Turing Complete Computational Models

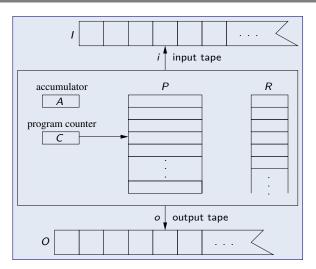
Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

1. Random Access Machines

- 2. Loop and While Programs
- 3. Primitive Recursive and μ -recursive Functions
- 4. Further Turing Complete Models
- 5. The Chomsky Hierarchy
- 6. Real Computers

A Random Access Machine



A model closer to a real computer.

A Random Access Machine

A random access machine (RAM):

- an infinite input tape I (whose cells can hold natural numbers of arbitrary size) with a read head position $i \in \mathbb{N}$,
- an infinite output tape O (whose cells can hold natural numbers of arbitrary size) with a write head position $o \in \mathbb{N}$,
- an accumulator A which can hold a natural number of arbitrary size,
- \blacksquare a program counter C which can hold an arbitrary natural number,
- a program consisting of a finite number of instructions $P[1], \ldots, P[m]$,
- a memory consisting of a countably infinite sequence of registers $R[1], R[2], \ldots$, each of which can hold an arbitrary natural number.

Execution:

- Initially, i = 0, o = 0, A = 0, C = 1, R[1] = R[2] = ... = 0.
- In every step, the RAM reads P[C], increments C by 1, and then performs the action indicated by the instruction.
- Execution terminates when C = 0.

Program is a sequence of machine instructions.

RAM Instructions

Instruction	Description	Action
IN	Read value from input tape into accumulator	A := I[i]; i := i + 1
OUT	Write value from accumulator to output tape	O[o] := A; o := o + 1
LOAD # n	Load constant <i>n</i> into accumulator	A := n
LOAD n	Load content of register <i>n</i> into accumulator	A := R[n]
LOAD (n)	Load content of register referenced by reg. n	A := R[R[n]]
STORE n	Store content of accumulator into register <i>n</i>	R[n] := A
STORE (n)	Store content into register referenced by reg. n	R[R[n]] := A
ADD # n	Increment content of accumulator by constant	A := A + n
SUB #n	Decrement content of accumulator by constant	$A := \max\{0, A - n\}$
JUMP n	Unconditional jump to instruction <i>n</i>	C := n
BEQ i, n	Conditional jump to instruction n	if $A = i$ then $C := n$

Immediate addressing, direct addressing, indirect addressing.

Example


```
START:
        T.OAD #1
                     A := 1
        STORE 1
                    R[1] := A
RFAD:
        LOAD 1
                    A := R[1]
        ADD #1
                    A := A + 1
                    R[1] := A
        STORE 1
               A := I[i]; i := i + 1
        TN
        BEQ 0, WRITE if A = 0 then C := WRITF
        STORE (1) R[R[1]] := A
        JUMP READ C := READ
       LOAD 1 A := R[1]
WRITE:
        SUB #1 A := A - 1
        STORE 1 R[1] := A
        BEQ 1, HALT if A = 1 then C := HALT
        LOAD (1) A := R[R[1]]
        OUT
              O[o] := A; o := o + 1
        JUMP WRITE C := WRITE
HALT:
        JUMP 0
                    C := 0
```

Reads $x_1, ..., x_n, 0$ and writes $x_n, ..., x_1$ using stack R[2], ..., R[n+1].

RAMs versus Turing Machines

Theorem: Every Turing machine can be simulated by a RAM.

- RAM uses registers $R[1], \dots, R[c-1]$ for its own purposes,
- \blacksquare stores in R[c] the position of the tape head of the Turing machine,
- uses R[c+1], R[c+2],... as a virtual Turing machine tape.
 - Using "indirect addressing" operations LOAD(n) and STORE(n).
- RAM copies the input from the input tape into its virtual tape, then it mimics the execution of the Turing machine on the virtual tape.
- When the simulated Turing machine terminates, the content of the virtual tape is copied to the output tape.

RAMs represent a Turing complete computational model.

RAMs versus Turing Machines

Theorem: Every RAM can be simulated by a Turing machine.

- The Turing machine uses 5 tapes to simulate the RAM:
 - Tape 1 represents the input tape of the RAM.
 - Tape 2 represents the output tape of the RAM.
 - Tape 3 holds a representation of that part of the memory that has been written by the simulation of the RAM.
 - Tape 4 holds a representation of the accumulator of the RAM.
 - Tape 5 serves as a working tape.
- Tape 3 holds a sequence of (address,contents) pairs that represent those registers of the RAM that have been written during the simulation (the contents of all other registers hold 0).
- Every instruction of the RAM is simulated by a sequence of steps of the Turing machine which reads respectively writes Tape 1 and 2 and updates on Tape 3 and 4 the tape representations of the contents of the memory and the accumulator.

RAMs are not more powerful than Turing machines.

Random Access Stored Program Machine

The program of a RAM is "read-only".

- Random Access Stored Program Machine (RASP).
 - A RAM variant where the program is stored in memory R (there is no separate program store P).
- Every RASP can be simulated by a RAM.
 - RAM is interpreter for RASP instructions (like a microprogram in a processor interprets machine instructions).
- Every RAM can be simulated by a RASP.
 - Even if indirect addressing is removed from RASP.
 - RAM instructions LOAD(n) and STORE(n) can be interpreted by self-modifying RASP code.

Self modifying programs do not add computational power to a RAM.

1. Random Access Machines

2. Loop and While Programs

- 3. Primitive Recursive and μ -recursive Functions
- 4. Further Turing Complete Models
- 5. The Chomsky Hierarchy
- 6. Real Computers

Loop Programs

■ Loop Program *P*:

$$P ::= x_i := 0 \mid x_i := x_j + 1 \mid x_i := x_j - 1 \mid P; P \mid loop x_i do P end.$$

- Set $\{x_0, x_1, x_2, ...\}$ of program variables.
- Initial value of x_i determines the number of loop iterations.
- Loop must eventually terminate.

