
Turing Complete Computational Models

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner http://www.risc.jku.at 1/66

1. Random Access Machines

2. Loop and While Programs

3. Primitive Recursive and µ-recursive Functions

4. Further Turing Complete Models

5. The Chomsky Hierarchy

6. Real Computers

Wolfgang Schreiner http://www.risc.jku.at 2/66

A Random Access Machine

program counter

accumulator

.
.

.

.
.

.

RP

output tape

input tape

C

A

. . .

. . .O

I

o

i

A model closer to a real computer.
Wolfgang Schreiner http://www.risc.jku.at 3/66

A Random Access Machine

A random access machine (RAM):
an infinite input tape I (whose cells can hold natural numbers of
arbitrary size) with a read head position i ∈ N,
an infinite output tape O (whose cells can hold natural numbers of
arbitrary size) with a write head position o ∈ N,
an accumulator A which can hold a natural number of arbitrary size,
a program counter C which can hold an arbitrary natural number,
a program consisting of a finite number of instructions P[1], . . . ,P[m],
a memory consisting of a countably infinite sequence of registers
R[1],R[2], . . ., each of which can hold an arbitrary natural number.

Execution:
Initially, i = 0, o = 0, A = 0, C = 1, R[1] = R[2] = . . . = 0.
In every step, the RAM reads P[C], increments C by 1, and then
performs the action indicated by the instruction.
Execution terminates when C = 0.

Program is a sequence of machine instructions.
Wolfgang Schreiner http://www.risc.jku.at 4/66

RAM Instructions

Instruction Description Action
IN Read value from input tape into accumulator A := I[i]; i := i +1
OUT Write value from accumulator to output tape O[o] := A;o := o +1
LOAD #n Load constant n into accumulator A := n
LOAD n Load content of register n into accumulator A := R[n]
LOAD (n) Load content of register referenced by reg. n A := R[R[n]]
STORE n Store content of accumulator into register n R[n] := A
STORE (n) Store content into register referenced by reg. n R[R[n]] := A
ADD #n Increment content of accumulator by constant A := A+n
SUB #n Decrement content of accumulator by constant A := max{0,A−n}
JUMP n Unconditional jump to instruction n C := n
BEQ i,n Conditional jump to instruction n if A = i then C := n

Immediate addressing, direct addressing, indirect addressing.

Wolfgang Schreiner http://www.risc.jku.at 5/66

Example

START: LOAD #1 A := 1
STORE 1 R[1] := A

READ: LOAD 1 A := R[1]
ADD #1 A := A+1
STORE 1 R[1] := A
IN A := I[i]; i := i +1
BEQ 0,WRITE if A = 0 then C := WRITE
STORE (1) R[R[1]] := A
JUMP READ C := READ

WRITE: LOAD 1 A := R[1]
SUB #1 A := A−1
STORE 1 R[1] := A
BEQ 1,HALT if A = 1 then C := HALT
LOAD (1) A := R[R[1]]
OUT O[o] := A;o := o +1
JUMP WRITE C := WRITE

HALT: JUMP 0 C := 0

Reads x1, . . . ,xn,0 and writes xn, . . . ,x1 using stack R[2], . . . ,R[n +1].
Wolfgang Schreiner http://www.risc.jku.at 6/66

RAMs versus Turing Machines

Theorem: Every Turing machine can be simulated by a RAM.
RAM uses registers R[1], . . . ,R[c−1] for its own purposes,
stores in R[c] the position of the tape head of the Turing machine,
uses R[c +1],R[c +2], . . . as a virtual Turing machine tape.

Using “indirect addressing” operations LOAD(n) and STORE(n).
RAM copies the input from the input tape into its virtual tape, then
it mimics the execution of the Turing machine on the virtual tape.
When the simulated Turing machine terminates, the content of the
virtual tape is copied to the output tape.

RAMs represent a Turing complete computational model.

Wolfgang Schreiner http://www.risc.jku.at 7/66

RAMs versus Turing Machines

Theorem: Every RAM can be simulated by a Turing machine.
The Turing machine uses 5 tapes to simulate the RAM:

Tape 1 represents the input tape of the RAM.
Tape 2 represents the output tape of the RAM.
Tape 3 holds a representation of that part of the memory that has
been written by the simulation of the RAM.
Tape 4 holds a representation of the accumulator of the RAM.
Tape 5 serves as a working tape.

