Basics of Complexity

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at

1. Complexity of Computations

- 2. Asymptotic Complexity
- 3. Working with Asymptotic Complexity
- 4. Complexity Classes

We want to determine the resource consumption of computations.

- Determine the amount of resources consumed by a computation:
 - Time
 - Space (memory)
- Determine the resource consumption for classes of inputs:
 - The maximum complexity for all inputs of the class.
 - The average complexity for these inputs.

We are going to make these notions precise.

Turing machine M with input alphabet Σ that halts for every input.

- Input set $I = \Sigma^*$:
 - The set of input words.
- Input size $|.|: I \to \mathbb{N}$
 - |i|: the length of input *i*.
- Time consumption $t: I \to \mathbb{N}$:

• t(i): the number of moves that M makes for input i until it halts.

- Space consumption $s: I \to \mathbb{N}$:
 - s(i): the largest distance from the beginning of the tape that the tape head of M reaches for input i until M halts.

For any computational model, I, |i|, t(i) and s(i) may be defined.

Computational model with I, |i|, t(i) and s(i) defined.

• Worst-case time complexity $T : \mathbb{N} \to \mathbb{N}$

$$T(n) := \max\{t(i) \mid i \in I \land |i| = n\}$$

• Worst-case space complexity $S : \mathbb{N} \to \mathbb{N}$

$$S(n) := \max\{s(i) \mid i \in I \land |i| = n\}$$

The maximum amount of resources consumed for any input of size n by computations in a given model.

Average Complexity

Input distribution Input:

- Family of (discrete) random variables *Input_n* that describe the distribution of inputs of each size *n* in *I*
- determined by probability function $p_I^n: I \rightarrow [0,1]$

 $p_I^n(i)$: probability that, among all inputs of size n, input i occurs.

• Average time/space complexity $\overline{T} : \mathbb{N} \to \mathbb{N}$ and $\overline{S} : \mathbb{N} \to \mathbb{N}$

 $\overline{T}(n) := E[Time_n]$ $\overline{S}(n) := E[Space_n]$

- Expected values of random variables *Time_n* and *Space_n*
- determined by probability functions pⁿ_T : N → [0,1] and pⁿ_S : N → [0,1] pⁿ_T(t)/pⁿ_S(s): probabilities that time t/space s is consumed for input of size n assuming that inputs of size n are distributed according to Input_n.

The average amount of resources consumed for inputs of size n (for a given distribution of inputs) by computations in a given model.

Example

Given non-empty integer array *a* of size n > 0, find minimum index *j* such that $a[j] = \max\{a[i] \mid 0 \le i < n\}$.

$$\begin{array}{ll} j := 0; \ m := a[j]; \ i := 1 \\ \text{while } i < length(a) \\ \text{if } a[i] > m \text{ then} \\ j := i; \ m := a[j] \\ i := i + 1 \end{array} \qquad \begin{array}{ll} 1 \\ n \\ n - 1 \\ N \leq n - 1 \\ n - 1 \end{array}$$

Time: the number of lines executed.

$$T(n) = 1 + n + (n-1) + (n-1) + (n-1) = 4n - 2$$

Space: the number of variables used (including elements of *a*).

$$S(n)=\overline{S}(n)=n+3$$

We are going to analyze the average time complexity $\overline{T}(n)$.

Wolfgang Schreiner

http://www.risc.jku.at

Assume a holds n distinct values $\{1, \ldots, n\}$.

Assume all *n*! permutations of *a* are equally probable.

$$p_I^n(i) := 1/n!$$

Quantity N becomes random variable.
 The number of times the corresponding line of the

The number of times the corresponding line of the algorithm is executed for each permutation of a.

• We are interested in the expected value E[N].

• Average time complexity $\overline{T}(n)$:

 $\overline{T}(n) = 1 + n + (n-1) + E[N] + (n-1) = 3n - 1 + E[N]$

Our goal is to determine the expected value E[N].

Average Time Complexity (Contd)

• p_{nk} : probability that N = k for array of size n.

$$p_{n0} + p_{n1} + p_{n2} + \ldots + p_{n,n-1} = \sum_{k=0}^{n-1} p_{nk} = 1$$

 $P_{nk} = 0 \text{ for } k \ge n:$

$$p_{n0} + p_{n1} + p_{n2} + \ldots = \sum_{k} p_{nk} = 1$$

• E[N] is sum of products of probability of N = k and value k:

$$E[N] = p_{n0} \cdot 0 + p_{n1} \cdot 1 + p_{n2} \cdot 2 + \ldots = \sum_{k} p_{nk} \cdot k$$

Our goal is to determine the value of sum $\sum_k p_{nk} \cdot k$.