Programs with bounded iteration that necessarily terminate.

Semantics

■ Semantics [P](m) maps the start memory $m : \mathbb{N} \to \mathbb{N}$ to the final memory after the termination of P:

- $m[i \leftarrow n]$: memory m after updating the value x_i by value n.
- $[P]^n(m)$: memory m after n times executing P:

$$[\![P]\!]^0(m) := m$$

 $[\![P]\!]^{n+1}(m) := [\![P]\!]([\![P]\!]^n(m))$

A loop program denotes a function over memories.

Syntactic Abbreviations

$$x_i := x_j$$

$$x_i := x_i + 1; x_i := x_i - 1$$

 $x_i := n$

$$x_i := 0; x_i := x_i + 1; x_i := x_i + 1; \dots; x_i := x_i + 1$$

• if $x_i = 0$ then P_t else P_e end

$$egin{aligned} x_t &:= 1; \mathbf{loop} \ x_i \ \mathbf{do} \ x_t &:= 0; \ \mathbf{end}; \\ x_e &:= 1; \mathbf{loop} \ x_t \ \mathbf{do} \ x_e &:= 0; \ \mathbf{end}; \\ \mathbf{loop} \ x_t \ \mathbf{do} \ P_t \ \mathbf{end}; \mathbf{loop} \ x_e \ \mathbf{do} \ P_e \ \mathbf{end}; \end{aligned}$$

The usual programming language constructs (except for unbounded iteration) can be represented.

Loop Computability

We consider the computability of functions over the natural numbers.

 $f: \mathbb{N}^n \to \mathbb{N}$ is loop computable, if there exists a loop program P such that for all $x_1, \dots, x_n \in \mathbb{N}$ and memory $m: \mathbb{N} \to \mathbb{N}$ defined as

$$m(i) := \begin{cases} x_i & \text{if } 1 \le i \le n \\ 0 & \text{else} \end{cases}$$

we have

$$[\![P]\!](m)(0) = f(x_1,\ldots,x_n)$$

When started in a state where $x_1, ..., x_n$ contain the arguments of f, the program terminates in a state where x_0 holds the result of f.

Example

Addition is computable by the program $|x_0 := x_1 + x_2|$:

$$x_0 := x_1;$$

 $\mathbf{loop} \ x_2 \ \mathbf{do}$
 $x_0 := x_0 + 1$
 \mathbf{end}

Multiplication is computable by the program $|x_0 := x_1 \cdot x_2|$:

$$x_0 := 0;$$
loop x_2 **do**
 $x_0 := x_0 + x_1$
end

Exponentiation is computable by the program $x_0 := x_1^{x_2}$:

$$|x_0:=x_1^{x_2}|$$

$$x_0 := 1;$$
 $\mathbf{loop} \ x_2 \ \mathbf{do}$
 $x_0 := x_0 \cdot x_1$
 \mathbf{end}

Natural number arithmetic is loop computable.

Arithmetic

$$x_0 := x_1 \cdot x_2$$
:

$$x_0 := 0;$$
 $| \mathbf{loop} \ x_2 \ \mathbf{do} |$
 $| \mathbf{v_0} := x_0 + x_1 |$
 $| \mathbf{v_0} := x_0 + x_0 |$
 $|$

Higher arithmetic needs multiply nested loops.

Beyond Exponentiation

$$a \uparrow^n b := egin{cases} a^b & \text{if } n=1 \ 1 & \text{if } b=0 \ a \uparrow^{n-1} \left(a \uparrow^n (b-1)
ight) & \text{else} \end{cases}$$

$$a \uparrow^1 b = a^b$$
$$a \uparrow^1 b = a \cdot a \cdot \dots \cdot a \quad (b \text{ times})$$

■
$$a \uparrow^2 b = a^{a \cdot a}$$
 ($b \text{ times}$)
 $a \uparrow^2 b = a \uparrow^1 a \uparrow^1 \dots \uparrow^1 a \text{ (}b \text{ times})$

■
$$a \uparrow^3 b$$
:
 $a \uparrow^3 b = a \uparrow^2 a \uparrow^2 ... \uparrow^2 a \ (b \text{ times})$

The notation allows to define arbitrary "complex" arithmetic functions.

Limits of Loop Computability

- Theorem: for every n > 0 and $f(a,b) := a \uparrow^n b$
 - f is loop computable, and
 - every loop program computing f requires at least n+2 nested loops.
- Theorem: $g: \mathbb{N}^3 \to \mathbb{N}, g(a,b,n) := a \uparrow^{n+1} b$ is not loop computable.
 - Assume g can be computed by a program P with n loops.
 - Then the computation of $g(a, b, n) = a \uparrow^{n+1} b$ requires n+3 loops.
 - Thus P cannot compute g.
- Also the Ackermann Function is not loop computable:

$$ack(0,m) := m+1$$

 $ack(n,0) := ack(n-1,1)$
 $ack(n,m) := ack(n-1,ack(n,m-1)), \text{ if } n > 0 \land m > 0$

- $ack(n, m) = 2 \uparrow^{n-2} (m+3) 3$
- ack(4,2) has 20,000 digits.

Some arithmetic functions grow "too fast" to be loop computable.

While Programs

■ While Program *P*:

$$P ::= \dots$$
 (as for loop programs) while x_i do P end.

- Set $\{x_0, x_1, x_2, ...\}$ of program variables.
- Loop is repeated as long as $x_i \neq 0$.
- If $x_i \neq 0$ forever, loop does not terminate.

Programs with unbounded iteration that may not terminate.

