
Chapter 7
Programming Languages

Alles ist eine Frage der Sprache. (Everything is a question of
language.) — Ingeborg Bachmann (Alles)

In daily life, virtually all of human communication is expressed in one of the thousands
of natural languages that are spoken world-wide; these languages are rich in their
expressive capabilities, flexible in their applications, subtle in their nuances, and
beautiful in their form. However, they are also full of gaps and ambiguities; while
most of these can be usually overcome by intelligent beings that are able to deduce
the intended interpretation from the context of the communication, they are from time
to time are also the source of misunderstandings and disagreements, minor mishaps
as well as major disasters. Thus, when communicating with ignorant partners such as
computers, software developers use artificial languages that are designed in order to
unambiguously express their intentions of how a computer program shall operate
to solve a specific computational problem. However, even if millions of software
developers use such programming languages every day, it is probably fair to say that
only a minor fraction understands these languages in a sufficient depth to be able to
answer subtle and critical questions about the behavior of the resulting programs.
Ultimately, such an in-depth understanding requires a formal basis.

The goal of this chapter is to provide such a basis by showing how the semantics
of programming languages can be precisely described in the language of logic, using
the same kinds of techniques that have been introduced in the previous chapters for
modeling “mathematical” languages. For this purpose, building upon the language of
data types introduced in Chapter 6, Section 7.1 introduces an imperative programming
language, i.e., a language whose core elements are commands that operate by reading
from and writing to a common store. For this language we will give a formal type
system; only well-typed programs will subsequently receive a semantics. Then
Section 7.2 gives this language a “denotational” semantics that interprets commands
as functions on stores; these functions are partial, i.e., may not return a result,
which indicates that a program aborts or loops forever. Because partial functions are
comparably inconvenient to deal with, we subsequently switch from a functional
semantics to a relational one that allows arbitrarily many outcomes, which will also
become useful in later chapters. Based on these results, we are able to prove the
correctness of program transformations such as loop unrolling.

297

298 7 Programming Languages

As an alternative framework, Section 7.3 introduces an “operational” semantics that
models the programming language by a logical inference system whose judgements
describe the transitions of a program from one state to another; here we differentiate
between a “big-step” semantics that describes transitions from the initial to the
final state and a “small-step” semantics that describes also the transitions between
intermediate states. Each of these semantic forms (denotational semantics in functional
and in relational flavor, operational semantics with big steps and with small steps)
provides a different point of view on the same language; we formulate the precise
relationships between the various forms and prove several equivalence results. As
one application of semantics, Section 7.4 shows how to prove the correctness of a
translation (compilation) of the high-level programming language considered so far
to a formally modeled low-level machine language. Finally, Section 7.5 extends the
programming language by procedures and discusses the formal modeling of core
programming language concepts such as declaration scopes (static versus dynamic
scoping), parameter passing mechanisms (value versus reference parameters), and
recursive procedure definitions.

7.1 Programs and Commands

A Program Syntax

We start by defining the syntax of a simple imperative programming language. A
program in this language operates by the execution of commands that read and write
the values of variables. The program communicates with its environment by the
values of certain given variables, the parameters of the program: the environment
starts the program with some initial values of the parameters and, provided that the
program terminates, observes their final values. For its computation, the program
may also use some local variables which are, however, not seen by the environment.

Definition 7.1 (Program). A program is a phrase P ∈ Program which is formed
according to the following grammar:

P ∈ Program, X ∈ Parameters, C ∈Command
F ∈ Formula, T ∈ Term, V ∈ Variable, S ∈ Sort, I ∈ Identifier

P F program I(X) C
X F ␣ | X,V : S
C F V:= T | var V : S; C | C1;C2 |

| if F then C1 else C2 | if F then C | while F do C

The syntactic domains Formula of formulas, Term of terms, Variable of variables,
Sort of sorts, and Identifier of identifiers, are formed as in Definition 6.1.

© 2018 Wolfgang Schreiner.

7.1 Programs and Commands 299

For readability, we use the syntax {C1;C2; . . . ; Cn} to denote the command
C1;C′2, where C′2 denotes the command C2;C′3, where C′3 denotes the command
C3;C′4, . . . , and where finally C′n−1 denotes the command Cn−1;Cn.

