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Complexity of Computations

We want to determine the resource consumption of computations.
Determine the amount of resources consumed by a computation:

Time
Space (memory)

Determine the resource consumption for classes of inputs:
The maximum complexity for all inputs of the class.
The average complexity for these inputs.

We are going to make these notions precise.
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Resource Consumption

Turing machine M with input alphabet Σ that halts for every input.
Input set I = Σ∗:

The set of input words.
Input size |.| : I → N

|i |: the length of input i .
Time consumption t : I → N:

t(i): the number of moves that M makes for input i until it halts.
Space consumption s : I → N:

s(i): the largest distance from the beginning of the tape that the tape
head of M reaches for input i until M halts.

For any computational model, I, |i |, t(i) and s(i) may be defined.
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Worst-case Complexity

Computational model with I, |i |, t(i) and s(i) defined.

Worst-case time complexity T : N→ N

T (n) := max{t(i) | i ∈ I ∧|i |= n}

Worst-case space complexity S : N→ N

S(n) := max{s(i) | i ∈ I ∧|i |= n}

The maximum amount of resources consumed for any input of size n by
computations in a given model.
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Average Complexity

Input distribution Input:
Family of (discrete) random variables Inputn that describe the
distribution of inputs of each size n in I
determined by probability function pn

I : I → [0,1]
pn

I (i): probability that, among all inputs of size n, input i occurs.

Average time/space complexity T : N→ N and S : N→ N

T (n) := E [Timen]
S(n) := E [Spacen]

Expected values of random variables Timen and Spacen
determined by probability functions pn

T : N→ [0,1] and pn
S : N→ [0,1]

pn
T (t)/pn

S(s): probabilities that time t/space s is consumed for
input of size n assuming that inputs of size n are distributed
according to Inputn.

The average amount of resources consumed for inputs of size n (for a
given distribution of inputs) by computations in a given model.
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Example

Given non-empty integer array a of size n > 0, find minimum index j such
that a[j] = max{a[i ] | 0≤ i < n}.

j := 0; m := a[j]; i := 1
while i < length(a)
if a[i ] > m then

j := i ; m := a[j]
i := i +1

1
n
n−1
N ≤ n−1
n−1

Time: the number of lines executed.

T (n) = 1+ n + (n−1) + (n−1) + (n−1) = 4n−2

Space: the number of variables used (including elements of a).

S(n) = S(n) = n +3

We are going to analyze the average time complexity T (n).
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Average Time Complexity

Assume a holds n distinct values {1, . . . ,n}.

Assume all n! permutations of a are equally probable.
pn

I (i) := 1/n!

Quantity N becomes random variable.
The number of times the corresponding line of the algorithm is
executed for each permutation of a.

We are interested in the expected value E [N].

Average time complexity T (n):
T (n) = 1+ n + (n−1) + E [N] + (n−1) = 3n−1+ E [N]

Our goal is to determine the expected value E [N].
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Average Time Complexity (Contd)

pnk : probability that N = k for array of size n.

pn0 + pn1 + pn2 + . . .+ pn,n−1 =
n−1
∑

k=0
pnk = 1

pnk = 0 for k ≥ n:

pn0 + pn1 + pn2 + . . . = ∑
k

pnk = 1

E [N] is sum of products of probability of N = k and value k:

E [N] = pn0 ·0+ pn1 ·1+ pn2 ·2+ . . . = ∑
k

pnk ·k

Our goal is to determine the value of sum ∑k pnk ·k.
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Average Time Complexity (Contd)

We apply the technique of “generating functions”.
Gn(z): power series with coefficients pn0,pn1, . . ..

Gn(z) := pn0 · z0 + pn1 · z1 + pn2 · z2 + . . . = ∑
k

pnk · zk

G ′n(z): derivative of Gn(z)

G ′n(z) = pn0 ·0 · z−1 + pn1 ·1 · z0 + pn2 ·2 · z1 + . . . = ∑
k

pnk ·k · zk−1

G ′n(1):

G ′n(1) = pn0 ·0+ pn1 ·1+ pn2 ·2+ . . . = ∑
k

pnk ·k

Our goal is to determine G ′n(1).
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Average Time Complexity (Contd)

We derive a recurrence relation for G ′n(1).
n = 1: p10 = 1 and p1k = 0 for all k ≥ 1

G ′1(1) = 1 ·0+0 ·1+0 ·2+ . . . = 0

n > 1: if the loop has already found the maximum of the first n−1
array elements, the last iteration

will either increment N (if the last element is the largest one)
Probability 1/n.
N becomes k for n, if N was k−1 for n−1.