Semantics

- Semantics [P](m) maps start memory $m: \mathbb{N} \to \mathbb{N}$
 - to the final memory, if P terminates, and
 - to the special value \perp (bottom), if P does not terminate.
- Semantics generalizes that of loop programs:

$$\llbracket P \rrbracket(m) := \begin{cases} \bot & \text{if } m = \bot \\ \llbracket P \rrbracket'(m) & \text{else} \end{cases}$$

$$\llbracket \dots \rrbracket'(m) := \dots \text{(as for loop programs)}$$

Semantics of unbounded iteration:

$$\llbracket \textbf{while } x_i \textbf{ do } P \textbf{ end } \rrbracket'(m) := \begin{cases} \bot & \text{if } L_i(P,m) \\ \llbracket P \rrbracket^{T_i(P,m)}(m) & \text{else} \end{cases}$$

$$L_i(P,m) :\Leftrightarrow \forall k \in \mathbb{N} : \llbracket P \rrbracket^k(m)(i) \neq 0$$

$$T_i(P,m) := \min \{ k \in \mathbb{N} \mid \llbracket P \rrbracket^k(m)(i) = 0 \}$$

A while program denotes a function whose result is either a memory or \perp .

Syntactic Abbreviations

■ while $x_i < x_j$ do P end

$$x_k := x_j - x_i$$
;
while x_k do P ; $x_k := x_j - x_i$; end

Analogous constructions possible for other termination conditions.

While Computability

 $f: \mathbb{N}^n \to_p \mathbb{N}$ is while computable, if there exists a while program P such that for all $x_1, \ldots, x_n \in \mathbb{N}$ and memory $m: \mathbb{N} \to \mathbb{N}$ defined as

$$m(i) := \begin{cases} x_i & \text{if } 1 \le i \le n \\ 0 & \text{else} \end{cases}$$

the following holds:

■ If $x_1, ..., x_n \in domain(f)$, then $\llbracket P \rrbracket (m) : \mathbb{N} \to \mathbb{N}$ and

$$[\![P]\!](m)(0) = f(x_1,\ldots,x_n)$$

• If $x_1, \ldots, x_n \notin domain(f)$, then

$$[\![P]\!](m) = \bot$$

For a defined value of $f(x_1,...,x_n)$, P terminates with this value in variable x_0 . If $f(x_1,...,x_n)$ is undefined, the program does not terminate.

Example

The Ackermann function is while computable with the help of a stack.

```
function ack(n,m):

if n=0 then

return m+1

else if m=0 then

return ack(n-1,1)

end if

return ack(n-1,ack(n,m-1))

end function
```

```
function ack(x_1,x_2):
    push(x_1); push(x_2)
    while size() > 1 do
        x_2 \leftarrow \mathsf{pop}(); x_1 \leftarrow \mathsf{pop}()
        if x_1 = 0 then
            push(x_2+1)
        else if x_2 = 0 then
            push(x_1-1); push(1);
        else
            push(x_1 - 1);
            push(x_1); push(x_2-1)
        end if
    end while
    return pop()
end function
```

Wolfgang Schreiner http://www.risc.jku.at 23/66

Normal Form of a While Program

Kleene's Normal Form Theorem: every while computable function can be computed by a while program in Kleene's normal form:

```
x_c := 1;
while x_c do
if x_c = 1 then P_1
else if x_c = 2 then P_2
...
else if x_c = n then P_n
end if
```

- P_1, \ldots, P_n do *not* contain while loops.
- Control variable x_c determines which P_i to execute next.

A single while loop is all that is needed.

Normal Form of a While Program

We sketch the proof of Kleene's Normal Form Theorem.

A while program can be translated into a goto program:

Gotos can be translated to control variable assignments:

goto
$$L_j \rightsquigarrow x_c := j$$

■ The resulting program can be translated into normal form:

```
\begin{array}{l} x_c := 1; \\ \text{while } x_c \text{ do} \\ \text{if } x_c = 1 \text{ then } x_c := 2; P_1 \\ \text{else if } x_c = 2 \text{ then } x_c := 3; P_2 \\ \dots \\ \text{else if } x_c = n \text{ then } x_c := 0; P_n \\ \text{end if} \\ \text{end while} \end{array}
```

In essence, the execution loop of a processor.

Turing Machines and While Programs

- Theorem: Every Turing machine can be simulated by a while program and vice versa.
 - Consequence: every Turing computable function is while computable and vice versa.

Proof \Rightarrow : construct P to simulate M.

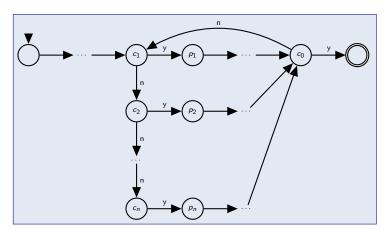
- x₀ holds initial tape content.
 - Determines initial configuration.
- Machine configuration (x_l, x_q, x_r) :
 - x_a : the current state.
 - x_I: the tape left to the tape head,
 - x_r : the tape under/right to head.
- State x_q and symbol x_a under head determine the state transition.
 - If none is possible, final tape content is written to x_0 .

```
(x_l, x_a, x_r) := input(x_0)
x_a := head(x_r)
while transition(x_a, x_a) do
   if x_q = q_1 \wedge x_a = a_1 then
   else if x_q = q_2 \wedge x_a = a_2 then
   else if ... then
  else if x_q = q_n \wedge x_a = a_n then
   end
   x_a := head(x_r)
end
x_0 := output(x_l, x_a, x_r)
```

Turing Machines and While Programs

Proof \Leftarrow : construct M to simulate P (given in normal form).

Each program fragment P_i is translated into a corresponding fragment of the transition function of M with sequence of states c_i, p_i, \ldots, c_0 .