Tape 3 holds a sequence of (address,contents) pairs that represent
those registers of the RAM that have been written during the
simulation (the contents of all other registers hold 0).
Every instruction of the RAM is simulated by a sequence of steps of
the Turing machine which reads respectively writes Tape 1 and 2 and
updates on Tape 3 and 4 the tape representations of the contents of
the memory and the accumulator.

RAMs are not more powerful than Turing machines.
Wolfgang Schreiner http://www.risc.jku.at 8/66

Random Access Stored Program Machine

The program of a RAM is “read-only”.
Random Access Stored Program Machine (RASP).

A RAM variant where the program is stored in memory R (there is no
separate program store P).

Every RASP can be simulated by a RAM.
RAM is interpreter for RASP instructions (like a microprogram in a
processor interprets machine instructions).

Every RAM can be simulated by a RASP.
Even if indirect addressing is removed from RASP.
RAM instructions LOAD(n) and STORE(n) can be interpreted by
self-modifying RASP code.

Self modifying programs do not add computational power to a RAM.

Wolfgang Schreiner http://www.risc.jku.at 9/66

1. Random Access Machines

2. Loop and While Programs

3. Primitive Recursive and µ-recursive Functions

4. Further Turing Complete Models

5. The Chomsky Hierarchy

6. Real Computers

Wolfgang Schreiner http://www.risc.jku.at 10/66

Loop Programs

Loop Program P:

P ::= xi := 0 | xi := xj +1 | xi := xj −1 | P;P
| loop xi do P end.

Set {x0,x1,x2, . . .} of program variables.
Initial value of xi determines the number of loop iterations.
Loop must eventually terminate.

Programs with bounded iteration that necessarily terminate.

Wolfgang Schreiner http://www.risc.jku.at 11/66

Semantics

Semantics [P](m) maps the start memory m : N→ N to the final
memory after the termination of P:

[xi := 0](m) := m[i ← 0]
[xi := xj +1](m) := m[i ←m(j) +1]
[xi := xj −1](m) := m[i ←max{0,m(j)−1}]
[P1;P2](m) := [P2]([P1](m))
[loop xi do P end](m) := [P]m(i)(m)

m[i ← n]: memory m after updating the value xi by value n.
[P]n(m): memory m after n times executing P:

[P]0(m) := m
[P]n+1(m) := [P]([P]n(m))

A loop program denotes a function over memories.

Wolfgang Schreiner http://www.risc.jku.at 12/66

Syntactic Abbreviations

xi := xj

xi := xj +1;xi := xi −1

xi := n
xi := 0;xi := xi +1;xi := xi +1; . . . ;xi := xi +1

if xi = 0 then Pt else Pe end
xt := 1; loop xi do xt := 0; end;
xe := 1; loop xt do xe := 0; end;
loop xt do Pt end; loop xe do Pe end;

The usual programming language constructs (except for unbounded
iteration) can be represented.

Wolfgang Schreiner http://www.risc.jku.at 13/66

Loop Computability

We consider the computability of functions over the natural numbers.

f : Nn→ N is loop computable, if there exists a loop program P such that
for all x1, . . . ,xn ∈ N and memory m : N→ N defined as

m(i) :=
{

xi if 1≤ i ≤ n
0 else

we have

[P](m)(0) = f (x1, . . . ,xn)

When started in a state where x1, . . . ,xn contain the arguments of f , the
program terminates in a state where x0 holds the result of f .

Wolfgang Schreiner http://www.risc.jku.at 14/66

Example

Addition is computable by the program x0 := x1 + x2 :
x0 := x1;
loop x2 do

x0 := x0 +1
end

Multiplication is computable by the program x0 := x1 ·x2 :
x0 := 0;
loop x2 do

x0 := x0 +x1
end

Exponentiation is computable by the program x0 := xx2
1 :

x0 := 1;
loop x2 do

x0 := x0 ·x1
end

Natural number arithmetic is loop computable.
Wolfgang Schreiner http://www.risc.jku.at 15/66

Arithmetic

x0 := x1 ·x2:

x0 := 0;
loop x2 do

x0 := x0 +x1
end

x0 := 0;
loop x2 do

x0 := x0;
loop x1 do

x0 := x0 +1
end

end

Higher arithmetic needs multiply nested loops.