or will leave N as it is (if the last element is not the largest one).
Probability (n−1)/n.
N becomes k for n, if N was k for n−1.

pnk = 1
n ·pn−1,k−1 + n−1

n ·pn−1,k

Our goal is to determine G ′n(1) for n > 1.
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Average Time Complexity (Contd)

Determine Gn(z) from pnk :

pnk = 1
n ·pn−1,k−1 + n−1

n ·pn−1,k

Gn(z) = 1
n · z ·Gn−1(z) + n−1

n ·Gn−1(z) = z + n−1
n ·Gn−1(z)

Compute G ′n(z) by derivation of Gn(z):

G ′n(z) = 1
n ·Gn−1(z) + z + n−1

n ·G ′n−1(z)

Compute G ′n(1):

G ′n(1) = 1
n ·Gn−1(1) + z + n−1

n ·G ′n−1(1)

(∗)= 1
n ·1+ 1+ n−1

n ·G ′n−1(1)

= 1
n + G ′n−1(1)

(∗) Gn(1) = pn0 + pn1 + pn2 + . . . = ∑
k

pnk = 1
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Average Time Complexity (Contd)

Recurrence relation for G ′n(1):
G ′1(1) = 0

G ′n(1) = 1
n + G ′n−1(1), if n > 1

Solution of G ′n(1):
G ′n(1) = 1

2 + 1
3 + . . .+ 1

n =
n
∑

k=2

1
k = Hn−1

H(n) = ∑
n
k=1

1
k : n-th harmonic number

H(n) = lnn + γ + εn, γ ≈ 0.577, 0< εn < 1/(2n).

Solution of E [n]:
E [N] = lnn + γ + εn−1

Average time complexity T (n):
T (n) = 3n−1+ E [N] = 3n + lnn + εn + γ−2

Analysis of average complexity is more difficult than that of the worst-case.
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Complexity Approximations

Typically, we are only interested to capture the “overall behavior” of a
complexity function for large inputs.

Exact analysis:
T (n) = 3n + lnn + εn + γ−2

Approximation:
“T (n) is of the order 3n + lnn”

Coarser approximation:
“T (n) is of the order 3n”.

Even coarser approximation:
“T (n) is linear”

Formalism:
T (n) = O(n)

We are going to formalize such complexity approximations.
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The Landau Symbols

Take g : N→ R≥0 from the natural numbers to the non-negative reals.
O(g): the set of all functions f : N→ R≥0 such that

∃c ∈ R>0,N ∈N : ∀n ≥ N : f (n)≤ c ·g(n)

f (n) = O(g(n)): f ∈ O(g).
f is bounded from above by g .

Ω(g): the set of all functions f : N→ R≥0 such that
∃c ∈ R>0,N ∈N : ∀n ≥ N : f (n)≥ c ·g(n)

f (n) = Ω(g(n)): f ∈ Ω(g)..
f is bounded from below by g .

Θ(g): the set of all functions f : N→ R≥0 such that
f ∈O(g)∧ f ∈Ω(g)

f (n) = Θ(g(n)): f ∈Θ(g).
f is bounded from above and below by g .
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Understanding the Landau Symbols

f ∈ O(g): g represents a bound for f , from above and/or below.

f (n) = O(g(n))

N n

c ·g(n)

f (n)

g(n)

f (n) = Ω(g(n))

nN

g(n)

f (n)

c ·g(n)

f (n) = Θ(g(n))

nN2

c1 ·g(n)

f (n)
g(n)

c2 ·g(n)

N1

It suffices, if bound holds from a certain start value N on.
Finitely many exceptions are allowed.

It suffices, if the bound holds up to arbitrarily large constant c.
Bounds are independent of “measurement units”.

The Landau symbols talk about the asymptotic behavior of functions.
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Common Practice of the Landau Symbols

We need to understand the historically developed usage of the symbols.
Most wide spread: f (n) = O(g(n)).

Often used when actually f (n) = Θ(g(n)) is meant, i.e.,
when g(n) is not only a bound from above but also from below.

Abuse of notation: f (n) = O(g(n))
= does not denote equality but set inclusion.
Notation has nevertheless been universally adopted.

Ambiguous notation: f (n) = O(g(n))
Terms f (n) and g(n) with implicit free variable n.
To derive f ∈ O(g), we have to identify the free variable.

