
Formal Methods in Software Development
Exercise 10 (January 28)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• a section for each part of the exercise with the requested deliverables and optionally
any explanations or comments you would like to make;

2. the file with the Promela model used in the exercise.

Email submissions are not accepted.

1

Exercise 10: Model Checking Termination Detection in Spin

We consider a system of n processes p0, . . . , pn−1 which are linked by pairs of n channels
l0, . . . , ln−1 and r0, . . . , rn−1. Each process pi can receive messages from channels li and ri and
send messages to channels l(i+n−1) mod n and r(i+1) mod n, i.e., the processes are organized in a
bidirectional “ring”.

Each process may be active or passive; initially all processes are active. An active process may
send messages to its ring neighbors or it may become passive. Every process (active or passive)
may receive messages from its ring neighbors; if it was passive, it thus becomes active again.

The system is terminated if all processes are passive and there are no messages in the channels.
If the system is terminated, it stays so (termination is a stable property). Our goal is to model
and check an algorithm (due to Dijkstra and Safra) that allows Process 0 to detect whether the
system has terminated.

File DijkstraSafra.txt contains a Promela model of the system described above. To limit its
state space, every process contains a variable counter that denotes the difference of the number
of messages that the process has sent and the number of messages it has received. A process is
only allowed to send a new message, if this difference is less than m.

Your first task is to validate this system as follows:

1. Simulate for n = 3 and m = 3 a random execution (choose a random seed value such that
the system runs a significant number of steps before termination).

2. Formulate for n = 3 the following properties:

a) The system eventually terminates.

b) The system does never terminate.

c) Whenever the system terminates, it stays terminated forever.

Please use sufficiently many parentheses to make the parsing of formulas unique (do e.g.
not write []p->q but write ([](p))->(q) or write []((p)->(q))); in particular always
use parentheses for the bodies of temporal formulas ([](x>0) or <>(x==y)).

Check these properties with Spin for m = 1. If a property is violated, visualize in the
simulator the violating run. Analyze the results in detail and explain whether they indicate
an error in the model or not.

Check the output of Spin carefully to determine whether an error has occurred during
model checking (the message error:0 may be even given, if the model checking has been
prematurely aborted or not all of the state space has been explored). If the message “error:
max search depth too small” appears, increase in the “Advanced Parameter Settings” the
parameter “Maximum Search Depth”. If the message “pan: reached -DMEMLIM bound”
appears, increase the parameter “physical memory available”.

Your next task is to extend the Promela model by the termination detection algorithm described
below. The Promela model already contains all the necessary variable declarations; all you have
to do is to extend the do loop by additional clauses of form

2

:: atomic { guard -> stat; ...; stat; }

You do not have to change any of the already given clauses.

In detail the algorithm works as follows:

• Every process has a color which can be “black” or “white”. Initially all processes are
white; if a process receives a message, it becomes black.

• Process 0 uses a variable termination to recall the status of the termination detection.
Initially its value is 0 (no termination detection is running); when Process 0 starts the
detection, it sets its value to 1 (a termination detection is running). When the detection
process is completed, Process 0 sets its value either back to 0 (termination detection has
failed, another termination detection may be attempted later) or to 2 (termination detection
has been successfully completed, i.e., termination has been detected).

• Process 0 may start at any time (if termination = 0), a termination detection by sending a
“token” around the ring of processes; for this purpose, we assume additional n channels
t0, . . . , tn−1 where process i receives a token from channel ti and sends a token to channel
t(i+1) mod n. A token consists of two values: a “token color” and a “token counter”.
Process 0 starts the termination detection by sending a token with color “white” and
counter 0 to Process 1; it also sets its own color to “white” (again) and termination to 1.

• If Process i , 0 is passive, it accepts a token from its predecessor in the ring and forwards
a new token to its successor. The counter of the new token is the sum of the counter of the
process and the counter of the received token. If the process is “black”, the color of the
new token is also black; otherwise, it is the color of the received token. In any case, the
color of the process becomes “white” (again); its counter remains unchanged.

• If Process 0 receives a token from its predecessor, the token has traveled the whole ring
and the termination detection attempt is completed. Now there are two possibilities:

– If Process 0 is passive and its color is white and the color of the token is white and
the sum of the process counter and of the counter of the received token is 0, then
termination has been detected; in that case, Process 0 sets termination to 2.

– Otherwise, termination has not been detected and Process 0 sets termination to 0.

To model this algorithm in Promela, three clauses are sufficient (one for Process 0 initiating the
termination detection, one for Process i , 0 accepting and forwarding a token, one for Process 0
receiving the token and completing the detection attempt (successfully or unsuccessfully).

By above algorithm, the system blocks (no transition is enabled any more) if and only if the
system has terminated and termination = 2. After a system has terminated, typically two
detection rounds have to be performed to detect termination: in the first round the passing of
the token colors all black processes white (but the token itself becomes black); in the second
round, the token remains white (which indicates that no more message was sent since the last
round). When this token is received by Process 0 (which also indicates that all other processes
have been passive), it carries as its counter the sum of the counters of all other processes; if sum

3

of this counter and the counter of Process 0 is 0, there are no more messages in the network. If
Process 0 itself is passive and white, we may thus conclude termination.

Your final task is to validate and verify this algorithm as follows:

1. Simulate for n = 3 and m = 3 a random execution of the system (choose the random
seed value such that the system runs a significant number of steps before termination) and
check whether the algorithm behaves as expected and the system terminates in a state with
termination = 2.

2. Formulate for n = 3 the following properties:

a) Always, if termination has been detected, the system is indeed terminated.

b) Whenever the system terminates, this will be eventually detected.

c) If a termination detection is started, it will be eventually (successfully or unsuccess-
fully) completed.

In all these formulations you only need refer to the global variables already declared in the
given Promela model (not to the local variables).

Check these properties with Spin for m = 1. If a property is violated, visualize in the
simulator the violating run. Analyze the results in detail and explain whether they indicate
an error in the model or not.

Again use sufficiently many parentheses in your formulas and check the output of Spin
carefully to determine whether an error has occurred.

The deliverables of the exercise consist of

• The completed Promela model.

• Screenshots of (the final parts of) the simulation runs.

• The LTL properties.

• The output of Spin for each model check of a property.

• Screenshots of counterexample simulations (if any).

• For each model check, an interpretation (did the requested property hold or not and why)?

Some hints/reminders on Promela are given below:

• The Promela version of if (E) C1 else C2 is

if
:: E -> C1
:: else -> C2
fi

The Promela version of if (E) C is

4

if
:: E -> C
:: else -> skip
fi

The Promela version of while (E) C is

do
:: E -> C
:: else -> break
od

In all cases, if you forget the else branch, the system will deadlock in a state that is not
allowed by all the conditions in the other branches.

• The expression c ? [M] is true if and only if a channel c holds a message of type M .
The statement c ? M will then remove the message. A typical application is in

do/if
:: cond && c ? [M] ->
c ? M;
...

:: ...
od/fi;

where in a certain situation only a certain kind of message may be accepted.

• In the attached Promela model, the processes receive identifiers 1,2,3,. . . i.e.

p[1]@label

indicates that p(0) is at the position indicated by label (see also the simulations for the
identifiers of the individual processes).

5