Wolfgang Schreiner http://www.risc.jku.at 16/66

Beyond Exponentiation

a ↑n b :=





ab if n = 1
1 if b = 0
a ↑n−1 (a ↑n (b−1)) else

a ↑1 b = ab

a ↑1 b = a ·a · . . . ·a (b times)

a ↑2 b = aa. .
.a

(b times)
a ↑2 b = a ↑1 a ↑1 . . . ↑1 a (b times)

a ↑3 b:
a ↑3 b = a ↑2 a ↑2 . . . ↑2 a (b times)

The notation allows to define arbitrary “complex” arithmetic functions.

Wolfgang Schreiner http://www.risc.jku.at 17/66

Limits of Loop Computability

Theorem: for every n > 0 and f (a,b) := a ↑n b
f is loop computable, and
every loop program computing f requires at least n +2 nested loops.

Theorem: g : N3→ N,g(a,b,n) := a ↑n+1 b is not loop computable.
Assume g can be computed by a program P with n loops.
Then the computation of g(a,b,n) = a ↑n+1 b requires n +3 loops.
Thus P cannot compute g .

Also the Ackermann Function is not loop computable:
ack(0,m) := m +1
ack(n,0) := ack(n−1,1)

ack(n,m) := ack(n−1,ack(n,m−1)), if n > 0∧m > 0

ack(n,m) = 2 ↑n−2 (m +3)−3
ack(4,2) has 20,000 digits.

Some arithmetic functions grow “too fast” to be loop computable.
Wolfgang Schreiner http://www.risc.jku.at 18/66

While Programs

While Program P:

P ::= . . . (as for loop programs)
| while xi do P end.

Set {x0,x1,x2, . . .} of program variables.
Loop is repeated as long as xi 6= 0.
If xi 6= 0 forever, loop does not terminate.

Programs with unbounded iteration that may not terminate.

Wolfgang Schreiner http://www.risc.jku.at 19/66

Semantics

Semantics [P](m) maps start memory m : N→ N
to the final memory, if P terminates, and
to the special value ⊥ (bottom), if P does not terminate.

Semantics generalizes that of loop programs:

[P](m) :=
{
⊥ if m =⊥
[P]′(m) else

[. . .]′(m) := . . . (as for loop programs)
Semantics of unbounded iteration:

[while xi do P end]′(m) :=
{
⊥ if Li (P,m)
[P]Ti (P,m)(m) else

Li (P,m) :⇔∀k ∈ N : [P]k(m)(i) 6= 0
Ti (P,m) := min

{
k ∈ N

∣∣ [P]k(m)(i) = 0
}

A while program denotes a function whose result is either a memory or ⊥.
Wolfgang Schreiner http://www.risc.jku.at 20/66

Syntactic Abbreviations

while xi < xj do P end
xk := xj −xi ;
while xk do P;xk := xj −xi ; end

Analogous constructions possible for other termination conditions.

Wolfgang Schreiner http://www.risc.jku.at 21/66

While Computability

f : Nn→p N is while computable, if there exists a while program P such
that for all x1, . . . ,xn ∈ N and memory m : N→ N defined as

m(i) :=
{

xi if 1≤ i ≤ n
0 else

the following holds:
If x1, . . . ,xn ∈ domain(f), then [P](m) : N→ N and

[P](m)(0) = f (x1, . . . ,xn)

If x1, . . . ,xn 6∈ domain(f), then

[P](m) =⊥

For a defined value of f (x1, . . . ,xn), P terminates with this value in
variable x0. If f (x1, . . . ,xn) is undefined, the program does not terminate.

Wolfgang Schreiner http://www.risc.jku.at 22/66

Example

The Ackermann function is while computable with the help of a stack.

function ack(n,m):
if n = 0 then

return m +1
else if m = 0 then

return ack(n−1,1)
end if
return ack(n−1,ack(n,m−1))

end function

function ack(x1,x2):
push(x1); push(x2)
while size() > 1 do

x2← pop();x1← pop()
if x1 = 0 then

push(x2 +1)
else if x2 = 0 then

push(x1−1); push(1);
else

push(x1−1);
push(x1); push(x2−1)

end if
end while
return pop()

end function

While programs are computationally more powerful than loop programs.
Wolfgang Schreiner http://www.risc.jku.at 23/66

Normal Form of a While Program

Kleene’s Normal Form Theorem: every while computable function can be
computed by a while program in Kleene’s normal form:

xc := 1;
while xc do

if xc = 1 then P1
else if xc = 2 then P2
. . .
else if xc = n then Pn
end if

end while

P1, . . . ,Pn do not contain while loops.
Control variable xc determines which Pi to execute next.