“Let c > 1. Then xc = O(cx ).”
 

“Let c > 1, f (x) := xc , and g(x) := cx . Then f ∈O(g).”

We stick to the common practice.
Wolfgang Schreiner http://www.risc.jku.at 18/32



Duality of O and Ω

Theorem: for all f ,g : N→ R≥0, we have
f (n) = O(g(n))⇔ g(n) = Ω(f (n))

Proof ⇒: We assume f (n) = O(g(n)) and show g(n) = Ω(f (n)). By the
definition of Ω, we have to find constants N1,c1 such that

∀n ≥ N1 : g(n)≥ c1 · f (n)
Since f (n) = O(g(n)), we have constants N2,c2 such that

∀n ≥ N2 : f (n)≤ c2 ·g(n)
Take N1 := N2 and c1 := 1/c2. Then we have, since N1 = N2, for all n ≥ N1,

c2 ·g(n)≥ f (n)
and therefore

g(n)≥ (1/c2) · f (n) = c1 · f (n).
Proof ⇐: analogously.

O and Ω are dual.
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Example

We prove 3n2 +5n +7 = O(n2).
We have to find constants c and N such that

∀n ≥ N : 3n2 +5n +7≤ cn2

For n ≥ 1, we have
3n2 +5n +7

1≤n
≤ 3n2 +5n +7n = 3n2 +12n

For n ≥ 12, we also have
3n2 +12n

12≤n
≤ 3n2 + n ·n = 4n2

We take N := 12 (= max{1,12}) and c := 4 and have for n ≥ N

3n2 +5n +7
1≤n
≤ 3n2 +5n +7n = 3n2 +12n

12≤n
≤ 3n2 +n ·n = 4n2 = cn2

Demonstrates general technique for asymptotics of polynomial functions.
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Asymptotic Laws

Theorem: for all a0, . . . ,am ∈ R, we have

amnm + . . .+ a2n2 + a1n + a0 = Θ(nm)

Proof: analogous to previous example.
Theorem: for all a,b ∈ R>0, we have

loga n = O(logb n)

Proof: take c := loga b and N := 0. Then we have for all n ≥ N
loga n = loga(blogb n) = (loga b) · (logb n) = c · (logb n)

Polynomials are dominated by the monomial with the highest exponent; in
logarithms, bases don’t matter.
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Asymptotic Laws

Theorem: for all a,b ∈ R with b > 1, we have
na = O(bn)

Proof: we know the Taylor series expansion

ex =
∞

∑
i=0

x i

i! = 1+ x + x2

2! + x3

3! + . . .

Since bn = (elnb)n = en lnb, we have for all n ∈ N

bn =
∞

∑
i=0

(n lnb)i

i! = 1+ (n lnb) + (n lnb)2

2! + (n lnb)3

3! + . . .

Since b > 1, we have lnb > 0; therefore we know

bn >
(n lnb)a

a! = (lnb)a

a! na

Consequently
na <

a!
(lnb)a bn

Thus we define N := 0 and c := a!/(lnb)a and are done.
Polynomials are dominated by all exponentials with base greater one.
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Asymptotic Laws

c · f (n) = O(f (n))

nm = O(nm′), for all m ≤m′

amnm + . . .+ a2n2 + a1n + a0 = Θ(nm)
loga n = O(logb n), for all a,b > 0

na = O(bn), for all a,b with b > 1
Reflexivity:

f = O(f ), f = Ω(f ), f = Θ(f ).
Symmetry:

If f = O(g), then g = Ω(f ).
If f = Ω(g), then g = O(f ).
If f = Θ(g), then g = Θ(f ).

Transitivity:
If f = O(g) and g = O(h), then f = O(h).
If f = Ω(g) and g = Ω(h), then f = Ω(h).
If f = Θ(g) and g = Θ(h), then f = Θ(h).

The proof of reflexivity/symmetry/transitivity is an easy exercise.
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Asymptotic Notation in Equations

A more general form of “syntactic abuse”.

Equation:
A[O1(f (n))] = B[O2(g(n))]

(Possibly multiple) occurrences of O1,O2 ∈ {O,Ω,Θ}.
Interpretation:

∀f ′ ∈ O1(f ) : ∃g ′ ∈ O2(g) :
∀n ∈ N : A[f ′(n)] = B[g ′(n)]

Every occurrence of O is replaced by a function in the corresponding
asymptotic complexity class.
Functions on the left side are universally quantified, functions on the
right side are existentially quantified.

