Turing Machines

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at

1. Turing Machines

2. Recognizing Languages
3. Generating Languages
4. Computing Functions

5. The Church-Turing Thesis

Turing Machine Model

- The machine is always in one of a finite set of states.
- The machine starts its execution in a fixed start state.
- An infinite tape holds at its beginning the input word.
- Tape is read and written and arbitrarily moved by the machine.
- The machine proceeds in a sequence of state transitions.
- Machine reads symbol, overwrites it, and moves tape head left or right.
- The symbol read and the current state determine the symbol written, the move direction, and the next state.
- If the machine cannot make another transition, it terminates.
- The machine signals whether it is in an accepting state.

If the machine terminates in an accepting state, the word is accepted.

Turing Machines

Turing Machine $M=\left(Q, \Gamma, \sqcup, \Sigma, \delta, q_{0}, F\right)$:

- The state set Q, a fine set of states.
- A tape alphabet Γ, a finite set of tape symbols.
- The blank symbol $\quad \in \Gamma$.
- An input alphabet $\Sigma \subseteq \Gamma \backslash\{\cup\}$.
- The (partial) transition function $\delta: Q \times \Gamma \rightarrow_{\mathrm{p}} Q \times \Gamma \times\left\{{ }^{\prime} \mathrm{L}\right.$ ', 'R'\},
- $\delta(q, x)=\left(q^{\prime}, x^{\prime}, \mathrm{L}^{\prime} /{ }^{\prime} \mathrm{R}^{\prime}\right) \ldots M$ reads in state q symbol x, goes to state q^{\prime}, writes symbol x^{\prime}, and moves the tape head left/right.
- The start state $q_{0} \in Q$
- A set of accepting states (final states) $F \subseteq Q$.

The crucial difference to an automaton is the infinite tape that can be arbitrarily moved and written.

Example

$$
\begin{aligned}
M & =\left(Q, \Gamma_{,\lrcorner}, \Sigma, \delta, q_{0}, F\right) \\
Q & =\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\} \\
\Gamma & =\{\sqcup, 0,1, X, Y\} \\
\Sigma & =\{0,1\} \\
F & =\left\{q_{4}\right\}
\end{aligned}
$$

δ	\sqcup	0	1	X	Y
q_{0}	-	$\left(q_{1}, X, R\right)$	-	-	$\left(q_{3}, Y, R\right)$
q_{1}	-	$\left(q_{1}, 0, R\right)$	$\left(q_{2}, Y, L\right)$	-	$\left(q_{1}, Y, R\right)$
q_{2}	-	$\left(q_{2}, 0, L\right)$	-	$\left(q_{0}, X, R\right)$	$\left(q_{2}, Y, L\right)$
q_{3}	$\left(q_{4}, \sqcup, R\right)$	-	-	-	$\left(q_{3}, Y, R\right)$
q_{4}	-	-	-	-	-

Machine accepts every word of form $0^{n} 1^{n}$ (replacing it by $X^{n} Y^{n}$).

Turing Machine Simulator

http://math.hws.edu/eck/js/turing-machine/TM.html

Run Stop	$\begin{gathered} \hline \text { Old } \\ \text { State } \end{gathered}$	$\begin{array}{c\|} \hline \text { Old } \\ \text { Symbol } \end{array}$	New Symbol	New State	Move
Run Speed:	0	\#	\#	h	R
	0	a	@	1	R
Step Step Back	0	b	@	5	R
Reset State to Zero	0	c	@	9	R
	1	\#	\#	2	R
Install Example:	1	other	same	1	R
	2	\#	a	3	L
Copy abc $\quad \checkmark$	2	other	same	2	R

Generalized Turing Machines

- Infinite tape in both directions.
- Can be simulated by a machine whose tape is infinite in one direction.
- Multiple tapes.
- Can be simulated by a machine with a single tape.
- Nondeterministic transitions.
- We can simulate a nondeterministic M by a deterministic M^{\prime}.
- Let r be the maximum number of "choices" that M can make.
- M^{\prime} operates with 3 tapes.
- Tape 1 holds the input (tape is only read).
- M^{\prime} writes to tape 2 all finite sequences of numbers $1, \ldots, r$.
- First all sequences of length 1 , then all of length 2, etc.
- After writing sequence $s_{1} s_{2} \ldots s_{n}$ to tape $2, M^{\prime}$ simulates M on tape 3 .
- M^{\prime} copies the input to tape 3 and performs at most n transitions.
- In transition i, M attempts to perform choice s_{i}.
- If choice i is not possible or M terminates after n transitions in a non-accepting state, M^{\prime} continues with next sequence.
- If M terminates in accepting state, M^{\prime} accepts the input.