A single while loop is all that is needed.

Wolfgang Schreiner http://www.risc.jku.at 24/66

Normal Form of a While Program

We sketch the proof of Kleene’s Normal Form Theorem.
A while program can be translated into a goto program:

while xi do P end
Li : if xi = 0 goto Li+1

P;
goto Li

Li+1 : . . .

Gotos can be translated to control variable assignments:
goto Lj xc := j

The resulting program can be translated into normal form:

L1 : P1
L2 : P2
. . .
Ln : Pn

xc := 1;
while xc do

if xc = 1 then xc := 2;P1
else if xc = 2 then xc := 3;P2
. . .
else if xc = n then xc := 0;Pn
end if

end while

In essence, the execution loop of a processor.
Wolfgang Schreiner http://www.risc.jku.at 25/66

Turing Machines and While Programs

Theorem: Every Turing machine can be simulated by a while program
and vice versa.

Consequence: every Turing computable function is while computable
and vice versa.

Proof ⇒: construct P to simulate M.
x0 holds initial tape content.

Determines initial configuration.
Machine configuration (xl ,xq,xr):

xq: the current state.
xl : the tape left to the tape head,
xr : the tape under/right to head.

State xq and symbol xa under head
determine the state transition.

If none is possible, final tape
content is written to x0.

(xl ,xq ,xr) := input(x0)
xa := head(xr)
while transition(xq ,xa) do

if xq = q1 ∧xa = a1 then
P1

else if xq = q2 ∧xa = a2 then
P2

else if . . . then
. . .

else if xq = qn ∧xa = an then
Pn

end
xa := head(xr)

end
x0 := output(xl ,xq ,xr)

Wolfgang Schreiner http://www.risc.jku.at 26/66

Turing Machines and While Programs

Proof ⇐: construct M to simulate P (given in normal form).
Each program fragment Pi is translated into a corresponding fragment
of the transition function of M with sequence of states ci ,pi , . . . ,c0.

. . . c1

c2

. . .

cn

p1

p2

pn

. . .

. . .

. . .

c0

n

n

n

y

y

y

y

n

Wolfgang Schreiner http://www.risc.jku.at 27/66

1. Random Access Machines

2. Loop and While Programs

3. Primitive Recursive and µ-recursive Functions

4. Further Turing Complete Models

5. The Chomsky Hierarchy

6. Real Computers

Wolfgang Schreiner http://www.risc.jku.at 28/66

Primitive Recursive Functions

The following functions over the natural numbers are primitive recursive:
The constant null function 0 ∈ N.
The successor function s : N→ N,s(x) := x +1.
The projection functions pn

i : Nn→ N,pn
i (x1, . . . ,xn) := xi .

Every function h : Nn→ N defined by composition
h(x1, . . . ,xn) := f (g1(x1, . . . ,xn), . . . ,gk(x1, . . . ,xn))

from primitive recursive f : Nk → N and g1, . . . ,gk : Nn→ N.
Every function h : Nn+1→ N defined by primitive recursion

h(y ,x1 . . .xn) :=
{

f (x1, . . . ,xn) if y = 0
g(y −1,h(y −1,x1, . . . ,xn),x1, . . . ,xn) else

from primitive recursive f : Nn→ N and g : Nn+2→ N.
Starting with the base functions, by composition and primitive recursion
new primitive recursive functions can be defined.

Wolfgang Schreiner http://www.risc.jku.at 29/66

Understanding Primitive Recursion

Primitive recursion can be defined by a pattern matching equation:
h(0,x1 . . . ,xn) := f (x1, . . . ,xn)

h(y +1,x1 . . . ,xn) := g(y ,h(y ,x1, . . . ,xn),x1, . . . ,xn)

Primitive recursion can be defined by a pattern matching construct:
h(y ,x1 . . .xn) :=

case y of
0 : f (x1, . . . ,xn)
z +1 : g(z ,h(z ,x1, . . . ,xn),x1, . . . ,xn)

h(y ,x) denotes the (y −1)-times application of g starting with f (x):
h(0,x) = f (x)
h(1,x) = g(0,h(0,x),x) = g(0, f (x),x)
h(2,x) = g(1,h(1,x),x) = g(1,g(0, f (x),x),x)
h(3,x) = g(2,h(2,x),x) = g(2,g(1,g(0, f (x),x),x),x)