We apply the technique of "generating functions".

• $G_n(z)$: power series with coefficients p_{n0}, p_{n1}, \dots

$$G_n(z) := p_{n0} \cdot z^0 + p_{n1} \cdot z^1 + p_{n2} \cdot z^2 + \ldots = \sum_k p_{nk} \cdot z^k$$

• $G'_n(z)$: derivative of $G_n(z)$

$$G'_n(z) = p_{n0} \cdot 0 \cdot z^{-1} + p_{n1} \cdot 1 \cdot z^0 + p_{n2} \cdot 2 \cdot z^1 + \ldots = \sum_k p_{nk} \cdot k \cdot z^{k-1}$$

• $G'_n(1)$:

$$G'_{n}(1) = p_{n0} \cdot 0 + p_{n1} \cdot 1 + p_{n2} \cdot 2 + \ldots = \sum_{k} p_{nk} \cdot k$$

Our goal is to determine $G'_n(1)$.

We derive a recurrence relation for $G'_n(1)$.

•
$$n = 1$$
: $p_{10} = 1$ and $p_{1k} = 0$ for all $k \ge 1$

$$G'_1(1) = 1 \cdot 0 + 0 \cdot 1 + 0 \cdot 2 + \ldots = 0$$

- n > 1: if the loop has already found the maximum of the first n-1 array elements, the last iteration
 - will either increment N (if the last element is the largest one)
 - Probability 1/n.
 - N becomes k for n, if N was k-1 for n-1.
 - or will leave *N* as it is (if the last element is not the largest one).
 - Probability (n-1)/n.
 - N becomes k for n, if N was k for n-1.

$$p_{nk} = \frac{1}{n} \cdot p_{n-1,k-1} + \frac{n-1}{n} \cdot p_{n-1,k}$$

Our goal is to determine $G'_n(1)$ for n > 1.

Average Time Complexity (Contd)

• Determine $G_n(z)$ from p_{nk} : $p_{nk} = \frac{1}{n} \cdot p_{n-1,k-1} + \frac{n-1}{n} \cdot p_{n-1,k}$ $G_n(z) = \frac{1}{n} \cdot z \cdot G_{n-1}(z) + \frac{n-1}{n} \cdot G_{n-1}(z) = \frac{z+n-1}{n} \cdot G_{n-1}(z)$ • Compute $G'_n(z)$ by derivation of $G_n(z)$: $G'_{n}(z) = \frac{1}{2} \cdot G_{n-1}(z) + \frac{z+n-1}{2} \cdot G'_{n-1}(z)$ Compute $G'_n(1)$:

$$G'_{n}(1) = \frac{1}{n} \cdot G_{n-1}(1) + \frac{z+n-1}{n} \cdot G'_{n-1}(1)$$

$$\stackrel{(*)}{=} \frac{1}{n} \cdot 1 + \frac{1+n-1}{n} \cdot G'_{n-1}(1)$$

$$= \frac{1}{n} + G'_{n-1}(1)$$

$$(*) \quad G_{n}(1) = p_{n0} + p_{n1} + p_{n2} + \ldots = \sum_{k} p_{nk} = 1$$
http://www.risc.iku.at

Average Time Complexity (Contd)

Recurrence relation for
$$G'_n(1)$$
:
$$G'_1(1) = 0$$

$$G'_n(1) = \frac{1}{n} + G'_{n-1}(1), \text{ if } n > 1$$
Solution of $G'_n(1)$:
$$G'_n(1) = \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} = \sum_{k=2}^n \frac{1}{k} = H_n - 1$$

$$\begin{array}{l} H(n) = \sum_{k=1}^{n} \frac{1}{k}: n \text{-th harmonic number} \\ H(n) = \ln n + \gamma + \varepsilon_n, \ \gamma \approx 0.577, \ 0 < \varepsilon_n < 1/(2n). \end{array}$$

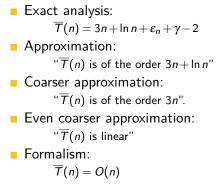
Solution of *E*[*n*]:

$$E[N] = \ln n + \gamma + \varepsilon_n - 1$$

• Average time complexity
$$\overline{T}(n)$$
:
 $\overline{T}(n) = 3n - 1 + E[N] = 3n + \ln n + \varepsilon_n + \gamma - 2$

Analysis of average complexity is more difficult than that of the worst-case.