Every generalized Turing machine can be simulated by the core form.

1. Turing Machines

2. Recognizing Languages

3. Generating Languages

4. Computing Functions

5. The Church-Turing Thesis

Turing Machine Configurations

- Configuration $a_{1} \ldots a_{k} q a_{k+1} \ldots a_{m}$:
- q : the current state of M.
- a_{k+1} : the symbol currently under the tape head.
- $a_{1} \ldots a_{k}$: the portion of the tape left to the tape head.
- $a_{k+2} \ldots a_{m}$: the portion right to the head (followed by $\quad \ldots$).
- Move relation: $a_{1} \ldots a_{k} q a_{k+1} \ldots a_{m} \vdash b_{1} \ldots b_{l} p b_{l+1} \ldots b_{m}$

If M is a situation described by the left configuration, it can make a transition to the situation described by the right configuration.

- $a_{i}=b_{i}$ for all $i \neq k+1$ and one of the following:

$$
I=k+1 \text { and } \delta\left(q, a_{k+1}\right)=\left(p, b_{1}, R\right),
$$

$$
I=k-1 \text { and } \delta\left(q, a_{k+1}\right)=\left(p, b_{l+2}, L\right) .
$$

- Extended move relation: $c_{1} \vdash^{*} c_{2}$
M can make in an arbitrary number of moves a transition from the situation described by configuration c_{1} to the one described by c_{2}.

$$
\begin{aligned}
c_{1} \vdash^{0} c_{2} & : \Leftrightarrow c_{1}=c_{2} \\
c_{1} \vdash^{i+1} c_{2} & : \Leftrightarrow \exists c: c_{1} \vdash^{i} c \wedge c \vdash c_{2} \\
c_{1} \vdash^{*} c_{2} & : \Leftrightarrow \exists i \in \mathbb{N}: c_{1} \vdash^{i} c_{2}
\end{aligned}
$$

The Language of a Turing Machine

- The language $L(M)$ of Turing machine $M=\left(Q, \Gamma, \sqcup, \Sigma, \delta, q_{0}, F\right)$: The set of all inputs that drive M from its initial configuration to a configuration with an accepting state such that from this configuration no further move is possible:

$$
L(M):=\left\{\begin{array}{l|l}
w \in \Sigma^{*} & \begin{array}{l}
\exists a, b \in \Gamma^{*}, q \in Q: q_{0} w \vdash^{*} a q b \wedge q \in F \\
\wedge \neg \exists a^{\prime}, b^{\prime} \in \Gamma^{*}, q^{\prime} \in Q: a q b \vdash a^{\prime} q^{\prime} b^{\prime}
\end{array}
\end{array}\right\}
$$

- L is a recursively enumerable language:
- There exists a Turing machine M such that $L=L(M)$.
- L is a recursive language:
- There exists a Turing machine M such that $L=L(M)$ and M terminates for every possible input.

Every recursive language is recursively enumerable; as we will see, the converse does not hold.

Recursiv. Enumerable/Recursive Languages

Theorem: L is recursive, if and only if both L and its complement \bar{L} are recursively enumerable.

