Extended Static Checking with ESC/Java2

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at

1. Overview

2. Examples

- 3. Handling of Loops
- 4. Internal Operation

ESC/Java2

Latest outcome of a series of projects.

- Compaq: ESC/Modula-3 (-1996), ESC/Java (-2000).
- Univ. Nijmegen (-2005), Univ. College Dublin (2005-): ESC/Java2.
- http://kindsoftware.com/products/opensource/ESCJava2/
- Extended Static Checking for Java.
 - Find programming errors by automated reasoning techniques.
 - Simplified variant of Hoare/weakest precondition calculus.
 - Full Java 1.4 (much of Java 1.5), fully automatic.
 - Feels like type-checking.
 - Uses JML for specification annotations (ESC/Java2).
 - **ESC**/Modula-3 and **ESC**/Java had their own annotation language.
- Based on the Simplify prover.
 - Greg Nelson et al, written in Modula-3 for ESC/Modula-3.

Finding errors in a program rather than verifying it.

Wolfgang Schreiner

http://www.risc.jku.at

Theoretical Limitations

ESC/Java2 is not sound.

- Soundness: if $\{P\}c\{Q\}$ does not hold, it cannot be proved.
 - **ESC**/Java2 may not produce warning on wrong $\{P\}c\{Q\}$.
- Sources of unsoundness:
 - Loops are handled by unrolling, arithmetic is on Z.
 - JML annotation assume adds unverified knowledge.
 - Object invariants are not verified on all existing objects.
- ESC/Java2 is not complete.
 - **Completeness:** if $\{P\}c\{Q\}$ cannot be proved, it does not hold.
 - ESC/Java2 may produce superfluous warnings.
 - Sources of incompleteness:
 - Simplify's limited reasononing capabilities (arithmetic, quantifiers).
 - JML annotation nowarn to turn off warnings.
 - Potentially not sound.

Not every error is detected, not every warning actually denotes an error.

Wolfgang Schreiner

http://www.risc.jku.at

Practical Usefulness

ESC/Java2 detects many (most) programming errors.

- Array index bound violations.
- Division by zero.
- Null-pointer dereferences.
- Violation of properties depending on linear arithmetic.

...

- Forces programmer to write method contracts.
 - Especially method preconditions.
 - Better documented and better maintainable code.

A useful extension of compiler type checking.

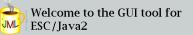
1. Overview

2. Examples

- 3. Handling of Loops
- 4. Internal Operation

Use of ESC/Java2

Command-line interface.


escjava2 [*options*] *File*.java

Graphical interface.

java -jar esctools2.jar

Eclipse 3.5 plugin.
 See web site.

escjava2 -help.

This tool helps find errors in your JML specifications and checks the consistency of the specifications and Java code by applying static checking and automated reasoning tools. To get started:

- 1) Set your CLASSPATH and files to be processed on the "Project Files" tab.
- 2) Set the path to the SIMPLIFY executable for your platform on the "ESC Options" tab.
- 3) Press the check button and review the results on the "Results" tab.

Authors:

- GUI tool: David Cok
- ESC/Java2 (http://www.niii.kun.nl/ita/sos/projects/escframe.html): David Cok, Joe Kiniry (http://kind.cs.kun.nl/~kiniry)
- ESC/Java: DEC/Compaq SRC Group (http://research.compaq.com/SRC/esc)
- JML: Gary Leavens and group

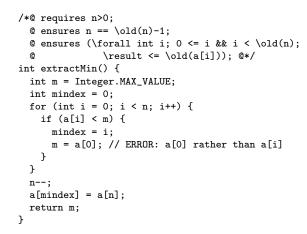
Tutorial Program


```
class Bag {
  int[] a; int n;
 Bag(int[] input) {
    n = input.length; a = new int[n];
    System.arraycopy(input, 0, a, 0, n);
  }
  int extractMin() {
    int m = Integer.MAX_VALUE;
    int mindex = 0;
    for (int i = 1; i <= n; i++) {</pre>
      if (a[i] < m) \{ mindex = i; m = a[i]; \}
    }
    n--:
    a[mindex] = a[n];
   return m;
  }
}
```



```
class Bag {
  /*@ non_null @*/ int[] a;
  int n; /*@ invariant 0 <= n && n <= a.length; @*/</pre>
  /*@ requires input != null; @*/
  Bag(int[] input) {
    . . .
  }
  /*@ requires n>0; @*/
  int extractMin() {
    . . .
  }
```

Invariants and preconditions have to be added to pass the checking.