- 1. Random Access Machines
- 2. Loop and While Programs
- 3. Primitive Recursive and μ -recursive Functions
- 4. Further Turing Complete Models
- 5. The Chomsky Hierarchy
- 6. Real Computers

Primitive Recursive Functions

The following functions over the natural numbers are primitive recursive:

- The constant null function $0 \in \mathbb{N}$.
- The successor function $s : \mathbb{N} \to \mathbb{N}, s(x) := x + 1$.
- The projection functions $p_i^n : \mathbb{N}^n \to \mathbb{N}, p_i^n(x_1, \dots, x_n) := x_i$.
- Every function $h: \mathbb{N}^n \to \mathbb{N}$ defined by composition

$$h(x_1,\ldots,x_n):=f(g_1(x_1,\ldots,x_n),\ldots,g_k(x_1,\ldots,x_n))$$

from primitive recursive $f: \mathbb{N}^k \to \mathbb{N}$ and $g_1, \dots, g_k: \mathbb{N}^n \to \mathbb{N}$.

■ Every function $h: \mathbb{N}^{n+1} \to \mathbb{N}$ defined by primitive recursion

$$h(y, x_1 \dots x_n) := \begin{cases} f(x_1, \dots, x_n) & \text{if } y = 0 \\ g(y - 1, h(y - 1, x_1, \dots, x_n), x_1, \dots, x_n) & \text{else} \end{cases}$$

from primitive recursive $f: \mathbb{N}^n \to \mathbb{N}$ and $g: \mathbb{N}^{n+2} \to \mathbb{N}$.

Starting with the base functions, by composition and primitive recursion new primitive recursive functions can be defined.

Understanding Primitive Recursion

Primitive recursion can be defined by a pattern matching equation:

$$h(0, x_1 ..., x_n) := f(x_1, ..., x_n)$$

 $h(y+1, x_1 ..., x_n) := g(y, h(y, x_1, ..., x_n), x_1, ..., x_n)$

Primitive recursion can be defined by a pattern matching construct:

```
\begin{array}{l} h(y,x_1 \dots x_n) := \\ \textbf{case } y \textbf{ of } \\ 0 : f(x_1, \dots, x_n) \\ z+1 : g(z, h(z, x_1, \dots, x_n), x_1, \dots, x_n) \end{array}
```

■ h(y,x) denotes the (y-1)-times application of g starting with f(x):

$$h(0,x) = f(x)$$

$$h(1,x) = g(0,h(0,x),x) = g(0,f(x),x)$$

$$h(2,x) = g(1,h(1,x),x) = g(1,g(0,f(x),x),x)$$

$$h(3,x) = g(2,h(2,x),x) = g(2,g(1,g(0,f(x),x),x),x)$$

h(y,x) = g(y-1,h(y-1,x),x) = g(y-1,g(y-2,...,g(0,f(x),x),...,x),x)

Example

We consider arithmetic on natural numbers.

Addition y + x is primitive recursive:

$$0 + x := x$$
$$(y+1) + x := (y+x) + 1$$

■ Multiplication $y \cdot x$ is primitive recursive:

$$0 \cdot x := 0$$
$$(y+1) \cdot x := y \cdot x + x$$

Exponentiation x^y is primitive recursive:

$$x^0 := 1$$
$$x^{y+1} := x^y \cdot x$$

Natural number arithmetic is primitive recursive.

Both the execution of a loop program and the evaluation of a primitive recursive function are bounded; are they equally expressive?

Example: Compute in x_0 the smallest $n < x_1$ for which p(n) = 1 holds (respectively $x_0 = x_1$, if $p(n) \neq 1$ for all $n < x_1$).

$$x_0 := x_1$$
 Assume $n = 3$:
 $x_2 := 0$
 $loop x_1 do$
$$if x_0 = x_1 \land p(x_2) = 1 then$$

$$x_0 := x_2$$

$$end$$

$$x_2 := x_2 + 1$$

$$end$$

$$3 5 5$$

$$5 5 3$$

$$5 5 5 3$$

$$6 3 5 5 5$$

We will construct a primitive recursive function computing the same value.

We mimic the execution of the **loop** by a primitive recursive function *loop* whose recursion parameter denotes the number of loop iterations.

$$min(x_1) := loop(x_1, x_1)$$
 $loop(x_2, x_1) := \begin{cases} x_1 & \text{if } x_2 = 0 \\ if(x_2 - 1, loop(x_2 - 1, x_1), x_1) & \text{else} \end{cases}$
 $if(x_2, x_0, x_1) := \begin{cases} x_2 & \text{if } x_0 = x_1 \land p(x_2) = 1 \\ x_0 & \text{else} \end{cases}$

- $\min(x_1) := loop(x_1, x_1)$ computes the value assigned to x_0 for input x_1 (2nd argument) after x_1 iterations of the **loop** (1st argument).
- $loop(x_2, x_1)$ computes the value assigned to x_0 for input x_1 after x_2 iterations of the **loop**.
- $if(x_2, x_0, x_1)$ computes the new value assigned to x_0 from the old value of x_0 for input x_1 after x_2 iterations by the **if** statement.

Wolfgang Schreiner http://www.risc.jku.at 33/66

Evaluation of min(5) = loop(5,5).

$$loop(0,5) = 5$$

 $loop(1,5) = if(0, loop(0,5), 5) = if(0,5,5) = 5$
 $loop(2,5) = if(1, loop(1,5), 5) = if(1,5,5) = 5$
 $loop(3,5) = if(2, loop(2,5), 5) = if(2,5,5) = 5$
 $loop(4,5) = if(3, loop(3,5), 5) = if(3,5,5) = 3$
 $loop(5,5) = if(4, loop(4,5), 5) = if(4,3,5) = 3$

x_0	x_1	x_2
5	5	0
5	5	1
5	5	2
5	5	3
3	5	4
2	5	5

In sequence of evaluations of $loop(x_2,x_1) = x_0$ the values (x_0,x_1,x_2) correspond to the program trace of the loop program.

Theorem: every prim. recursive function is loop computable and vice versa.

Proof \Rightarrow : we show that primitive recursive function h is loop computable.