. . .

h(y ,x) = g(y −1,h(y −1,x),x) = g(y −1,g(y −2, . . . ,g(0, f (x),x), . . . ,x),x)
Wolfgang Schreiner http://www.risc.jku.at 30/66

Example

We consider arithmetic on natural numbers.
Addition y + x is primitive recursive:

0+ x := x
(y +1) + x := (y + x) +1

Multiplication y ·x is primitive recursive:

0 ·x := 0
(y +1) ·x := y ·x + x

Exponentiation xy is primitive recursive:

x0 := 1
xy+1 := xy ·x

Natural number arithmetic is primitive recursive.
Wolfgang Schreiner http://www.risc.jku.at 31/66

Primitive Recursion and Loop Computability

Both the execution of a loop program and the evaluation of a primitive
recursive function are bounded; are they equally expressive?

Example: Compute in x0 the smallest n < x1 for which p(n) = 1 holds
(respectively x0 = x1, if p(n) 6= 1 for all n < x1).

x0 := x1
x2 := 0
loop x1 do

if x0 = x1∧p(x2) = 1 then
x0 := x2

end
x2 := x2 +1

end

Assume n = 3:

x0 x1 x2
5 5 0
5 5 1
5 5 2
5 5 3
3 5 4
3 5 5

We will construct a primitive recursive function computing the same value.
Wolfgang Schreiner http://www.risc.jku.at 32/66

Primitive Recursion and Loop Computability

We mimic the execution of the loop by a primitive recursive function loop
whose recursion parameter denotes the number of loop iterations.

min(x1) := loop(x1,x1)

loop(x2,x1) :=
{

x1 if x2 = 0
if (x2−1, loop(x2−1,x1),x1) else

if (x2,x0,x1) :=
{

x2 if x0 = x1∧p(x2) = 1
x0 else

min(x1) := loop(x1,x1) computes the value assigned to x0 for input x1
(2nd argument) after x1 iterations of the loop (1st argument).
loop(x2,x1) computes the value assigned to x0 for input x1 after x2
iterations of the loop.
if (x2,x0,x1) computes the new value assigned to x0 from the old
value of x0 for input x1 after x2 iterations by the if statement.

Wolfgang Schreiner http://www.risc.jku.at 33/66

Primitive Recursion and Loop Computability

Evaluation of min(5) = loop(5,5).
loop(0,5) = 5
loop(1,5) = if (0, loop(0,5),5) = if (0,5,5) = 5
loop(2,5) = if (1, loop(1,5),5) = if (1,5,5) = 5
loop(3,5) = if (2, loop(2,5),5) = if (2,5,5) = 5
loop(4,5) = if (3, loop(3,5),5) = if (3,5,5) = 3
loop(5,5) = if (4, loop(4,5),5) = if (4,3,5) = 3

x0 x1 x2
5 5 0
5 5 1
5 5 2
5 5 3
3 5 4
3 5 5

In sequence of evaluations of loop(x2,x1) = x0 the values (x0,x1,x2)
correspond to the program trace of the loop program.

Wolfgang Schreiner http://www.risc.jku.at 34/66

Primitive Recursion and Loop Computability

Theorem: every prim. recursive function is loop computable and vice versa.
Proof ⇒: we show that primitive recursive function h is loop computable.

If h is one of the basic functions, it is clearly loop computable.
Case h(x1, . . . ,xn) := f (g1(x1, . . . ,xn), . . . ,gk(x1, . . . ,xn))

y1 := g1(x1, . . . ,xn);
y2 := g2(x1, . . . ,xn);
. . .
yk := gk(x1, . . . ,xn);
x0 := f (y1, . . . ,yk)

Case h(y ,x1 . . .xn) :=
{

f (x1, . . . ,xn) if y = 0
g(y −1,h(y ,x1, . . . ,xn),x1, . . . ,xn) else

x0 := f (x1, . . . ,xn); xy := 0;
loop y do

x0 := g(xy ,x0,x1, . . . ,xn);
xy := xy +1

end
Wolfgang Schreiner http://www.risc.jku.at 35/66

Primitive Recursion and Loop Computability

Proof ⇐: let h be computable by loop program P. Let fP : Nn+1→Nn+1 be the
function that maps the initial values of the variables used by P to their final values. We
show by induction on P that fP is primitive recursive.