A convenient shortcut to express asymptotic relationships.
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Example

Example:
Hn = lnn + γ + O

(1
n
)

There is a function f ∈ O(1/n) such that, for all n ∈ N,
Hn = lnn + γ + f (n).

Example:
2n2 +3n +1 = O(2n2) + O(n) = O(n2)

Equation 2n2 +3n +1 = O(2n2) + O(n)

∃f ∈ O(2n2),g ∈ O(n) :
∀n ∈ N : 2n2 +3n +1 = f (n) + g(n)

Equation O(2n2) + O(n) = O(n2)

∀f ∈ O(2n2),g ∈ O(n) : ∃h ∈ O(n2) :
∀n ∈ N : f (n) + g(n) = h(n)
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Further Asymptotic Equations

We thus can express further asymptotic relationships.

O(O(f (n))) = O(f (n))
O(f (n)) + O(g(n)) = O(f (n) + g(n))
O(f (n)) ·O(g(n)) = O(f (n) ·g(n))

O(f (n) ·g(n)) = f (n) ·O(g(n))
O(f (n)m) = O(f (n))m, for all m ≥ 0

The proofs are simple exercises.
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Further Landau Symbols

Take g : N→ R≥0 from the natural numbers to the non-negative reals.
o(g): the set of all functions f : N→ R≥0 such that

∀c ∈ R>0 : ∃N ∈N : ∀n ≥ N : f (n)≤ c ·g(n)

f (n) = o(g(n)): f ∈ o(g).
f is asymptotically smaller than g .

ω(g): the set of all functions f : N→ R≥0 such that
∀c ∈ R>0 : ∃N ∈N : ∀n ≥ N : g(n)≤ c · f (n)

f (n) = ω(g(n)): f ∈ ω(g).
f is asymptotically larger than g .

Theorem: for all f ,g : N→ R≥0, we have
f ∈ o(g)⇔ g ∈ ω(f )
f ∈ o(g)⇒ f ∈O(g)∧ f 6∈Θ(g)
f ∈ ω(g)⇒ f ∈Ω(g)∧ f 6∈Θ(g)

Useful to create a hierarchy of asymptotic growth functions.
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Hierarchy of Complexity Classes

Define f ≺ g :⇔ f = o(g).

1≺ log log logn ≺ log logn ≺
√

logn ≺ logn ≺ (logn)2 ≺ (logn)3

≺ 3√n ≺
√

n ≺ n ≺ n logn ≺ n
√

n ≺ n2 ≺ n3

≺ nlogn ≺ 2
√

n ≺ 2n ≺ 3n ≺ n!≺ nn ≺ 2n2 ≺ 22n

≺ 22. .
.2

(n times)

Fundamental knowledge about complexity classes.
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Hierarchy of Complexity Classes

O(1) (Constant): upper limit on function values.
Space complexity of algorithms that work with fixed memory size.

O(logn) (Logarithmic): values grow very slowly.
Time complexity of binary search.

O(n) (Linear): values grow proportionally with argument.
Time complexity of linear search.

O(n logn) (Linear-Logarithmic): value growth is reasonably well behaved.
Time complexity of fast sorting algorithms, e.g., Mergesort.

O(nc ) (Polynomial): values grow rapidly but with polynomial bound.
Executions still “feasible” for large inputs, e.g., matrix multiplication.

O(cn) (Exponential): values grow extremely rapidly.
Executions only reasonable for small inputs; e.g, finding exact solutions to
many optimization problems (“traveling salesman problem”).

O(cdn ) (Double Exponential): Function values grow overwhelmingly rapidly.
Decision of statements about real numbers (“quantifier elimination”), solving
multivariate polynomial equations (“Buchberger’s algorithm”).

Only computations up to polynomial complexity are considered “feasible”.
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Complexity Classes

log logn
logn√

n
n

5
10
15
20
25
30
35
40
45
50

5 10 15 20 25 30 35 40 45 50
n

n
n logn

n2
n3
2n

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

5 10 15 20 25 30 35 40 45 50
n

Time Maximum n for time bound Improvement for
complexity 1s 1m 1h input size n
n 1000 60000 3600000 ∗60
n logn 140 4895 204094 ∗40 (≈)
n2 31 244 1897 ∗7.75 (

√
60)

n3 10 39 153 ∗4.91 ( 3√60)
2n 9 15 21 + 5.9 (log2 60)

Improvement in asymptotic complexity outperforms technological speedup.
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