Typically, we are only interested to capture the "overall behavior" of a complexity function for large inputs.



We are going to formalize such complexity approximations.

1. Complexity of Computations

2. Asymptotic Complexity

- 3. Working with Asymptotic Complexity
- 4. Complexity Classes

Take $g : \mathbb{N} \to \mathbb{R}_{\geq 0}$ from the natural numbers to the non-negative reals. O(g): the set of all functions $f : \mathbb{N} \to \mathbb{R}_{\geq 0}$ such that

 $\exists c \in \mathbb{R}_{>0}, N \in \mathbb{N} : \forall n \ge N : f(n) \le c \cdot g(n)$

• f(n) = O(g(n)): $f \in O(g)$.

f is bounded from above by g.

• $\Omega(g)$: the set of all functions $f : \mathbb{N} \to \mathbb{R}_{>0}$ such that

 $\exists c \in \mathbb{R}_{>0}, N \in \mathbb{N} : \forall n \ge N : f(n) \ge c \cdot g(n)$

• $f(n) = \Omega(g(n))$: $f \in \Omega(g)$..

f is bounded from below by g.

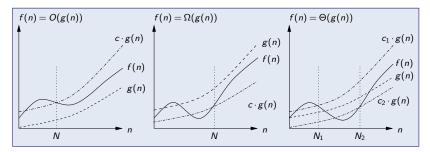
• $\Theta(g)$: the set of all functions $f : \mathbb{N} \to \mathbb{R}_{\geq 0}$ such that

 $f\in O(g)\wedge f\in \Omega(g)$

• $f(n) = \Theta(g(n))$: $f \in \Theta(g)$.

f is bounded from above and below by g.

 $f \in \mathcal{O}(g)$: g represents a bound for f, from above and/or below.



It suffices, if bound holds from a certain start value N on.

- Finitely many exceptions are allowed.
- It suffices, if the bound holds up to arbitrarily large constant *c*.
 - Bounds are independent of "measurement units".

The Landau symbols talk about the asymptotic behavior of functions.

Wolfgang Schreiner

http://www.risc.jku.at

We need to understand the historically developed usage of the symbols.

- Most wide spread: f(n) = O(g(n)).
 - Often used when actually $f(n) = \Theta(g(n))$ is meant, i.e.,
 - when g(n) is not only a bound from above but also from below.
- Abuse of notation: f(n) = O(g(n))
 - does not denote equality but set inclusion.
 - Notation has nevertheless been universally adopted.
- Ambiguous notation: f(n) = O(g(n))
 - Terms f(n) and g(n) with implicit free variable n.
 - To derive $f \in O(g)$, we have to identify the free variable.

"Let
$$c > 1$$
. Then $x^c = O(c^x)$."

"Let
$$c>1$$
, $f(x):=x^c$, and $g(x):=c^x$. Then $f\in O(g)$."

 \rightarrow

We stick to the common practice.

Wolfgang Schreiner

http://www.risc.jku.at

Duality of ${\it O}$ and Ω

• Theorem: for all $f, g : \mathbb{N} \to \mathbb{R}_{\geq 0}$, we have

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

Proof \Rightarrow : We assume f(n) = O(g(n)) and show $g(n) = \Omega(f(n))$. By the definition of Ω , we have to find constants N_1, c_1 such that

 $\forall n \geq N_1 : g(n) \geq c_1 \cdot f(n)$

Since f(n) = O(g(n)), we have constants N_2, c_2 such that

 $\forall n \geq N_2 : f(n) \leq c_2 \cdot g(n)$

Take $N_1 := N_2$ and $c_1 := 1/c_2$. Then we have, since $N_1 = N_2$, for all $n \ge N_1$, $c_2 \cdot g(n) \ge f(n)$

and therefore

$$g(n) \geq (1/c_2) \cdot f(n) = c_1 \cdot f(n).$$

Proof \Leftarrow : analogously.

O and Ω are dual.

Example

We prove $3n^2 + 5n + 7 = O(n^2)$.