Wolfgang Schreiner

Tutorial Program: Guarantees

Postconditions may be added (and are checked to some extent).

Tutorial Program: Wrong Guarantees

But also this program passes the check!

Wolfgang Schreiner


```
//@ ensures \result == i;
static int f2(int i)
ł
 int j = i+1;
  int k = 3*j;
  return k-2*i-3;
}
//@ requires i < j;</pre>
//@ ensures \result >= 1;
static int f4(int i, int j)
ł
  return 2*j-2*i-1;
}
```

Masters linear integer arithmetic with inequalities.

Wolfgang Schreiner


```
/*@ ensures (\result == i || \result == j || \result == k)
@ && (\result <= i && \result <= j && \result <= k); @*/
static int min(int i, int j, int k)
{
    int m = i;
    if (j < m) m = j;
    if (k < m) m = k;
    return m;
}</pre>
```

Masters conditionals.


```
/*@ requires a != null;
  @ ensures (\forall int i; 0 <= i && i < a.length-1; a[i] <= a[i+1])</pre>
  @*/
static void insertSort(int[] a)
ł
  int n = a.length;
  for (int i = 1; i < n; i++) {
    int x = a[i]:
    int j = i-1;
    while (j >= 0 && a[j] > x) {
      a[i+1] = a[i];
      j = j-1;
    }
    a[j+1] = x;
 }
}
```

Detects many errors in array-based programs.

Wolfgang Schreiner


```
//@ ensures \result == i*i;
static int f1(int i)
{
    return i*(i+1)-i;
} //@ nowarn Post;
//@ ensures \result >= 0;
static int f2(int i)
{
    return i*i;
} //@ nowarn Post;
```

Does not master non-linear arithmetic.


```
//@requires n >= 0;
static void loop(final int n)
{
    int i=0;
    while (i < n)
    {
        i = i+1;
    }
      //@ assert i==n;
    //@ assert i<3;
}</pre>
```

Does only partially master post-conditions of programs with loops.

- 1. Overview
- 2. Examples
- 3. Handling of Loops
- 4. Internal Operation

Loop Unrolling

We will now use a high-level description of the ESC/Java2 handling of loops by loop unrolling.

Original program.

while (e) c;

Unrolling the loop once.

if (e) { c; while (e) c; }

Unrolling the loop twice.

if (e) { c; if (e) { c; while (e) c; } }

Faithful loop unrolling preserves the meaning of a program.

Let us consider how verification is affected by loop unrolling.

• Original:
$$\{P\}$$
 while $(e) c \{Q\}$
• $\underline{P \Rightarrow wp(while(e) c, Q)}$ (0)
• Unrolled: $\{P\}$ if $(e) \{c; \text{ if } (e) \{c; while (e) c\}\} \{Q\}$
• $(\underline{P \land e}) \Rightarrow Q$ (1)
• $\{P \land e\} c; \text{ if } (e) \{c; while (e) c\} \{Q\}$
• $(\underline{P \land e\} c \{\neg e \Rightarrow Q\}}$ (2)
• $(\underline{P \land e\} c \{\neg e \Rightarrow wp(c; while (e) c, Q)\}$ (3)

Three obligations (1-3) equivalent to original obligation (0).

