Chapter 1
Syntax and Semantics

Wer die Form zerstért, beschédigt auch den Inhalt. (Who destroys the
form, also damages the content.) — Herbert von Karajan

In this chapter, we discuss the (abstract) syntax and semantics of formal languages,
how to operate on the resulting syntactic phrases, and how to reason about the
properties of these languages. We will in the later chapters apply these ideas to
the language of first-order logic as the basis of mathematics, as well as to formal
specification languages, and ultimately to programming languages.

1.1 Abstract Syntax

th To define formal languages like programming languages, we will use a variant
of the well-known BNF (Backus-Naur Form) grammars. As an example, take the
grammar

E € Expression

N € Numeral

E = n(N) | s(E,Ez) | p(E), E2)
N = 2z() | o) | nz(N) | no(N)

which introduces two syntactic domains Expression and Numeral with typed vari-
ables E and N denoting elements of these domains. The rule for domain Expression
has three alternatives that start with symbols n, s, and p; the rule for domain Numeral
has four alternatives starting with symbols z, o, nz, and no. From this grammar, the
syntactic phrases o(), nz(o()), and no(o()) are elements of domain Numeral and the
phrase s(n(o()), p(n(nz(o())), n(no(o())))) is an element of domain Expression. The
justification of these claims, based on the formal definition of grammars and their
meaning, is given below.

Definition 1.1 (Abstract Syntax: Grammar). The grammar of an abstract syntax
contains a sequence of n > 1 declarations of form

4 1 Syntax and Semantics

Var; € Domain;

Each declaration i introduces a unique name Domain; for a new syntactic domain and
a unique name Var; of a variable that subsequently denotes elements of this domain;
we call these variables also nonterminals.

Furthermore, for each declaration #, the grammar contains a rule of form

Var; := Alternative; 1 | ... | Alternative; ,,
with n; > 1 alternatives. Each Alfernative; ; is a syntactic term
SymbOli’j(V[’j,l, 0009 Vi,j,mi,j)

The term starts with a symbol Symbol; ; that is different from the symbol associated
with any other alternative of the same rule; we call these symbols also terminals.
Furthermore, the alternative contains m; ; > 0 occurrences V; j i each of which
denotes one of the nonterminals Var;. Multiple occurrences of the same nonterminal
in an alternative may receive different subscripts for easier reference.

The elements of the domains Expression and Numeral are syntactic phrases which
we will call “expressions” and “numerals”. These phrases are constructed according
to the following definition.

Definition 1.2 (Abstract Syntax: Language). Every syntactic domain Domain; in-
troduced by the grammar of an abstract syntax denotes a set of syntactic phrases.
The first domain introduced by the grammar, is considered as the language of the
grammar. Each Domain; is defined as that set of phrases such that p is in Domain; if
and only if

* p can be derived from Var; by a sequence of substitutions of nonterminals
according to the rules of the grammar, but
* p itself does not contain a nonterminal any more.

We write the first requirement as Var; —* p, and formalize it as follows:

e Let p —; p’ denote that phrase p’ is identical to phrase p except that some
occurrence of nonterminal Var; in p has been substituted in p’ by one of the
alternatives Alternative; ; from the grammar rule for Var;.

e Let p — p’ denote that p —; p’ holds for some 0 < i < n, i.e., p’ equals p except
that some nonterminal in p has been substituted.

e Let p —* p’ denote that there exists a sequence of m > 0 phrases py, . . ., p, such
that p = po and p,, = p’ and py — p1, p1 — P2, ..., Pm—1 — Pm - In other
words, p’ is derived from p by a sequence of substitutions of nonterminals.

Thus a phrase p without nonterminals is in Domain; if and only if Var; —* p holds.

© 2018 Wolfgang Schreiner.

1.1 Abstract Syntax 5

[o]

]

Fig. 1.1 Abstract Syntax Trees

For the grammar given on page 3, we thus have the relations

E — s(E,E) — s(E,p(E, E)) =" s(n(N), p(n(N), n(N)))
N — o()

N — nz(N) — nz(o())

N — no(N) — no(o())

and therefore
E =" s(n(N), p(n(N), n(N))) =" s(n(o()), p(n(nz(o())), n(no(o()))))

Consequently the syntactic phrase s(n(o()), p(n(nz(o())), n(no(o())))) is an element of
domain Expression. The left part of Figure 1.1 depicts this phrase as an abstract
syntax tree; every node represents the root of a phrase with the symbol associated to
the phrase labeling the node.