- If *h* is one of the basic functions, it is clearly loop computable.
- Case $h(x_1,...,x_n) := f(g_1(x_1,...,x_n),...,g_k(x_1,...,x_n))$

$$y_1 := g_1(x_1,...,x_n);$$

 $y_2 := g_2(x_1,...,x_n);$
...
 $y_k := g_k(x_1,...,x_n);$
 $x_0 := f(y_1,...,y_k)$

$$\text{ Case } h(y,x_1\ldots x_n):= \begin{cases} f(x_1,\ldots,x_n) & \text{if } y=0\\ g(y-1,h(y,x_1,\ldots,x_n),x_1,\ldots,x_n) & \text{else} \end{cases}$$

$$x_0 := f(x_1, ..., x_n); \ x_y := 0;$$

loop y **do**
 $x_0 := g(x_y, x_0, x_1, ..., x_n);$
 $x_y := x_y + 1$
end

Proof \Leftarrow : let h be computable by loop program P. Let $f_P : \mathbb{N}^{n+1} \to \mathbb{N}^{n+1}$ be the function that maps the initial values of the variables used by P to their final values. We show by induction on P that f_P is primitive recursive.

Case
$$x_i := k$$
:

$$f_P(x_0,...,x_n) := (x_0,...,x_{i-1},k,x_{i+1},...,x_n)$$

Case $x_i := x_j \pm 1$:

$$f_P(x_0,...,x_n) := (x_0,...,x_{i-1},x_j\pm 1,x_{i+1},...,x_n)$$

Case $P_1; P_2$

$$f_P(x_0,...,x_n) := f_{P_2}(f_{P_1}(x_0,...,x_n))$$

Case loop x_i do P' end :

$$f_{P}(x_{0},...,x_{n}) := g(x_{i},x_{0},...,x_{n})$$

$$g(0,x_{0},...,x_{n}) := (x_{0},...,x_{n})$$

$$g(m+1,x_{0},...,x_{n}) := f_{P'}(g(m,x_{0},...,x_{n}))$$

Thus the Ackermann function is also not primitive recursive.

μ -Recursive Functions

A partial function over the natural numbers is μ -recursive, if it

- is the constant null, successor, or a projection function,
- = can be constructed from other μ -recursive functions by composition or primitive recursion, or
- is a function $h: \mathbb{N}^n \to_{p} \mathbb{N}$ defined as

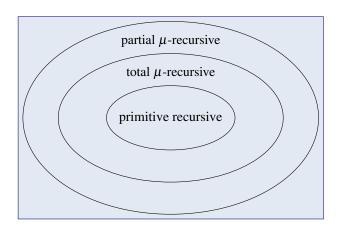
$$h(x_1,\ldots,x_n):=(\mu f)(x_1,\ldots,x_n)$$

with μ -recursive $f: \mathbb{N}^{n+1} \to_{p} \mathbb{N}$ and $(\mu f): \mathbb{N}^{n} \to_{p} \mathbb{N}$ defined as

$$(\mu f)(x_1,\ldots,x_n) := \min \left\{ y \in \mathbb{N} \mid f(y,x_1,\ldots,x_n) = 0 \land \\ \forall z \leq y : (z,x_1,\ldots,x_n) \in domain(f) \right\}$$

 $(\mu f)(x_1,...,x_n)$ is the smallest y such that $f(y,x_1,...,x_n)=0$ (and f is defined for all $z \le y$); the result of h is undefined, if no such y exists.

μ -Recursive Functions



Every primitive recursive function is a total μ -recursive function; a μ -recursive function may or may not be total.

A μ -recursive Function

39/66

Consider particular sequences of numbers.

$$f^{k}(n) = \underbrace{f(f(f(\dots f(n))))}_{k \text{ applications of } f}$$

$$f(n) := \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ 3n+1 & \text{otherwise} \end{cases}$$

$$f^{0}(10) = 10$$

$$f^{1}(10) = f(f^{0}(10)) = f(10) = 5$$

$$f^{2}(10) = f(f^{1}(10)) = f(5) = 16$$

$$f^{3}(10) = f(f^{2}(10)) = f(16) = 8$$

$$f^{4}(10) = f(f^{3}(10)) = f(8) = 4$$

$$f^{5}(10) = f(f^{4}(10)) = f(4) = 2$$

$$f^{6}(10) = f(f^{5}(10)) = f(2) = 1$$

Collatz Conjecture: for every $n \in \mathbb{N}$, $f^k(n) = 1$ for some $k \in \mathbb{N}$.

A μ -recursive Function

We define C(n) to denote the smallest k with $f^k(n) = 1$.

$$C(n):=(\mu D)(n)$$
 $D(k,n):=f^k(n)-1$
 $f^k(n):=egin{cases} n & ext{if } k=0 \ f(f^{k-1}(n)) & ext{otherwise} \end{cases}$

(see lecture notes for completely formal definition)

Truth of conjecture is unknown: *C* may or may not be total (and may or may not be primitive recursive).

μ-Recursion and While Computability

Theorem: every μ -recursive function is while computable and vice versa.

Proof \Rightarrow : we show that μ -recursive h is while computable.

- If h is one of the basic functions or defined by composition or primitive recursion, it is clearly while computable.
- Case $h(x_1,...,x_n) := (\mu f)(x_1,...,x_n)$

$$x_0 := 0;$$

 $y := f(x_0, x_1, ..., x_n);$
while y do
 $x_0 := x_0 + 1;$
 $y := f(x_0, x_1, ..., x_n)$
end

 μ -recursion denotes unbounded iterative search.

μ -Recursion and While Computability

Proof \Leftarrow : let $h: \mathbb{N}^k \to_p \mathbb{N}$ be computable by while program P with variables x_0, \ldots, x_n . Then $h(x_1, \ldots, x_k) := var_0(f_P(0, x_1, \ldots, x_k, 0, \ldots, 0))$ where $var_i(x_0, \ldots, x_n) := x_i$. We show that $f_P: \mathbb{N}^{n+1} \to_p \mathbb{N}^{n+1}$ is μ -recursive by induction on P.