ESC/Java2 Loop Unrolling

Faithful unrolling

 $\{P\}$ if (e) $\{c;$ if (e) $\{c;$ while (e) $c\}$ $\{Q\}$

ESC/Java2 default unrolling

 $\{P\}$ if (e) $\{c; if (e) \{ assume false; \} \} \{Q\}$

- Not unrolled execution of loop is replaced by "assume false".
- assume false: from false, everything can be concluded.
- No more verification takes place in this branch.

Only simplified program is verified by ESC/Java2.

Let us consider the simplified verification problem.

• {P} if(e) {c; if(e) { assume false}} {Q}
•
$$(P \land \neg e) \Rightarrow Q$$
 (1)
• $\overline{\{P \land e\} c; if(e)}$ { assume false}} {Q}
• $\frac{\{P \land e\} c \{\neg e \Rightarrow Q\}}{\{P \land e\} c \{e \land false \Rightarrow Q\}}$ (2)
• $\overline{\{P \land e\} c \{rue\}}$ \Leftrightarrow true

Proof obligation (3) of the original problem is dropped.

Expressive Power of Simplified Verification

Checked proof obligations

•
$$(P \land \neg e) \Rightarrow Q$$

Postcondition holds, if loop terminates after zero iterations.

•
$$\{P \land e\} \ c \ \{\neg e \Rightarrow Q\}$$

Postcondition holds, if loop terminates after one iteration.

Unchecked proof obligation

• $\{P \land e\} \ c \ \{e \Rightarrow wp(c; while \ (e) \ c, Q)\}$

Postcondition holds, if loop terminates after more than one iteration.

Only partial verification of loops in ESC/Java 2.

What does this mean for the whole verification process?

Example program:

```
while (e) { c_1 } c_2
```

Verified program:

if (e) { c_1 ; if (e) { assume false } } c_2 if (e) { c_1 ; if (e) { assume false } c_2 } else c_2 if (e) { c_1 ; if (e) { assume false; c_2 } else c_2 } else c_2 if (e) { c_1 ; if (e) skip else c_2 } else c_2 if (e) { c_1 ; if (-e) c_2 } else c_2

In verified program, only runs are considered where

- loop terminates after at most one iteration, i.e.
- execution of c_2 is only considered in such program runs.

After a loop, only special contexts are considered for verification.

ESC/Java2 control of loop unrolling

```
escjava2 -loop n.5
```

- Loop is unrolled n times (default n = 1).
- **.**5: also loop condition after *n*-th unrolling is checked.
- Preconditions.
 - All preconditions are checked that arise from the loop expression and the loop body in the first *n* iterations.
- Postconditions.
 - It is checked whether the postcondition of the loop holds in all executions that require at most *n* iterations.

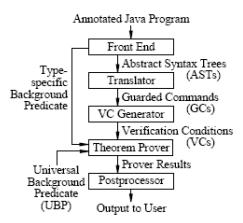
All program paths with more than n iterations are "cut off".

Unsoundness of Loop Unrolling

Unsoundness of strategy can be easily shown.

For unrolling with n < 1000, this postcondition is true.

For any execution, that terminates after at most n iterations (i.e. none), the postcondition is true.


For true verification of loop programs, reasoning about a loop invariant is required.

- 1. Overview
- 2. Examples
- 3. Handling of Loops
- 4. Internal Operation

Internal Operation

From Leino et al (2002): Extended Static Checking for Java.

Wolfgang Schreiner

http://www.risc.jku.at

Java program is first translated into a much simpler language.

• Variant of Dijkstra's guarded command (GC) language.

cmd ::= variable = expr | skip | raise | assert expr | assume expr |
var variable+ in cmd end | cmd ; cmd | cmd ! cmd | cmd [] cmd.

Actually, first a sugared version of the language.

cmd ::= . . . |

check $expr \mid call p(expr^*) \mid loop \{ invariant expr \} cmd end.$

Then desugar program, i.e. translate it into core language.

Various desugaring strategies possible.

- Then generate verification conditions for program in core language.
 - Verification conditions are forwarded to theorem prover.

We first discuss the semantics of the core language and then the translation process Java \to sugared GC \to core GC.