Example 7.1. As an example, take the following program gcd which computes the
greatest common divisor g of two natural numbers a, b by the Euclidean algorithm:
program gcd(a:Nat,b:Nat,g:Nat,n:Nat) {
var c:Nat; c := 0;
while a > 0 ∧ b > 0 do {
if a ≥ b
then a := a-b
else b := b-a

c := c+1
}
if a > 0
then g := a
else g := b

n := c
}

This program interacts with its environment by the parameters a, b, g, n. If a and b
are initially not both zero, the program ultimately terminates with g set to the greatest
common divisor of a and b; furthermore, it sets n to the number of loop iterations
needed to compute that value. In the course of the computation, the program modifies
both a and b such that one becomes zero and the other one the greatest common
divisor; the program also uses a local variable c to keep track of the number of
iterations. For instance, for the initial variable values a = 12, b = 8 (and g and n
arbitrary), the program terminates with a = 0, b = 4, g = 4, and n = 0. For initial
values a = b = 0, the program terminates with a = b = g = n = 0.

The program uses atomic formulas like a > 0which denotes the application gt(a, 0)
of some predicate gt, terms like a − b which denotes the application minus(a, b) of
some function minus, and terms like 0 which denotes the occurrence of some constant
zero. □

Type Checking Programs

The well-formedness of a program is checked relative to a given signature Σ of
sorts and operations that may be used in terms and formulas (see Section 6.2 for the
essential concepts).

Definition 7.2 (Variable Typing). Let Σ be a signature. We define

VarTypingΣ B Variable→⊥ Σ.s

as the set of all partial functions from variables to sorts in Σ; we call these functions
variable typings.

© 2018 Wolfgang Schreiner.

300 7 Programming Languages

Rules for Σ ⊢ P : program:

Σ ⊢ X : parameters(Vt, Vs) Σ, Vt ⊢ C : command
Σ ⊢ program I (X)C : program

Rules for Σ ⊢ X : parameters(Vt, Vs):

Σ ⊢ ␣ : parameters(�, [])

Σ ⊢ X : parameters(Vt′, Vs′) S ∈ Σ.s ¬∃S′ ∈ Sort. ⟨V, S′⟩ ∈ Vt′
Vt = Vt′ ← {⟨V, S⟩ } Vs = Vs′ ◦ [V]
Σ ⊢ X,V : S : parameters(Vt, Vs)

Rules for Σ, Vt ⊢ C : command:

⟨V, S⟩ ∈ Vt Σ, Vt ⊢ T : term(S)
Σ, Vt ⊢ V:= T : command

S ∈ Σ.s Vt1 = Vt← {⟨V, S⟩ } Σ, Vt1 ⊢ C : command
Σ, Vt ⊢ varV : S;C : command

Σ, Vt ⊢ C1 : command Σ, Vt ⊢ C2 : command
Σ, Vt ⊢ C1;C2 : command

Σ, Vt ⊢ F : formula Σ, Vt ⊢ C1 : command Σ, Vt ⊢ C2 : command
Σ, Vt ⊢ if F thenC1 elseC2 : command

Σ, Vt ⊢ F : formula Σ, Vt ⊢ C : command
Σ, Vt ⊢ if F thenC : command

Σ, Vt ⊢ F : formula Σ, Vt ⊢ C : command
Σ, Vt ⊢ while F doC : command

Fig. 7.1 Type Checking Programs

Furthermore, given variable typings Vt1 and Vt2, we denote by Vt1 ← Vt2 the
variable typing that arises from Vt1 by adding all mappings from Vt2 (overriding all
conflicting mappings in Vt1):

.← . : VarTyping→ VarTyping
Vt1 ← Vt2 B (Vt1 \ {⟨V, S⟩ | ⟨V, S⟩ ∈ Vt1 ∧ ∃S′ ∈ Sort. ⟨V, S′⟩ ∈ Vt2}) ∪ Vt2

Now Figure 7.1 depicts a calculus for checking the type-correctness of a program.
From this, the main judgement

Σ ⊢ P : program

can be derived if program P is well-formed with respect to Σ. The auxiliary judgement

Σ ⊢ X : parameters(Vt,Vs)

can be derived if the parameter list X gives rise to the variable typing Vt ∈ VarTypingΣ
and to the sequence Vs ∈ Variable∗ of parameter names. The judgement

Σ,Vt ⊢ C : command

© 2018 Wolfgang Schreiner.