Proof \Rightarrow : Let L be a recursive. Since by definition L is recursively enumerable, it remains to be shown that also \bar{L} is recursively enumerable.
Since L is recursive, there exists a Turing machine M such that M halts for every input w : if $w \in L$, then M accepts w; if $w \notin L$, then M does not accept w. With the help of M, we can construct the following M^{\prime} with $L\left(M^{\prime}\right)=\bar{L}$:

```
function M'(w):
    case M(w) of
        yes: return no
        no: return yes
    end case
end function
```


Recursiv. Enumerable/Recursive Languages

Proof \Leftarrow : Let L be such that both L and \bar{L} are recursively enumerable. We show that L is recursive. Since L is r.e., there exists M such that $L=L(M)$ and M halts for $w \in L$ with $M(w)=$ yes. Since \bar{L} is r.e., there exists \bar{M} with $\bar{L}=L(\bar{M})$ and \bar{M} halts for $w \in \bar{L}$ with $\bar{M}(w)=$ yes. We can thus construct $M^{\prime \prime}$ with $L\left(M^{\prime \prime}\right)=L$ that always halts:

```
function \(M^{\prime \prime}(w)\) :
    parallel
        begin
            if \(M(w)=\) yes then
                return yes
            end if
            loop forever
        end
        begin
                if \(\bar{M}(w)=\) yes then
                return no
                end if
                loop forever
            end
        end parallel
end function
```


Closure of Recursive Languages

Let L, L_{1}, L_{2} be recursive languages. Then also

- the complement \bar{L},
- the union $L_{1} \cup L_{2}$,
- the intersection $L_{1} \cap L_{2}$
are recursive languages.
Proof by construction of the corresponding Turing machines.

1. Turing Machines

2. Recognizing Languages

3. Generating Languages

4. Computing Functions

5. The Church-Turing Thesis

Enumerators

Turing machine $M=\left(Q, \Gamma, \sqcup, \emptyset, \delta, q_{0}, F\right)$ with special symbol $\# \in \Gamma$.

- M is an enumerator, if M has an additional output tape on which
- M moves its tape head only to the right, and
- M writes only symbols different from \llcorner.
- The generated language $\operatorname{Gen}(M)$ of enumerator M is the set of all words that M eventually writes on its output tape.
- The end of each word is marked by a trailing \#.
M may run forever and thus $\operatorname{Gen}(M)$ may be infinite.

Recognizing versus Generating Languages

Theorem: L is recursively enumerable, if and only if there exists some enumerator M such that $L=\operatorname{Gen}(M)$.

Proof \Rightarrow : Let L be recursively enumerable, i.e., $L=L\left(M^{\prime}\right)$ for some M^{\prime}. We construct enumerator M such that $L=\operatorname{Gen}(M)$.

```
procedure M:
    loop
        produce next (m,n) on working tape
        if M}\mp@subsup{M}{}{\prime}(\mp@subsup{w}{m}{})=\mathrm{ yes in at most }n\mathrm{ steps then
            write wm}\mathrm{ to output tape
        end if
    end loop
end procedure
```


Recognizing versus Generating Languages

Proof \Leftarrow : Let L be such that $L=\operatorname{Gen}(M)$ for some enumerator M. We show that there exists some Turing machine M^{\prime} such that $L=L\left(M^{\prime}\right)$.

```
function M'(w):
    while}M\mathrm{ is not terminated do
        M writes next word w'
        if w=w'}\mathrm{ then
                return yes
        end if
    end while
    return no
end function
```

Recognizing is possible, if and only if generating is possible.

1. Turing Machines

2. Recognizing Languages
3. Generating Languages

4. Computing Functions

5. The Church-Turing Thesis

Functions

Take binary relation $f \subseteq A \times B$.

- $f: A \rightarrow B: f$ is a total function from A to B.
- For every $a \in A$, there is exactly one $b \in B$ such that $(a, b) \in f$.
- $f: A \rightarrow_{\mathrm{p}} B: f$ is a partial function from A to B.
- For every $a \in A$, there is at most one $b \in B$ such that $(a, b) \in f$.
- Auxiliary notions:

$$
\begin{aligned}
\operatorname{domain}(f) & :=\{a \mid \exists b:(a, b) \in f\} \\
\operatorname{range}(f) & :=\{b \mid \exists a:(a, b) \in f\} \\
f(a) & :=\operatorname{such} b:(a, b) \in f
\end{aligned}
$$

Every total function $f: A \rightarrow B$ is a partial function $f: A \rightarrow_{\mathrm{p}} B$; every partial function $f: A \rightarrow_{\mathrm{p}} B$ is a total function $f: \operatorname{domain}(f) \rightarrow B$.