Print guarded command version of language. escjava2 -pgc Simple.java Java program. int y; if $(x \ge 0)$ y = x; else y = -x; Guarded command program (simplified). VAR int v IN ASSUME integralGE(x, 0); y = x; Π ASSUME boolNot(integralGE(x,0)); y = -x; FND

Low-level program; only necessary for understanding details.

Wolfgang Schreiner

Defined by weakest preconditions.

wp(cmd, N, X)

Beakest condition on state in which *cmd* may be executed such that

- either *cmd* terminates normally in a state in which *N* holds,
- or *cmd* terminates exceptionally in a state in which X holds.
- All commands in the core language terminate.
 - No distinction to weakest liberal precondition.
- Relationship to total correctness.

 $\{P\} \ c \ \{Q\} \Leftrightarrow (P \Rightarrow wp(c, Q, \mathsf{false})))$

Two ways how a command may terminate.

$$\begin{split} & \mathsf{wp}(x = e, N, X) \Leftrightarrow N[e/x] \\ & \mathsf{wp}(\mathsf{skip}, N, X) \Leftrightarrow N \\ & \mathsf{wp}(\mathsf{raise}, N, X) \Leftrightarrow X \\ & \mathsf{wp}(\mathsf{assert}\ e, N, X) \Leftrightarrow (e \Rightarrow N) \land (\neg e \Rightarrow X) \\ & \mathsf{wp}(\mathsf{assume}\ e, N, X) \Leftrightarrow (e \Rightarrow N) \\ & \mathsf{wp}(\mathsf{var}\ x_1, \dots x_n \ \mathsf{in}\ c, N, X) \Leftrightarrow \forall x_1, \dots, x_n : \mathsf{wp}(c, N, X) \\ & \mathsf{wp}(c_1; c_2, N, X) \Leftrightarrow \mathsf{wp}(c_1, wp(c_2, N, X), X) \\ & \mathsf{wp}(c_1!c_2, N, X) \Leftrightarrow \mathsf{wp}(c_1, N, wp(c_2, N, X)) \\ & \mathsf{wp}(c_1[c_2, N, X) \Leftrightarrow \mathsf{wp}(c_1, N, X) \land \mathsf{wp}(c_2, N, X)) \end{split}$$

Tuple of postconditions has to be considered.

 $wp(skip, N, X) \Leftrightarrow N$ $wp(c_1; c_2, N, X) \Leftrightarrow wp(c_1, wp(c_2, N, X), X)$

- Interpretation of skip rule
 - The command terminates normally but not exceptionally.
 - Thus the normal postcondition *N* must hold before the call.
- Interpretation of command compositon rule (;).
 - If c₁ terminates exceptionally, the exceptional postcondition X must hold (because c₂ is not executed).
 - If c_1 terminates normally, it must be in a state such that the execution of c_2 ensures the required postconditions N and X.

Slight generalization of the basic rule of the weakest precondition of command composition.

 $wp(raise, N, X) \Leftrightarrow X$ $wp(c_1!c_2, N, X) \Leftrightarrow wp(c_1, N, wp(c_2, N, X))$

- Interpretation of raise rule
 - The command terminates not normally but exceptionally.
 - Thus the exceptional postcondition X must hold before the call.
- Interpretation of signal handling rule (!).
 - If c₁ terminates normally, the normal postcondition N must hold (because c₂ is not executed).
 - If c₁ terminates exceptionally, it must be in a state such that the execution of c₂ ensures the required postconditions N and X.

Note the symmetry of command composition and exception handling.