7.2 A Denotational Semantics 301

can be derived if for the given variable typing Vt, command C is well-formed. Fur-
thermore, the typing calculus refers to judgements for checking the well-formedness
of formulas and terms; these have been introduced in Section 6.2.

The remainder of this chapter is dedicated to giving a meaning to programs that
are well-formed according to this calculus.

7.2 A Denotational Semantics

Our goal is to give the programming language defined in the previous section a formal
semantics (as we have done for various languages in the preceding chapters) by
mapping every phrase of the program to a mathematical entity. This style of program
semantics is also called denotational semantics (we will subsequently also deal with
other kinds of program semantics).

Partial Functions

We will essentially define the meaning of a well-formed command, the core of a
program, as a function from states to states, where a state is a function from program
variables to values. However, since a command does not necessarily terminate, we
will actually model states as partial functions, i.e., as binary relations that map an
argument to at most one result (see also Section 5.7 where such functions were
introduced). For instance, if a command C does not terminate on an initial state
s ∈ State, the application of the partial function [C] : StateA→⊥ StateA on s is not
defined. Given a partial function f : A→⊥ B, we therefore define

domain f B {x ∈ A | ∃y ∈ B. ⟨x, y⟩ ∈ f }

to denote the set of all arguments x ∈ A for which the application of f yields a
result y ∈ B.

However, since the domain domain(f) of a partial function f : A→⊥ B is not
necessarily identical to A, the unrestricted application of a partial function (which
logically must denote a value) is problematic. We will therefore refrain from direct
applications of f but restrict its use to formulas of the form

exists y = f (x). F .

This notation was already introduced by Definition 5.13 as an abbreviation of

∃y ∈ B. ⟨x, y⟩ ∈ f ∧ F .

Here F is a subformula which may refer to the result y ∈ B of the application of f to
argument x ∈ A. The whole formula is “false” if there is no such value, i.e., f is not
defined on x. Dually, we have defined the formula

forall y = f (x). F .

© 2018 Wolfgang Schreiner.

	Part I The Foundations
	Syntax and Semantics
	Abstract Syntax
	Structural Induction
	Semantics
	Type Systems
	The Semantics of Typed Languages
	Exercises
	Further Reading

	Abstract Syntax Trees in OCaml
	The Language of Logic
	First-Order Logic
	Informal Interpretation
	Well-Formed Terms and Formulas
	Propositional Logic
	Free and Bound Variables
	Formal Semantics
	Validity and Equivalence
	Exercises
	Further Reading

	The Logic of the RISC ProofNavigator
	The Art of Reasoning
	Reasoning and Proofs
	Inference Rules and Proof Trees
	Reasoning in First Order Logic
	Reasoning by Induction
	Exercises
	Further Reading

	Reasoning with the RISC ProofNavigator
	Building Models
	Axioms and Definitions
	The Theory of Sets
	Products and Sums
	Set-Theoretic Functions and Relations
	More Type Constructions
	Implicit Definitions and Function Specifications
	Exercises
	Further Reading

	Writing Definitions in Isabelle/HOL
	Recursion
	Recursive Definitions
	Primitive Recursion
	Least and Greatest Fixed Points
	Defining Continuous Functions
	Inductive and Coinductive Relation Definitions
	Rule-Oriented Inductive and Coinductive Relation Definitions
	Inductive and Coinductive Function Definitions
	Inductive and Coinductive Proofs
	Exercises
	Further Reading

	Recursive Definitions in Isabelle/HOL

	Part II The Upper Floors
	Abstract Data Types
	Introduction
	Declarations, Signatures, and Presentations
	Algebras, Homomorphisms, and Abstract Data Types
	Loose Specifications
	Generated and Free Specifications
	Cogenerated and Cofree Specifications
	Specifying in the Large
	Reasoning about Specifications
	Exercises
	Further Reading

	Abstract Data Types in CafeOBJ and CASL
	Programming Languages
	Programs and Commands
	A Denotational Semantics
	An Operational Semantics
	The Correctness of Translations
	Programming Languages with Procedures
	Exercises
	Further Reading

	Language Semantics in OCaml and the K Framework
	Computer Programs
	References
	Index