• We have to find constants *c* and *N* such that

$$\forall n \ge N: 3n^2 + 5n + 7 \le cn^2$$

For $n \ge 1$, we have

$$3n^2 + 5n + 7 \stackrel{1 \le n}{\le} 3n^2 + 5n + 7n = 3n^2 + 12n$$

For $n \ge 12$, we also have

$$3n^2 + 12n \stackrel{12 \le n}{\le} 3n^2 + n \cdot n = 4n^2$$

• We take $N := 12 \ (= \max\{1, 12\})$ and c := 4 and have for $n \ge N$

$$3n^2 + 5n + 7 \stackrel{1 \le n}{\le} 3n^2 + 5n + 7n = 3n^2 + 12n \stackrel{12 \le n}{\le} 3n^2 + n \cdot n = 4n^2 = cn^2$$

Demonstrates general technique for asymptotics of polynomial functions.

Theorem: for all $a_0, \ldots, a_m \in \mathbb{R}$, we have

$$a_m n^m + \ldots + a_2 n^2 + a_1 n + a_0 = \Theta(n^m)$$

Proof: analogous to previous example.
 Theorem: for all a, b ∈ ℝ_{>0}, we have

$$log_a n = O(log_b n)$$

Proof: take $c := \log_a b$ and N := 0. Then we have for all $n \ge N$ $\log_a n = \log_a(b^{\log_b n}) = (\log_a b) \cdot (\log_b n) = c \cdot (\log_b n)$

Polynomials are dominated by the monomial with the highest exponent; in logarithms, bases don't matter.

Asymptotic Laws

Theorem: for all $a, b \in \mathbb{R}$ with b > 1, we have

$$n^a = O(b^n)$$

Proof: we know the Taylor series expansion

$$e^{x} = \sum_{i=0}^{\infty} \frac{x^{i}}{i!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

Since $b^n = (e^{\ln b})^n = e^{n \ln b}$, we have for all $n \in \mathbb{N}$

$$b^{n} = \sum_{i=0}^{\infty} \frac{(n \ln b)^{i}}{i!} = 1 + (n \ln b) + \frac{(n \ln b)^{2}}{2!} + \frac{(n \ln b)^{3}}{3!} + \dots$$

Since b > 1, we have $\ln b > 0$; therefore we know

$$b^n > \frac{(n \ln b)^a}{a!} = \frac{(\ln b)^a}{a!} n^a$$

Consequently

$$n^a < \frac{a!}{(\ln b)^a} b^n$$

Thus we define N := 0 and $c := a!/(\ln b)^a$ and are done. Polynomials are dominated by all exponentials with base greater one.

Wolfgang Schreiner

http://www.risc.jku.at

- 1. Complexity of Computations
- 2. Asymptotic Complexity
- 3. Working with Asymptotic Complexity
- 4. Complexity Classes

Asymptotic Laws

$$c \cdot f(n) = O(f(n))$$

$$n^{m} = O(n^{m'}), \text{ for all } m \le m'$$

$$a_{m}n^{m} + \ldots + a_{2}n^{2} + a_{1}n + a_{0} = \Theta(n^{m})$$

$$\log_{a} n = O(\log_{b} n), \text{ for all } a, b > 0$$

$$n^{a} = O(b^{n}), \text{ for all } a, b \text{ with } b > 1$$

Reflexivity:

 $f = O(f), f = \Omega(f), f = \Theta(f).$

Symmetry:

Transitivity:

The proof of reflexivity/symmetry/transitivity is an easy exercise.

A more general form of "syntactic abuse".

Equation:

$$A[\mathcal{O}_1(f(n))] = B[\mathcal{O}_2(g(n))]$$

• (Possibly multiple) occurrences of $\mathcal{O}_1, \mathcal{O}_2 \in \{\mathcal{O}, \Omega, \Theta\}$.

Interpretation:

$$\forall f' \in \mathcal{O}_1(f) : \exists g' \in \mathcal{O}_2(g) :$$

$$\forall n \in \mathbb{N} : A[f'(n)] = B[g'(n)]$$

- Every occurrence of O is replaced by a function in the corresponding asymptotic complexity class.
- Functions on the left side are universally quantified, functions on the right side are existentially quantified.

A convenient shortcut to express asymptotic relationships.

Example

Example:

$$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right)$$

There is a function $f \in O(1/n)$ such that, for all $n \in \mathbb{N}$, $H_n = \ln n + \gamma + f(n)$.

