , we know
P ∈ NP and thus P ∈ co-NP . □

The relevance of co-NP to the question P ?
= NP is illustrated by the following theorem:

Theorem 61 (NP versus co-NP) If NP ≠ co-NP , then P ≠ NP .

Proof We assume NP ≠ co-NP and show P ≠ NP . We define the property C(S) of a class
of problems S as

C(S) :⇔ S = {P | P ∈ S}

FromNP ≠ co-NP , we know ¬C(NP). From Theorem 59, we knowC(P). ThusP ≠ NP .□

To show P ≠ NP , it thus suffices to show NP ≠ co-NP .
By Theorems 60 and 61, we thus have the following two possibilities for the relationships

between the classes (see Figure 7.6):

1. either NP ≠ co-NP and P ⊆ NP ∩ co-NP and P ≠ NP ,



216 Chapter 7. Limits of Feasibility
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Figure 7.6.: NP versus co-NP

2. or NP = co-NP and P ⊆ NP = co-NP (P = NP may or may not hold).

Since also co-NP ⊆ PSPACE can be shown, all classes are contained in PSPACE.
Furthermore, we can relate the question NP ?

= co-NP to the class NPC.

Theorem 62 (co-NP versus NPC)

NP ≠ co-NP ⇔ ∀P ∈ NPC : P ∉ NP

In other words, NP differs from co-NP , if and only if the complements of all NP-complete
problems cannot be decided by a nondeterministic Turing machine in polynomial time.

Proof We show both directions of the proof.

⇐ We assumeNP = co-NP and show that there exists some P ∈ NPC with P ∈ NP . Take
arbitrary P ∈ NPC. Since NPC ⊆ NP and NP = co-NP , also P ∈ co-NP and thus
P ∈ NP .

⇒ We assume, for some P ∈ NPC, P ∈ NP , and show NP = co-NP .

To show NP ⊆ co-NP , we take arbitrary Q ∈ NP and show Q ∈ co-NP . Since
P ∈ NPC and Q ∈ NP , we have Q ≤P P and thus by Theorem 58 also Q ≤P P. Since
P ∈ NP , by Theorem 54 we also have Q ∈ NP and thus Q ∈ co-NP .
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Figure 7.7.: NP versus co-NP (Conjecture)

To show co-NP ⊆ NP , we take arbitrary Q ∈ co-NP and show Q ∈ NP . Since
Q ∈ co-NP , we have Q ∈ NP . Since P ∈ NPC and Q ∈ NP , we have Q ≤P P and
thus by Theorem 58 also Q ≤P P. Since P ∈ NP , by Theorem 54 we also have Q ∈ NP .
□

By Theorem 62, we can refine our knowledge about the first possibility shown in Figure 7.6
about the relationships between the various complexity classes (see Figure 7.7 where co-NPC
denotes the class of the complements of all problems inNPC): NP ≠ co-NP holds, if and only
ifP ⊆ NP∩co-NP (thusP ≠ NP) andNPC ⊆ NP\co-NP and co-NPC ⊆ co-NP\NP .
This is the most likely situation as conjectured by most researchers.

On the other hand, if there existed some problem P ∈ NPC such that also P ∈ NP , i.e., an
NP-complete problem whose complement is decidable by a nondeterministic Turing machine
in polynomial time, we would have NPC = co-NPC and consequently NP = co-NP such
that P = NP might hold. However, no such problem could be found yet, which may be
considered as evidence for P ≠ NP (actually, for no P ∈ NPC it is even known whether
P ∈ NP or not).
Conversely, if for a problem P both P ∈ NP and P ∈ NP can be shown, this may be

considered as evidence for P ∉ NPC, i.e., that the problem is not NP-complete (because
otherwise we would haveNPC = co-NPC and thusP = NP might hold). This is e.g. the case
for the problem of integer factorization, i.e., the problem of deciding whether a given integer
can be decomposed into non-trivial factors. This question is also of practical relevance, since
the security of public-key cryptography depends on the assumption that integer factorization is
a “hard” problem. However, since this problem might not be NP-complete, it might be not be
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PSPACE

NP
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Figure 7.8.: The Quantum Computing Class BQP (Conjecture)

hard enough, i.e., it might become eventually feasible to factorize large integers (the currently
best known deterministic algorithms fall into a complexity class between P and EXPTIME; it
is conjectured that the integer factorization problem is not in P).
These questions are also relevant to the emerging field of quantum computing. In 1994

Peter Shor discovered an algorithm for quantum computers that solves the integer factorization
problem in polynomial time, thus quantum computers might in some future break public-key
cryptography. Indeed quantum algorithms have been devised that solve various problems
asymptotically faster than the fastest known classical algorithms. For the class BQP of bounded
error quantum polynomial time (the class of problems solvable by a quantum computer in
polynomial time with limited error probability), it is currently known that

P ⊆ BQP ⊆ PSPACE

However, up to now no quantum algorithm is known that solves any NP-complete problem in
polynomial time. In fact, most researchers believe that the class NPC and the class BQP are
disjoint and that BQP and NP are incomparable. This conjecture is depicted in Figure 7.8.
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