- If P is an assignment, a sequence, of a bounded loop, then f_P is clearly μ -recursive.
- Case while x_i do P' end :

$$f_P(x_0,...,x_n) := g((\mu g_i)(x_0,...,x_n),x_0,...,x_n)$$
 $g_i : \mathbb{N}^{n+1} \to \mathbb{N}$
 $g_i(m,x_0,...,x_n) := var_i(g(m,x_0,...,x_n))$
 $g(0,x_0,...,x_n) := (x_0,...,x_n)$
 $g(m+1,x_0,...,x_n) := f_{P'}(g(m,x_0,...,x_n))$

- $g_i(m, x_0, ..., x_n)$: the value of program variable i after m iterations
- $g(m, x_0, \dots, x_n)$: the values of all variables after m iterations.

Thus the Ackermann function is also μ -recursive.

Normal Form of a μ -Recursive Function

Kleene's Normal Form Theorem: every μ -recursive function h can be defined in Kleene's normal form:

$$h(x_1,...,x_k) := f_2(x_1,...,x_k,(\mu g)(f_1(x_1,...,x_k)))$$

• f_1, f_2, g are primitive recursive functions.

A single application of μ is all that is needed.

Normal Form of a μ -Recursive Function

We sketch the proof of Kleene's Normal Form Theorem.

Since h is μ -recursive, it is computable by a while program in normal form

$$x_c := 1$$
; while xc do ... end

with memory function

$$f_P(x_0,\ldots,x_n):=g((\mu g_c)(init(x_0,\ldots,x_n)),init(x_0,\ldots,x_n))$$
 with primitive recursive g and g_c and $init(x_0,\ldots,x_c,\ldots,x_n):=(x_0,\ldots,1,\ldots,x_n).$

Thus we can define

$$\begin{split} \textit{h}(x_1, \dots, x_k) &:= \textit{var}_0(\textit{f}_P(0, x_1, \dots, x_k, 0, \dots, 0)) \\ &= \textit{var}_0(\textit{g}((\mu \textit{g}_c)(\textit{init}(0, x_1, \dots, x_k, 0, \dots, 0)), \textit{init}(0, x_1, \dots, x_k, 0, \dots, 0))) \\ &= \textit{f}_2(x_1, \dots, x_k, (\mu \textit{g}_c)(\textit{f}_1(x_1, \dots, x_k))) \end{split}$$

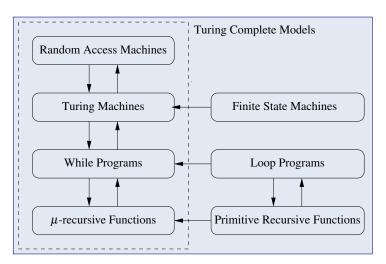
with primitive recursive

$$f_1(x_1,...,x_k) := init(0,x_1,...,x_k,0,...,0)$$

$$f_2(x_1,...,x_k,r) := var_0(g(r,init(0,x_1,...,x_k,0,...,0)))$$

- 1. Random Access Machines
- 2. Loop and While Programs
- 3. Primitive Recursive and μ -recursive Functions
- 4. Further Turing Complete Models
- 5. The Chomsky Hierarchy
- 6. Real Computers

The Big Picture So Far



We are going to sketch some more Turing complete models.

Goto Programs

A goto program has form

$$L_1: P_1; L_2: P_2; \dots; P_n: A_n$$

where L_k denotes a label and P_k an action:
 $P ::= x_i := 0 \mid x_i := x_j + 1 \mid x_i := x_j - 1 \mid \text{if } x_i \text{ goto } L_j$

- Semantics [P](k, m):
 - A partial function which maps the initial state (k,m) of P, consisting of program counter $k \in \mathbb{N}$ and memory $m : \mathbb{N} \to \mathbb{N}$, to its final state (unless the program does not terminate).

We have already seen how goto programs can be translated to while programs and vice versa; goto programs are therefore Turing complete.

λ-Calculus

48/66

 \blacksquare A λ -term T:

$$T ::= x_i \mid (T \mid T) \mid (\lambda x_i \cdot T)$$

- x_i: a variable.
- (T T): an application.
- $(\lambda x_i, T)$: an abstraction.
- Reduction relation →:

$$((\lambda x_i.T_1)T_2) \rightarrow (T_1[x_i \leftarrow T_2])$$

- The result of the application of a function to an argument.
- Reduction sequence $T_1 \rightarrow^* T_2$

$$T_1 \to \ldots \to T_2$$

- \blacksquare T_2 is in normal form, if no further reduction is possible.
- Church-Rosser Theorem: If $T_1 \to^* T_2$ and $T_1 \to^* T_2'$ such that both T_2 and T_2' are in normal form, then $T_2 = T_2'$.

Every computable function can be represented by a λ -term.

λ-Calculus

How can we represent unbounded iteration (recursion)?

■ Can define fixpoint operator *Y*:

$$(YF) \rightarrow^* (F(YF))$$

- $Y := (\lambda f.((\lambda x.(f(xx)))(\lambda x.(f(xx)))))$
- Can translate recursive function definition to λ -term:

$$f(x) := \dots f(g(x)) \dots \rightsquigarrow f := YF$$

$$F := \lambda h.\lambda x...h(g(x))...$$

 λ -term behaves like recursive function.

$$fa = (YF)a \rightarrow^* F(YF)a \rightarrow^* \dots (YF)(g(a)) \dots = \dots f(g(a)) \dots$$

Formal basis of functional programming languages.

Rewriting Systems

A term rewriting system is a set of rules of form

$$L \rightarrow R$$

- L, R: terms such that L is not a variable and every variable that appears in R must also appear in L.
- Rewriting Step $T \rightarrow T'$:
 - There is some rule $L \to R$ and a substitution σ (a mapping of variables to terms) such that
 - some subterm U of T matches the left hand side L of the rule under the substitution σ , i.e., $U = L\sigma$,
 - T' is derived from T by replacing U with $R\sigma$, i.e with the right hand side of the rule after applying the variable replacement.
- Rewriting Sequence $T_1 \rightarrow^* T_2$

$$T_1 \rightarrow \ldots \rightarrow T_2$$

 \blacksquare T_2 is in normal form, if no further reduction is possible.