Case xi := k :

fP(x0, . . . ,xn) := (x0, . . . ,xi−1,k,xi+1, . . . ,xn)

Case xi := xj ±1 :

fP(x0, . . . ,xn) := (x0, . . . ,xi−1,xj ±1,xi+1, . . . ,xn)

Case P1;P2 :
fP(x0, . . . ,xn) := fP2 (fP1 (x0, . . . ,xn))

Case loop xi do P ′ end :

fP(x0, . . . ,xn) := g(xi ,x0, . . . ,xn)

g(0,x0, . . . ,xn) := (x0, . . . ,xn)
g(m +1,x0, . . . ,xn) := fP ′(g(m,x0, . . . ,xn))

Thus the Ackermann function is also not primitive recursive.
Wolfgang Schreiner http://www.risc.jku.at 36/66

µ-Recursive Functions

A partial function over the natural numbers is µ-recursive, if it
is the constant null, successor, or a projection function,
can be constructed from other µ-recursive functions by composition
or primitive recursion, or
is a function h : Nn→p N defined as

h(x1, . . . ,xn) := (µf)(x1, . . . ,xn)

with µ-recursive f : Nn+1→p N and (µf) : Nn→p N defined as

(µf)(x1, . . . ,xn) := min
{

y ∈ N

∣∣∣∣∣
f (y ,x1, . . . ,xn) = 0 ∧
∀z ≤ y : (z ,x1, . . . ,xn) ∈ domain(f)

}

(µf)(x1, . . . ,xn) is the smallest y such that f (y ,x1, . . . ,xn) = 0 (and f is
defined for all z ≤ y); the result of h is undefined, if no such y exists.

Wolfgang Schreiner http://www.risc.jku.at 37/66

µ-Recursive Functions

primitive recursive

total µ-recursive

partial µ-recursive

Every primitive recursive function is a total µ-recursive function; a
µ-recursive function may or may not be total.

Wolfgang Schreiner http://www.risc.jku.at 38/66

A µ-recursive Function

Consider particular sequences of numbers.

f k(n) = f (f (f (. . . f (n))))︸ ︷︷ ︸
k applications of f

f (n) :=
{

n
2 if n is even
3n +1 otherwise

f 0(10) = 10
f 1(10) = f (f 0(10)) = f (10) = 5
f 2(10) = f (f 1(10)) = f (5) = 16
f 3(10) = f (f 2(10)) = f (16) = 8
f 4(10) = f (f 3(10)) = f (8) = 4
f 5(10) = f (f 4(10)) = f (4) = 2
f 6(10) = f (f 5(10)) = f (2) = 1

Collatz Conjecture: for every n ∈ N, f k(n) = 1 for some k ∈ N.
Wolfgang Schreiner http://www.risc.jku.at 39/66

A µ-recursive Function

We define C(n) to denote the smallest k with f k(n) = 1.

C(n) := (µD)(n)
D(k,n) := f k(n)−1

f k(n) :=
{

n if k = 0
f (f k−1(n)) otherwise

(see lecture notes for completely formal definition)

Truth of conjecture is unknown: C may or may not be total (and may or
may not be primitive recursive).

Wolfgang Schreiner http://www.risc.jku.at 40/66

µ-Recursion and While Computability

Theorem: every µ-recursive function is while computable and vice versa.

Proof ⇒: we show that µ-recursive h is while computable.

If h is one of the basic functions or defined by composition or primitive recursion,
it is clearly while computable.
Case h(x1, . . . ,xn) := (µf)(x1, . . . ,xn)

x0 := 0;
y := f (x0,x1, . . . ,xn);
while y do

x0 := x0 +1;
y := f (x0,x1, . . . ,xn)

end

µ-recursion denotes unbounded iterative search.

Wolfgang Schreiner http://www.risc.jku.at 41/66

µ-Recursion and While Computability

Proof ⇐: let h : Nk →p N be computable by while program P with variables x0, . . . ,xn.
Then h(x1, . . . ,xk) := var0 (fP(0,x1, . . . ,xk ,0, . . . ,0)) where var i (x0, . . . ,xn) := xi . We
show that fP : Nn+1→p Nn+1 is µ-recursive by induction on P.

If P is an assignment, a sequence, of a bounded loop, then fP is clearly µ-recursive.