In practice, our abstract syntax definitions will not rigorously stick to the standard
notation where in each alternative a terminal always precedes the subphrases; it
may also occur among or after the subphrases and multiple nonterminals may be
used to separate the subphrases. Furthermore, terminals need not be unique or may
be dropped at all, if the number/types of the subphrases uniquely determine the
corresponding alternative. The grammar on page 3 is therefore typically written in
the more readable form of

E € Expression

N € Numeral

E =N | E\+E | E\XE>

N=201]1] NO | M
The expression 1 + (10 X 11) of the new language (we use parentheses to clarify its
structure) matches the expression s(n(o()), p(n(nz(o())), n(no(o())))) of the original

one. As depicted in Figure 1.2, despite of the different linear representations of both
expressions, their syntax trees correspond to each other node by node.

© 2018 Wolfgang Schreiner.

6 1 Syntax and Semantics

Fig. 1.2 The Abstract Syntax Trees for 1 + (10 X 11) and (1 + 10) X 11

2

The syntax described by these grammars is “abstract” rather than “concrete
because it describes trees rather than strings of symbols. We are not concerned that a
string like 1 + 10 x 11 can be parsed in two different ways (giving rise to the two
different trees depicted in Figure 1.2) because we will in the following only deal
with abstract syntax trees. We will use linear notation only to describe such trees
in a convenient form; if necessary, we will use parentheses as in 1 + (10 x 11) or
(1 +10) x 11 to make the intended tree clear.

1.2 Structural Induction

We may prove properties of syntactic domains by a particular proof principle.

Definition 1.3 (Structural Induction). Let F[p] be a statement about p and assume
that we want to prove a statement of form

For every phrase p in domain Domain, F[p].

Then it suffices to perform, for every alternative Alternative in the grammar rule for
Domain, a separate subproof where

¢ under the assumption that F[Var] holds for every occurrence of a nonterminal Var
from Domain in the alternative,
 itis proved that F[Alternative] holds.

Example 1.1. We want to prove for the language on page 5 the (trivial) statement
For every numeral n in Numeral, n does not contain the symbol 2.

According to the four alternatives in the grammar rule for domain Numeral, we have
to prove

© 2018 Wolfgang Schreiner.

	Part I The Foundations
	Syntax and Semantics
	Abstract Syntax
	Structural Induction
	Semantics
	Type Systems
	The Semantics of Typed Languages
	Exercises
	Further Reading

	Abstract Syntax Trees in OCaml
	The Language of Logic
	First-Order Logic
	Informal Interpretation
	Well-Formed Terms and Formulas
	Propositional Logic
	Free and Bound Variables
	Formal Semantics
	Validity and Equivalence
	Exercises
	Further Reading

	The Logic of the RISC ProofNavigator
	The Art of Reasoning
	Reasoning and Proofs
	Inference Rules and Proof Trees
	Reasoning in First Order Logic
	Reasoning by Induction
	Exercises
	Further Reading

	Reasoning with the RISC ProofNavigator
	Building Models
	Axioms and Definitions
	The Theory of Sets
	Products and Sums
	Set-Theoretic Functions and Relations
	More Type Constructions
	Implicit Definitions and Function Specifications
	Exercises
	Further Reading

	Writing Definitions in Isabelle/HOL
	Recursion
	Recursive Definitions
	Primitive Recursion
	Least and Greatest Fixed Points
	Defining Continuous Functions
	Inductive and Coinductive Relation Definitions
	Rule-Oriented Inductive and Coinductive Relation Definitions
	Inductive and Coinductive Function Definitions
	Inductive and Coinductive Proofs
	Exercises
	Further Reading

	Recursive Definitions in Isabelle/HOL

	Part II The Upper Floors
	Abstract Data Types
	Introduction
	Declarations, Signatures, and Presentations
	Algebras, Homomorphisms, and Abstract Data Types
	Loose Specifications
	Generated and Free Specifications
	Cogenerated and Cofree Specifications
	Specifying in the Large
	Reasoning about Specifications
	Exercises
	Further Reading

	Abstract Data Types in CafeOBJ and CASL
	Programming Languages
	Programs and Commands
	A Denotational Semantics
	An Operational Semantics
	The Correctness of Translations
	Programming Languages with Procedures
	Exercises
	Further Reading

	Language Semantics in OCaml and the K Framework
	Computer Programs
	References
	Index