Every computable function can be represented by a term rewriting system.

Rewriting Systems

Term rewriting system:

$$f(x, f(y, z)) \rightarrow f(f(x, y), z)$$

 $f(x, e) \rightarrow x$
 $f(x, i(x)) \rightarrow e$

Rewriting sequence:

$$f(a, f(i(a), e)) \rightarrow f(f(a, i(a)), e) \rightarrow f(e, e) \rightarrow e$$

 $f(a, f(i(a), e)) \rightarrow f(a, i(a)) \rightarrow e$

Rewriting systems can be also defined over strings and graphs; the later form the basis of tools for model driven architectures.

- 1. Random Access Machines
- 2. Loop and While Programs
- 3. Primitive Recursive and μ -recursive Functions
- 4. Further Turing Complete Models
- 5. The Chomsky Hierarchy
- 6. Real Computers

Languages and Machines

- Regular languages:
 - Representable by regular expressions.
 - Recognizable by finite state machines.
- Recursively enumerable languages:
 - Representable by . . . ?
 - Recognizable by Turing machines.
- Relationship:
 - Every regular language is recursively enumerable.
 - Every finite state machine can be simulated by a Turing machine.
 But not vice versa.

Are there any other interesting classes of languages and associated machine models and how do they relate to those above?

Grammars

Grammar $G = (N, \Sigma, P, S)$:

- N: a finite set of nonterminal symbols,
- Σ : a finite set of terminal symbols disjoint from N. $N \cap \Sigma = \emptyset$
- P: a finite set of production rules of form $I \to r$ such that $I \in (N \cup \Sigma)^* \circ N \circ (N \cup \Sigma)^*$ $r \in (N \cup \Sigma)^*$
 - I and r consist of nonterminal and/or terminal symbols.
 - / must contain at least one nonterminal symbol.
 - Multiple rules $l \rightarrow r_1, l \rightarrow r_2, ..., l \rightarrow r_n$ can be abbreviated:

$$l \rightarrow r_1 \mid r_2 \mid \ldots \mid r_n$$

■ *S*: the start symbol.

$$S \in N$$

Grammar G describes a language over alphabet Σ .

The Language of a Grammar

55/66

Grammar
$$G = (N, \Sigma, P, S)$$
, words $w, w_1, w_2 \in (N \cup \Sigma)^*$.

■ Direct derivation $w_1 \Rightarrow w_2$ in G:

$$w_1 = ulv$$
 and $w_2 = urv$
for $u, v \in (N \cup \Sigma)^*$ and $(I \rightarrow r) \in P$

■ Derivation $w_1 \Rightarrow^* w_2$ in G:

$$w_1 \Rightarrow \ldots \Rightarrow w_2 \text{ in } G.$$

 \blacksquare w is a sentential form in G:

$$S \Rightarrow^* w$$

- w is a sentence in G:
 - w is a sentential form in G and $w \in \Sigma^*$.
- Language L(G) of G: $L(G) := \{w \text{ is a sentence in } G\}$

The language of a grammar is the set of all words that consist only of terminal symbols and that are derivable from the start symbol.

Example

Grammar $G = (N, \Sigma, P, S)$:

$$N = \{S, A, B\}$$

$$\Sigma = \{a, b, c\}$$

$$P = \{S \to Ac, A \to aB, A \to BBb, B \to b, B \to ab\}$$

Derivations:

$$S \Rightarrow Ac \Rightarrow aBc \Rightarrow abc$$

 $S \Rightarrow Ac \Rightarrow BBbc \Rightarrow abBbc \Rightarrow ababbc$

Language:

$$L(G) = \{abc, aabc, bbbc, babbc, abbbc, ababbc\}$$

This grammar defines a finite language.

Example

■ Grammar $G = (N, \Sigma, P, S)$:

$$N = \{S\}$$

$$\Sigma = \{ (', ')', [', ']' \}$$

$$P = \{S \to \varepsilon \mid SS \mid [S] \mid (S) \}$$

Derivations:

$$S \Rightarrow [S] \Rightarrow [SS] \Rightarrow [(S)S] \Rightarrow [()S] \Rightarrow [()[S]] \Rightarrow [()[(S)]] \Rightarrow [()[()]]$$

Language: the "Dyck-Language"

L(G) is the language of all expressions with matching pairs of parentheses "()" and brackets "[]"

This grammar defines an infinite language.

Right-Linear Grammars and Regular Lang.

- Grammar $G = (N, \Sigma, P, S)$ is right linear if each rule in P has form $A \to \varepsilon$. $A \to a$. $A \to aB$
 - with nonterminal symbols $A, B \in N$ and terminal symbol $a \in \Sigma$.
- Theorem: The languages of right linear grammars are exactly the regular languages.
 - For every right linear grammar G, there exists a FSM M with L(M) = L(G) and vice versa.
 - Proof ⇒: we construct from right linear grammar G a NFSM M. The states are the nonterminal symbols extended by a final state q_f ; the start state is the start symbol.
 - For every rule $A \rightarrow \varepsilon$, the state A becomes final.
 - For every rule $A \to a$, we add a transition $\delta(A,a) = q_f$.
 - For every rule $A \to aB$, we add a transition $\delta(A, a) = B$.
 - Proof \Leftarrow : we construct from DFSM M right linear grammar G. The nonterminal symbols are the states; the start symbol is the start state.
 - For every transition $\delta(q,a)=q'$ we add a production rule $q\to aq'$.
 - For every final state q, we add a production rule q o arepsilon.

Grammars and Recursively Enum. Lang.

Theorem: The languages of (unrestricted) grammars are exactly the recursively enumerable languages.