Example:

$$2n^{2} + 3n + 1 = O(2n^{2}) + O(n) = O(n^{2})$$

• Equation $2n^2 + 3n + 1 = O(2n^2) + O(n)$

$$\exists f \in O(2n^2), g \in O(n):$$

$$\forall n \in \mathbb{N} : 2n^2 + 3n + 1 = f(n) + g(n)$$

• Equation
$$O(2n^2) + O(n) = O(n^2)$$

$$\forall f \in O(2n^2), g \in O(n) : \exists h \in O(n^2) :$$

 $\forall n \in \mathbb{N} : f(n) + g(n) = h(n)$

http://www.risc.jku.at

We thus can express further asymptotic relationships.

$$O(O(f(n))) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(f(n) + g(n))$$

$$O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$$

$$O(f(n) \cdot g(n)) = f(n) \cdot O(g(n))$$

$$O(f(n)^m) = O(f(n))^m, \text{ for all } m \ge 0$$

The proofs are simple exercises.

- 1. Complexity of Computations
- 2. Asymptotic Complexity
- 3. Working with Asymptotic Complexity
- 4. Complexity Classes

Take $g : \mathbb{N} \to \mathbb{R}_{\geq 0}$ from the natural numbers to the non-negative reals. o(g): the set of all functions $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$ such that $\forall c \in \mathbb{R}_{>0} : \exists N \in \mathbb{N} : \forall n > N : f(n) < c \cdot g(n)$ • f(n) = o(g(n)): $f \in o(g)$. f is asymptotically smaller than g. $\omega(g)$: the set of all functions $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$ such that $\forall c \in \mathbb{R}_{>0} : \exists N \in \mathbb{N} : \forall n > N : g(n) < c \cdot f(n)$ • $f(n) = \omega(g(n))$: $f \in \omega(g)$. f is asymptotically larger than g. **Theorem:** for all $f, g : \mathbb{N} \to \mathbb{R}_{\geq 0}$, we have $f \in o(g) \Leftrightarrow g \in \omega(f)$

$$f \in \omega(g) \Rightarrow f \in \Omega(g) \land f \notin \Theta(g)$$

Useful to create a hierarchy of asymptotic growth functions.

Wolfgang Schreiner

http://www.risc.jku.at

 $f \in o(g) \Rightarrow f \in O(g) \land f \notin \Theta(g)$

Define $f \prec g :\Leftrightarrow f = o(g)$.

$$1 \prec \log \log \log n \prec \log \log n \prec \sqrt{\log n} \prec \log n \prec (\log n)^2 \prec (\log n)^3$$

$$\prec \sqrt[3]{n} \prec \sqrt{n} \prec n \prec n \log n \prec n \sqrt{n} \prec n^2 \prec n^3$$

$$\prec n^{\log n} \prec 2^{\sqrt{n}} \prec 2^n \prec 3^n \prec n! \prec n^n \prec 2^{n^2} \prec 2^{2^n}$$

$$\prec 2^{2^{\dots^2}} (n \text{ times})$$

Fundamental knowledge about complexity classes.

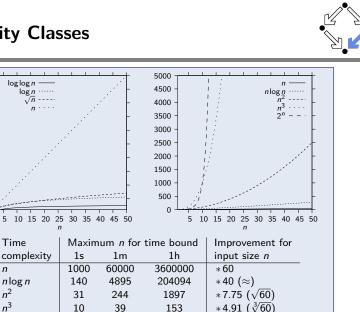
Hierarchy of Complexity Classes

- O(1) (Constant): upper limit on function values.
 - Space complexity of algorithms that work with fixed memory size.
- $O(\log n)$ (Logarithmic): values grow very slowly.
 - Time complexity of binary search.
- O(n) (Linear): values grow proportionally with argument.
 - Time complexity of linear search.
- $O(n \log n)$ (Linear-Logarithmic): value growth is reasonably well behaved.
 - Time complexity of fast sorting algorithms, e.g., Mergesort.
- $O(n^c)$ (Polynomial): values grow rapidly but with polynomial bound.
 - Executions still "feasible" for large inputs, e.g., matrix multiplication.
- $O(c^n)$ (Exponential): values grow extremely rapidly.
 - Executions only reasonable for small inputs; e.g, finding exact solutions to many optimization problems ("traveling salesman problem").
- $O(c^{d^n})$ (Double Exponential): Function values grow overwhelmingly rapidly.
 - Decision of statements about real numbers ("quantifier elimination"), solving multivariate polynomial equations ("Buchberger's algorithm").

Only computations up to polynomial complexity are considered "feasible".

Complexity Classes

 2^n



Improvement in asymptotic complexity outperforms technological speedup. Wolfgang Schreiner http://www.risc.jku.at 32/32

 $+5.9 (\log_2 60)$