Functions

- Let $f: \Sigma^{*} \rightarrow_{\mathrm{p}} \Gamma^{*}$ where $\sqcup \notin \Sigma \cup \Gamma$.
- f is a function over words in some alphabets.
- f is Turing computable, if there exists a Turing machine M such that
- for input w (i.e. initial tape content $w_{\sqcup} \ldots$), M terminates in an accepting state, if and only if $w \in \operatorname{domain}(f)$;
- for input w, M terminates in an accepting state with output w^{\prime} (i.e. final tape content $w^{\prime} \sqcup \ldots$), if and only if $w^{\prime}=f(w)$.
- Not every function $f: \Sigma^{*} \rightarrow_{p} \Gamma^{*}$ is Turing computable:
- The set of all Turing machines is countably infinite: all machines can be ordered in a single list (in the alphabetic order of their definitions).
- The set of all functions $\Sigma^{*} \rightarrow_{p} \Gamma^{*}$ is more than countably infinite (Cantor's diagonalization argument).
- Consequently, there are more functions than Turing machines.
M computes f, if M terminates for arguments in the domain of f with output $f(a)$ and does not terminate for arguments outside the domain.

Example

We show that natural number subtraction is Turing computable.

- Subtraction \ominus on \mathbb{N} :

$$
m \ominus n:= \begin{cases}m-n & \text { if } m \geq n \\ 0 & \text { else }\end{cases}
$$

- Unary representation of $n \in \mathbb{N}$:

$$
\underbrace{000 \ldots 0}_{n \text { times }} \in L\left(0^{*}\right)
$$

- Input 00ㅂ0 shall lead to output 0 .
- $2 \ominus 1=1$.

Idea: replace every pair of 0 in m and n by \lrcorner.

Example (Contd)

$$
\begin{aligned}
M & =\left(Q, \Gamma_{\lrcorner}, \Sigma, \delta, q_{0}, F\right) \\
Q & =\left\{q_{0}, \ldots, q_{6}\right\} \\
\Sigma & =\{0\}, \Gamma=\{0,1, \sqcup\}, F=\left\{q_{6}\right\}
\end{aligned}
$$

δ	0	1	\sqcup
q_{0}	$\left.\left(q_{1},\right\lrcorner, R\right)$	$\left.\left(q_{5},\right\lrcorner, R\right)$	$\left.\left(q_{5},\right\lrcorner, R\right)$
q_{1}	$\left(q_{1}, 0, R\right)$	$\left(q_{2}, 1, R\right)$	$\left(q_{2}, 1, R\right)$
q_{2}	$\left(q_{3}, 1, L\right)$	$\left(q_{2}, 1, R\right)$	$\left.\left(q_{4},\right\lrcorner, L\right)$
q_{3}	$\left(q_{3}, 0, L\right)$	$\left(q_{3}, 1, L\right)$	$\left.\left(q_{0},\right\lrcorner, R\right)$
q_{4}	$\left(q_{4}, 0, L\right)$	$\left(q_{4,\lrcorner}, L\right)$	$\left(q_{6}, 0, R\right)$
q_{5}	$\left(q_{5}, \sqcup, R\right)$	$\left(q_{5}, \sqcup, R\right)$	$\left(q_{6}, \sqcup, R\right)$
q_{6}	-	-	-

- In q_{0}, the leading 0 is replaced by s .

- In q_{1}, M searches for the next \sqcup and replaces it by a 1 .
- In q_{2}, M searches for the next 0 and replaces it by 1 , then moves left.
- In q_{3}, M searches for previous \sqcup, moves right and starts from begin.
- In q_{4}, M has found a u instead of 0 and replaces all previous 1 by \leq.
- $\ln q_{5}, n$ is (has become) 0 ; the rest of the tape is erased.
- In q_{6}, the computation successfully terminates.