- Proof \Rightarrow : construct 2-tape nondeterministic M with L(M) = L(G). M uses the second tape to construct some sentence of L(G): it starts by writing S on the tape and then nondeterministically chooses some rule $I \rightarrow r$ and applies it to some occurrence of I on the tape, replacing it by r. Then M checks whether the result equals the word on the first tape. If yes, M accepts the word, otherwise, it continues with another production rule.
- Proof \Leftarrow : construct grammar G with L(G) = L(M). Sentential forms encode pairs (w,c) of input w and configuration c of M; every form contains a non-terminal symbol such that by a rule application the current configuration is replaced by the successor configuration. The rules ensure that
 - from the start symbol, every matching pair (w,c) of M can be derived;
 - for every transition that moves c to c', a rule is constructed that allows a derivation $(w, c) \Rightarrow (w, c')$;
 - if configuration c describes a final state from which no further transition is possible, the derivation $(w,c) \Rightarrow w$ is possible.

Unrestricted grammars represent another Turing complete model.

The Chomsky Hierarchy

Noam Chomsky, 1959.

Type i	Grammar $G(i)$	Language $L(i)$	Machine $M(i)$
0	unrestricted	recursively enumerable	Turing machine
1	context-sensitive	context-sensitive	linear bounded automaton
2	context-free	context-free	push down automaton
3	right linear	regular	finite state machine

L(i) is the set of languages of grammars G(i) and machines M(i).

- For i > 0, the set of languages of type L(i) is a proper subset of the set of languages L(i-1), i.e. $L(i) \subset L(i-1)$.
- For i > 0, every machine in M(i) can be simulated by a machine in M(i-1) (but not vice versa).

Grammars correspond to machine models.

Context-Free Languages (Type 2)

- **Context-free** grammar G: every rule has form $A \rightarrow r$ with $A \in N$.
 - Independent of the context, any occurrence of *A* can be replaced.
- Example: $L := \{a^i b^i \mid i \in \mathbb{N}\}$ $S \to \varepsilon \mid aSb$ $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$
- Pushdown automaton *M*: nondeterministic FSM with unbounded stack of symbols as "working memory":
 - in every transition $\delta(q, a, b) = (q', w)$,
 - M reads the next input symbol a (a may be ε , i.e., M may not read a symbol) and the symbol b on the top of the stack, and
 - \blacksquare replaces b by a (possibly empty) sequence w of symbols.

Most languages in computer science are context-free.

Generation of Syntax Analyzers

"Compiler generators" for the generation of syntax analyzers (parsers).

Input: a (deterministic) context free grammar.

```
statement: assignment | conditional | whileloop | ...;
whileloop: 'while' '(' valexp ')' statement;
```

Output: a (deterministic) push down automaton (as a program)

```
public final LoopStatement whileloop() throws ... {
    ...
    pushFollow(FOLLOW_valexp_in_whileloop1457);
    valexp();
    state._fsp--;
    if (state.failed) return value;
    ...
    pushFollow(FOLLOW_statement_in_whileloop1484);
    statement();
    state._fsp--;
    if (state.failed) return value;
    ...
}
```

Context-Sensitive Languages (Type 1)

- Context-sensitive grammar *G*:
 - in every rule $l \to r$, we have $|l| \le |r|$, i.e., the length of left side l is less than or equal the length of right side r,
 - the rule $S \to \varepsilon$ is only allowed, if the start symbol S does not appear on the right hand side of any rule.
- Example: $L := \{a^i b^i c^i \mid i \in \mathbb{N}\}$ $S \to \varepsilon \mid T, T \to ABC \mid TABC$ $BA \to AB, CB \to BC, CA \to AC$ $AB \to ab, bC \to bc, Aa \to aa, bB \to bb, cC \to cc$

$$\underline{S} \Rightarrow \underline{T} \Rightarrow \underline{T}ABC \Rightarrow AB\underline{CA}BC \Rightarrow A\underline{BA}CBC \Rightarrow AAB\underline{CB}C \Rightarrow A\underline{AB}BCC \Rightarrow A\underline{AB}BCC \Rightarrow a\underline{abB}CC \Rightarrow a\underline{abb}\underline{cC} \Rightarrow a\underline{abb}\underline{cC} \Rightarrow a\underline{abb}\underline{cc}$$

- Linear bounded automaton M: nondeterministic Turing machine with k tapes (for some k).
 - For input of length n, only the first n cells of each tape are used.
 - The "space" used is a fixed multiple of the length of the input word.

Less practical importance.

Summary

We have seen examples of each type of language.

- Type 3: $\{(ab)^n \mid n \in \mathbb{N}\}$
 - Language is regular.
- Type 2: $\{a^nb^n \mid n \in \mathbb{N}\}$
 - Language is context-free.
- Type 1: $\{a^nb^nc^n \mid n \in \mathbb{N}\}$
 - Language is context-sensitive.
- **Type 0**: $\{a^i b^j c^k \mid k = ack(i,j)\}$
 - Language is recursively enumerable (also recursive).

None of these languages of type i is also of type i+1.

- 1. Random Access Machines
- 2. Loop and While Programs
- 3. Primitive Recursive and μ -recursive Functions
- 4. Further Turing Complete Models
- 5. The Chomsky Hierarchy
- 6. Real Computers

Real Computers

Are real computers Turing complete?

Hardware view:

- Finite number of digital elements and thus a finite number of states.
- Cannot simulate the infinite Turing machine tape.
- Cannot perform unbounded arithmetic.
- A computer is thus a finite state machine (i.e., not Turing complete).
 View taken by model checkers.

Algorithm theory view:

- On demand, arbitrary much (e.g., virtual) memory may be added.
- Can thus simulate arbitrary large portion of the Turing machine tape.
- Can thus perform unbounded arithmetic.
- A computer is Turing complete.

View taken by algorithm design.

A matter of the point of view respectively the goal of the modeling.