
Formal Methods in Software Development
Exercise 5 (December 3)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• a section for each part of the exercise with the requested deliverables and optionally
any explanations or comments you would like to make;

2. the RISCAL specification (.txt) file(s) used in the exercise;

3. the .java/.theory file(s) used in the exercise,

4. the task directory (.PETASKS*) generated by the RISC ProgramExplorer.

Email submissions are not accepted.

1



Exercise 5a (30P): Proving Verification Conditions

Take the five verification conditions A, B1, B2, C, D manually derived in Exercise 4 and checked
therewith RISCAL (if you did not solve that exercise, youmay ask a colleague for these conditions
or take them from the distributed sample solution).

The goal of this exercise is to prove these conditions with the help of the RISC ProofNavigator
(in the style of the verification of the “linear search” algorithm presented in class) for arrays of
arbitrary length n > 0 and non-negative integer elements of arbitrary size.

For this purpose, write a declaration file with the following structure

newcontext "exercise5a";

// arrays as presented in class (except ELEM = INT)
ELEM: TYPE = INT;
...
// program variables and mathematical constants
a: ARR; n: INT;
...

In this formalization, extend pre-, post-condition, and invariant by the formula n = length(a)
(which implies n >= 0); again you may omit clauses that state that a and n remain unchanged.

All proofs can be performed with the commands expand, scatter, instantiate, split, and
auto (it may be sometimes wise to use the goal command to switch the goal formula).

The deliverables for this exercise consists of the following items:

1. a (nicely formatted) copy of the ProofNavigator file (included as text, not as screenshots);

2. for each proof of a formula F, a readable screenshot of the RISC ProofNavigator after
executing the command proof F (displaying the proof tree) with explicit statements
whether the proof succeeded;

3. if any check gives an error respectively any proof fails, a detailed explanation of the
estimated reason of the failure.

Exercise 5b (70P): Proving Program Correctness

Similar to Exercise 1, we consider the following problem: given an array a of n non-negative
integer elements, find the index p of the maximum element of a. However, now n = 0 is also
allowed; if n = 0, then p shall be −1. The goal of this exercise is to take the following Java
program that solves this problem, and to use the RISC ProgramExplorer to annotate the program
with specification and annotations, analyze its semantics, and verify its correctness with respect
to its specification:

2



class Exercise5
{
// returns index of maximum element in array a
// of non-negative integers (-1, if a is empty)
public static int maximum(int[] a)
{
int n = a.length;
if (n == 0)
return -1;

else
{
int j = 0;
int m = a[0];
int i = 1;
while (i < n)
{
if (a[i] > m)
{
j = i;
m = a[j];

}
i = i+1;

}
return j;

}
}

}

In detail, perform the following tasks:

1. (15P) For a first validation of specification and invariants, take the RISCAL specification
file maximum.txt which embeds an algorithmic version of above code in a procedure
maximumIndex and equip this procedure with suitable pre-conditions, post-conditions,
invariants, and termination term. Validate (for moderately large values N > 0 and M > 0)
the annotations (check the procedure and check the derived verification conditions). These
validated annotations shall then serve as the basis of the further proof-based verification.

2. (15P)Create a separate directory inwhich you place the file Exercise5.java that contains
above Java procedure, cd to this directory, and start ProgramExplorer & from there.
The task directory .PETASKS* is then generated as a subdirectory of this directory. (If
you use the virtual course machine, place the directory for this exercise into the home
directory of the guest user; in particular, do not place it into the directory shared with the
host computer).

Specify the method by an appropriate contract (clauses requires, assignable, and
ensures) and annotate the loop with an appropriate invariant and termination term (do
not forget the non-null status of the array).

Investigate the computed semantics (transition relation and termination condition) of the

3



method and give an informal interpretation of the semantics (and your explanation whether
respectively why it seems adequate) in sufficient detail.

3. (40P) Verify all (non-optional) tasks generated from the method. Only few of them should
require interactive proofs; most of these can probably be performed just by application of
decompose, split, scatter and auto.

The onlymore complex cases should be the proofs that the invariant is preserved
and that the method body ensures the postcondition; here it is wise to first
perform a decompose and then a split corresponding to the two branches in
the method respectively the loop body (if you immediately perform a scatter,
you have to make a split in each of the resulting proof obligations which
considerably blows up the proof).

Furthermore, if a proof results in the knowledgeexecutes_(s) andreturns_(s),
this indicates that program state s is both the result of a normal execution and
of executing the return statement, which is a contradiction; this contradiction
can be exhibited and the the proof situation thus closed by executing the proof
command expand executes_, returns_;.

The deliverables of this exercise consist of

1. a nicely formatted copy of the RISCAL specification (included as text, not as screenshots);

2. the outputs of the checks (included as text, not as screenshots) with explicit statements
whether the checks succeeded;

3. a (nicely formatted) copy of the annotated .java file used in the exercise,

4. a screenshot of the corresponding “Semantics” view and an informal interpretation of the
method semantics;

5. a screenshot of the “Analysis” view of the RISC ProgramExplorer with the specifica-
tion/implementation of the method and the (expanded) tree of all (non-optional) tasks
generated from the method,

6. for each task generated by the RISC ProgramExplorer an explicit statement whether the
goal of the task was achieved or not and, if yes, how (fully automatic proof, immediate
completion after starting an interactive proof, complete or incomplete interactive proof),

7. for each truly interactive proof, a screenshot of the corresponding “Verify” view with the
proof tree.

4