Example (Contd)

- $2 \ominus 1=1$:

$$
\begin{aligned}
& q_{0} 00 \sqcup 0 \vdash \sqcup q_{1} 0 \sqcup 0 \vdash\left\llcorner0 q _ { 1 } \left\llcorner0 \vdash \left\llcorner 01 q_{2} 0\right.\right.\right. \\
& \vdash{ }_{\iota} q_{3} 11 \vdash{ }_{\iota} q_{3} 011 \vdash q_{3}{ }^{2} 011 \vdash \iota q_{0} 011
\end{aligned}
$$

$$
\begin{aligned}
& \vdash{ }_{\iota \cup} q_{4} 1 \vdash_{\nu} q_{4} \vdash_{\nu} 0 q_{6}
\end{aligned}
$$

- $1 \ominus 2=0$:

$$
\begin{aligned}
& q_{0} 00_{\llcorner } 00 \vdash{ }_{\iota} q_{1} 00 \vdash{ }_{\iota} 1 q_{2} 00 \vdash{ }_{\iota} q_{3} 110
\end{aligned}
$$

$$
\begin{aligned}
& \vdash \text { பபபப } 95 \vdash \text { பபபபப } 96 \text {. }
\end{aligned}
$$

For $m>n$, leading blanks still have to be removed.

Turing Computability

Theorem: $f: \Sigma^{*} \rightarrow_{\mathrm{p}} \Gamma^{*}$ is Turing computable, if and only if

$$
L_{f}:=\left\{(a, b) \in \Sigma^{*} \times \Gamma^{*} \mid a \in \operatorname{domain}(f) \wedge b=f(a)\right\}
$$

is recursively enumerable.
Proof \Rightarrow : Since $f: \Sigma^{*} \rightarrow_{p} \Gamma^{*}$ is Turing computable, there exists a Turing machine M which computes f. To show that L_{f} is r.e., we construct M^{\prime} with $L\left(M^{\prime}\right)=L_{f}$:

```
function M'(a,b):
    b
    if }\mp@subsup{b}{}{\prime}=b\mathrm{ then
        return yes
    else
        return no
    end if
end function
```


Turing Computability

Proof \Leftarrow : Since L_{f} is recursively enumerable, there exists an enumerator M with $\operatorname{Gen}(M)=L_{f}$. We construct the following Turing machine M^{\prime} which computes f :

```
function M'(a):
    while M is not terminated do
        M writes ( }\mp@subsup{a}{}{\prime},\mp@subsup{b}{}{\prime})\mathrm{ to tape
        if a= a' then
        return b'
        end if
        end while
        loop forever
end function
```


Computing is possible, if and only if recognizing is possible.

1. Turing Machines

2. Recognizing Languages
3. Generating Languages
4. Computing Functions

5. The Church-Turing Thesis

Algorithms

Computer science is based on algorithms.

Compute as follows the greatest common divisor of two natural numbers m, n that are not both 0 :

1. If $m=0$, the result is n.
2. If $n=0$, the result is m.
3. If $m>n$, subtract n from m and continue with step 1.
4. Otherwise subtract m from n and continue with step 1.

Euklid $(\downarrow m, \downarrow n, \uparrow r)$: while $m \neq 0 \wedge n \neq 0$ do if $m>n$
then $m \leftarrow m-n$
else $n \leftarrow n-m$
if $m=0$
then $r \leftarrow n$
else $r \leftarrow m$
end Euklid.

What is an "algorithm" and what is computable by an algorithm?

The Church-Turing Thesis

Church-Turing Thesis: Every problem that is solvable by an algorithm (in an intuitive sense) is solvable by a Turing machine. Thus the set of intuitively computable functions is identical with the set of Turing computable functions.

- Replaces fuzzy notion "algorithm" by precise notion "Turing machine".
- Unprovable thesis, exactly because the notion "algorithm" is fuzzy.
- Substantially validated, because many different computational models have no more computational power than Turing machines.
- Random access machines, loop programs, recursive functions, goto programs, λ-calculus, rewriting systems, grammars, ...

Turing machines represent the most powerful computational model known, but there are many other equally powerful ("Turing complete") models.

