
Chapter 1
Syntax and Semantics

Wer die Form zerstört, beschädigt auch den Inhalt. (Who destroys the
form, also damages the content.) — Herbert von Karajan

In this chapter, we discuss the (abstract) syntax and semantics of formal languages,
how to operate on the resulting syntactic phrases, and how to reason about the
properties of these languages. We will in the later chapters apply these ideas to
the language of first-order logic as the basis of mathematics, as well as to formal
specification languages, and ultimately to programming languages.

1.1 Abstract Syntax

th To define formal languages like programming languages, we will use a variant
of the well-known BNF (Backus-Naur Form) grammars. As an example, take the
grammar

E ∈ Expression
N ∈ Numeral
E F n(N) | s(E1, E2) | p(E1, E2)
N F z() | o() | nz(N) | no(N)

which introduces two syntactic domains Expression and Numeral with typed vari-
ables E and N denoting elements of these domains. The rule for domain Expression
has three alternatives that start with symbols n, s, and p; the rule for domain Numeral
has four alternatives starting with symbols z, o, nz, and no. From this grammar, the
syntactic phrases o(), nz(o()), and no(o()) are elements of domain Numeral and the
phrase s(n(o()), p(n(nz(o())), n(no(o())))) is an element of domain Expression. The
justification of these claims, based on the formal definition of grammars and their
meaning, is given below.

Definition 1.1 (Abstract Syntax: Grammar). The grammar of an abstract syntax
contains a sequence of n ≥ 1 declarations of form
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Vari ∈ Domaini

Each declaration i introduces a unique name Domaini for a new syntactic domain and
a unique name Vari of a variable that subsequently denotes elements of this domain;
we call these variables also nonterminals.

Furthermore, for each declaration i, the grammar contains a rule of form

Vari F Alternativei,1 | . . . | Alternativei,ni
with ni ≥ 1 alternatives. Each Alternativei, j is a syntactic term

Symboli, j(Vi, j,1, . . . ,Vi, j,mi, j )

The term starts with a symbol Symboli, j that is different from the symbol associated
with any other alternative of the same rule; we call these symbols also terminals.
Furthermore, the alternative contains mi, j ≥ 0 occurrences Vi, j,k each of which
denotes one of the nonterminals Vari′ . Multiple occurrences of the same nonterminal
in an alternative may receive different subscripts for easier reference.

The elements of the domains Expression and Numeral are syntactic phrases which
we will call “expressions” and “numerals”. These phrases are constructed according
to the following definition.

Definition 1.2 (Abstract Syntax: Language). Every syntactic domain Domaini in-
troduced by the grammar of an abstract syntax denotes a set of syntactic phrases.
The first domain introduced by the grammar, is considered as the language of the
grammar. Each Domaini is defined as that set of phrases such that p is in Domaini if
and only if

• p can be derived from Vari by a sequence of substitutions of nonterminals
according to the rules of the grammar, but

• p itself does not contain a nonterminal any more.

We write the first requirement as Vari →∗ p, and formalize it as follows:

• Let p →i p′ denote that phrase p′ is identical to phrase p except that some
occurrence of nonterminal Vari in p has been substituted in p′ by one of the
alternatives Alternativei, j from the grammar rule for Vari .

• Let p→ p′ denote that p→i p′ holds for some 0 ≤ i < n, i.e., p′ equals p except
that some nonterminal in p has been substituted.

• Let p→∗ p′ denote that there exists a sequence of m ≥ 0 phrases p0, . . . , pm such
that p = p0 and pm = p′ and p0 → p1, p1 → p2, . . . , pm−1 → pm . In other
words, p′ is derived from p by a sequence of substitutions of nonterminals.

Thus a phrase p without nonterminals is in Domaini if and only if Vari →∗ p holds.
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Fig. 1.1 Abstract Syntax Trees

For the grammar given on page 3, we thus have the relations

E → s(E, E) → s(E, p(E, E)) →∗ s(n(N), p(n(N), n(N)))
N → o()
N → nz(N) → nz(o())
N → no(N) → no(o())

and therefore

E →∗ s(n(N), p(n(N), n(N))) →∗ s(n(o()), p(n(nz(o())), n(no(o()))))

Consequently the syntactic phrase s(n(o()), p(n(nz(o())), n(no(o())))) is an element of
domain Expression. The left part of Figure 1.1 depicts this phrase as an abstract
syntax tree; every node represents the root of a phrase with the symbol associated to
the phrase labeling the node.

In practice, our abstract syntax definitions will not rigorously stick to the standard
notation where in each alternative a terminal always precedes the subphrases; it
may also occur among or after the subphrases and multiple nonterminals may be
used to separate the subphrases. Furthermore, terminals need not be unique or may
be dropped at all, if the number/types of the subphrases uniquely determine the
corresponding alternative. The grammar on page 3 is therefore typically written in
the more readable form of

E ∈ Expression
N ∈ Numeral
E F N | E1 + E2 | E1 × E2
N F 0 | 1 | N0 | N1

The expression 1 + (10 × 11) of the new language (we use parentheses to clarify its
structure) matches the expression s(n(o()), p(n(nz(o())), n(no(o())))) of the original
one. As depicted in Figure 1.2, despite of the different linear representations of both
expressions, their syntax trees correspond to each other node by node.

© 2018 Wolfgang Schreiner.
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Fig. 1.2 The Abstract Syntax Trees for 1 + (10 × 11) and (1 + 10) × 11

The syntax described by these grammars is “abstract” rather than “concrete”
because it describes trees rather than strings of symbols. We are not concerned that a
string like 1 + 10 × 11 can be parsed in two different ways (giving rise to the two
different trees depicted in Figure 1.2) because we will in the following only deal
with abstract syntax trees. We will use linear notation only to describe such trees
in a convenient form; if necessary, we will use parentheses as in 1 + (10 × 11) or
(1 + 10) × 11 to make the intended tree clear.

1.2 Structural Induction

We may prove properties of syntactic domains by a particular proof principle.

Definition 1.3 (Structural Induction). Let F[p] be a statement about p and assume
that we want to prove a statement of form

For every phrase p in domain Domain, F[p].

Then it suffices to perform, for every alternative Alternative in the grammar rule for
Domain, a separate subproof where

• under the assumption that F[Var] holds for every occurrence of a nonterminal Var
from Domain in the alternative,

• it is proved that F[Alternative] holds.

Example 1.1. We want to prove for the language on page 5 the (trivial) statement

For every numeral n in Numeral, n does not contain the symbol 2.

According to the four alternatives in the grammar rule for domain Numeral, we have
to prove

© 2018 Wolfgang Schreiner.
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