Example

What is the weakest preconditon such that

$$(x = x + 1; x = x - 2) ! x = x + 2$$

normally terminates in a state with x = 3?

$$wp(((x = x + 1; x = x - 2) | x = x + 2), x = 3, false)
\Leftrightarrow wp((x = x + 1; x = x - 2), x = 3, wp(x = x + 2, x = 3, false))
\Leftrightarrow wp((x = x + 1; x = x - 2), x = 3, x + 2 = 3)
\Leftrightarrow wp((x = x + 1; x = x - 2), x = 3, x = 1)
\Leftrightarrow wp(x = x + 1, wp(x = x - 2, x = 3, x = 1))
\Leftrightarrow wp(x = x + 1, x - 2 = 3, x = 1)
\Leftrightarrow wp(x = x + 1, x = 5, x = 1)
\Leftrightarrow x + 1 = 5
x = 4$$

Example

What is the weakest preconditon such that

$$(x = x + 1;$$
raise; $x = x - 2) ! x = x + 2$

normally terminates in a state with x = 3?

$$wp(((x = x + 1; raise; x = x - 2) ! x = x + 2), x = 3, false)$$

$$\Leftrightarrow wp((x = x + 1; raise; x = x - 2), x = 3, wp(x = x + 2, x = 3, false))$$

$$\Leftrightarrow wp((x = x + 1; raise; x = x - 2), x = 3, x + 2 = 3)$$

$$\Leftrightarrow wp((x = x + 1; raise; x = x - 2), x = 3, x = 1)$$

$$\Leftrightarrow wp(x = x + 1, wp((raise; x = x - 2), x = 3, x = 1), x = 1)$$

$$\Leftrightarrow wp(x = x + 1, wp(raise; wp(x = x - 2, x = 3, x = 1), x = 1)$$

$$\Leftrightarrow wp(x = x + 1, x = 1, x = 1)$$

$$\Leftrightarrow x + 1 = 1$$

$$\Leftrightarrow x = 0$$

The guarded command language does not have while loops.

Translation of while (e) { c_1 } c_2

```
loop if (\neg e) raise; c_1 end ! c_2
```

- Construct **loop** runs forever.
 - Loop is terminated by signalling an exception in the body.
 - Exception is caught and c_2 is executed.

Replacement of while loops by core loop and exceptions.

The guarded command language also does not have conditionals.

• Translation of if (e) c_1 else c_2 .

```
( assume e ; c_1 ) [] ( assume \neg e ; c_2 )
```

Translation of if (e) c.

(assume e ; c) [] (assume $\neg e$; skip)

- Non-deterministic selection of two commands.
 - One of two branches is exexecuted.
 - Each branch is guarded by a condition which can be assumed to be true in that branch
 - Conditions are mutually exclusive, thus actually only one branch can be executed.

Replacement of conditionals by guarded selection of commands.

Handling of preconditions.

check expr;

Occurs e.g. in translation of object dereferencing v = o.f check o != null; v = select(o, f)

Possible translation of **check** expr.

1. Treat violation as error.

assert expr

assume expr

3. Treat violation as runtime exception.

if (!expr) raise

Translation partially controlled by nowarn annotations.

Wolfgang Schreiner

http://www.risc.jku.at

Call of a procedure r that is allowed to modify a variable x.

call $r(e_0, e_1)$

```
Translation (simplified):
        var p_0 p_1 in
           p_0 = e_0; p_1 = e_1;
           check precondition (involves p_0, p_1);
           var x_0 in
             x_0 = x:
             modify x;
             assume postconditions (involves p_0, p_1, x_0, x);
           end
        end
  modify x desugars to
        var x' in x = x' end
```

Reduce complex procedure call rule to simpler constructs.

Loops

Execution of a core loop.

loop { invariant *expr* } *cmd* end

Handling by loop unrolling.
 check expr, cmd;

check expr; cmd;

check expr; assume false.

By default, loops are unrolled just once.

escjava2 -loop 1.5

We have already investigated the consequence of this.

For program in core language, verification conditions are generated.

Pretty-print generated verification conditions.

```
escjava2 -v -ppvc Simple.java
. . .
(OR.
  (AND (\geq |x| 0) (EQ |@true| |@true|))
  (AND
    (NOT (>= |x| 0))
    (EQ |@true| |@true|)
  )
  (EQ |y| (- 0 |x|))
  . . .
```

Hardly readable, only for understanding details.

Wolfgang Schreiner

. . .

Simplify


```
Simplify(1)
NAME
Simplify -- attempt to prove first-order formulas.
SYNTAX
Simplify [-print] [-ax axfile] [-nosc] [-noprune]
[-help] [-version] [file]
```

DESCRIPTION *Simplify* accepts a sequence of first order formulas as input, and attempts to prove each one. *Simplify* does not implement a decision procedure for its inputs: it can sometimes fail to prove a valid formula. But it is conservative in that it never claims that an invalid formula is valid.

• • •

Formula Syntax


```
formula ::= "(" ( AND | OR ) { formula } ")" |
            "(" NOT formula ")" |
            "(" IMPLIES formula formula ")" |
            "(" IFF formula formula ")" |
            "(" FORALL "(" var* ")" formula ")" |
            "(" EXISTS "(" var* ")" formula ")" |
            "(" PROOF formula* ")" |
            literal
literal ::= "(" ( "EQ" | "NEQ" | "<" | "<=" | ">" | ">=" )
            term term ")" |
            "(" "DISTINCT" term term+ ")" |
             "TRUE" | "FALSE" | <propVar>
term ::= var | integer | "(" func { term } ")"
```

Formula Syntax

The formula

```
| (DISTINCT term1 ... termN)
```

```
represents a conjunction of distinctions between all pairs of terms in the list.
```

```
The formula
```

| (PROOF form1 ... formN)

```
is sugar for
```

(AND (IMPLIES form1 form2) (IMPLIES (AND form1 form2) form3) ... (IMPLIES (AND form1 ... formN-1) formN))

"func"'s are uninterpreted, except for "+", "-", and "*", which represent the obvious operations on integers.

Default Axioms


```
(FORALL (a i x k)
   (EQ (select (store a i x) i k) x))
(FORALL (a i n)
   (EQ (len (subMap a i n)) n))
(FORALL (a i n j k)
   (EQ (select (subMap a i n) j k) (select a (+ i j) k)))
(FORALL (a i x)
   (EQ (len (store a i x)) (len a)))
(FORALL (a i n b)
   (EQ (len (storeSub a i n b)) (len a)))
(FORALL (v i)
  ( EQ (select (mapFill v) i) v)
(FORALL (ijaxk)
   (OR (EQ i j) (EQ (select (store a i x) j k) (select a j k))))
(FORALL (jianbk)
   (OR (AND (OR (< j i) (>= j (+ i n)))
(EQ (select (storeSub a i n b) j k) (select a j k)))
   (AND (>= j i)
(< j (+ i n))
   (EQ (select (storeSub a i n b) j k) (select b (- j i) k)))))
```


Simplify can be used as a "pocket calculator for reasoning".

- Prover for first-order logic with equality and integer arithmetic.
 - For proving formula F, the satisfiability of $\neg F$ is checked.
 - If $\neg F$ is not satisfiable, the prover returns "valid".
 - If $\neg F$ is satisfiable, the prover returns a counterexample context.
 - Conjunction of literals (atomic formulas, plain or negated) that is believed to satisfy ¬F.
- Proving strategy is sound.
 - If F is reported "valid", this is the case.
- Proving strategy is not complete.
 - A reported counterexample context may be wrong.

Sound, not complete, highly optimized.

Conclusions

• ESC/Java2 is a good tool for finding program errors.

- Reports many/most common programming errors.
- Forces programmer to write method preconditions/assertions.
- Stable, acceptably fast.
- ESC/Java2 is not a verification environment.
 - Postconditions of methods with loops are not appropriately verified.
 - Arithmetic is treated as arbitrary size, not finite.
- Resources:
 - Surveys: Extended Static Checking for Java (2002); ESC/Java2: Uniting ESC/Java and JML (2004).
 - Manual: ESC/Java User Manual (2000), ESC/Java2 Implementation Notes (2004).
 - Guarded Commands: Checking Java Programs via Guarded Commands (1999).
 - Simplify: A Theorem Prover for Program Checking (2003).