Case while xi do P ′ end :

fP(x0, . . . ,xn) := g((µgi)(x0, . . . ,xn),x0, . . . ,xn)

gi : Nn+1→N
gi (m,x0, . . . ,xn) := var i (g(m,x0, . . . ,xn))

g(0,x0, . . . ,xn) := (x0, . . . ,xn)
g(m +1,x0, . . . ,xn) := fP ′(g(m,x0, . . . ,xn))

gi (m,x0, . . . ,xn): the value of program variable i after m iterations
g(m,x0, . . . ,xn): the values of all variables after m iterations.

Thus the Ackermann function is also µ-recursive.
Wolfgang Schreiner http://www.risc.jku.at 42/66

Normal Form of a µ-Recursive Function

Kleene’s Normal Form Theorem: every µ-recursive function h can be
defined in Kleene’s normal form:

h(x1, . . . ,xk) := f2(x1, . . . ,xk ,(µg)(f1(x1, . . . ,xk)))

f1, f2,g are primitive recursive functions.

A single application of µ is all that is needed.

Wolfgang Schreiner http://www.risc.jku.at 43/66

Normal Form of a µ-Recursive Function

We sketch the proof of Kleene’s Normal Form Theorem.

Since h is µ-recursive, it is computable by a while program in normal form
xc := 1; while xc do . . . end

with memory function
fP(x0, . . . ,xn) := g((µgc)(init(x0, . . . ,xn)), init(x0, . . . ,xn))

with primitive recursive g and gc and init(x0, . . . ,xc , . . . ,xn) := (x0, . . . ,1, . . . ,xn).

Thus we can define
h(x1, . . . ,xk) := var0(fP(0,x1, . . . ,xk ,0, . . . ,0))

= var0(g((µgc)(init(0,x1, . . . ,xk ,0, . . . ,0)), init(0,x1, . . . ,xk ,0, . . . ,0)))
= f2(x1, . . . ,xk ,(µgc)(f1(x1, . . . ,xk)))

with primitive recursive
f1(x1, . . . ,xk) := init(0,x1, . . . ,xk ,0, . . . ,0)

f2(x1, . . . ,xk , r) := var0(g(r , init(0,x1, . . . ,xk ,0, . . . ,0)))

Wolfgang Schreiner http://www.risc.jku.at 44/66

1. Random Access Machines

2. Loop and While Programs

3. Primitive Recursive and µ-recursive Functions

4. Further Turing Complete Models

5. The Chomsky Hierarchy

6. Real Computers

Wolfgang Schreiner http://www.risc.jku.at 45/66

The Big Picture So Far

Random Access Machines

Turing Machines

While Programs Loop Programs

Primitive Recursive Functions

Finite State Machines

Turing Complete Models

µ-recursive Functions

We are going to sketch some more Turing complete models.
Wolfgang Schreiner http://www.risc.jku.at 46/66

Goto Programs

A goto program has form
L1 : P1;L2 : P2; . . . ;Pn : An

where Lk denotes a label and Pk an action:
P ::= xi := 0 | xi := xj +1 | xi := xj −1 | if xi goto Lj

Semantics [P](k,m):
A partial function which maps the initial state (k,m) of P, consisting
of program counter k ∈ N and memory m : N→ N, to its final state
(unless the program does not terminate).

[P](0,m) := m
[P = . . . ;Pk : xi := 0; . . .](k,m) := [P](k +1,m[i ← 0])
[P = . . . ;Pk : xi := xj +1; . . .](k,m) := [P](k +1,m[i ←m[j]+1])
[P = . . . ;Pk : xi := xj −1; . . .](k,m) := [P](k +1,m[i ←max{0,m[j]−1]})

[P = . . . ;Pk : if xi goto Lj ; . . .](k,m) :=
{

[P](k +1,m), if m(i) = 0
[P](j ,m), if m(i) 6= 0

We have already seen how goto programs can be translated to while
programs and vice versa; goto programs are therefore Turing complete.

Wolfgang Schreiner http://www.risc.jku.at 47/66

λ -Calculus

A λ -term T :
T ::= xi | (T T) | (λxi .T)
xi : a variable.
(T T): an application.
(λxi .T): an abstraction.

Reduction relation →:
((λxi .T1)T2)→ (T1[xi ← T2])

The result of the application of a function to an argument.
Reduction sequence T1→∗ T2

T1→ . . .→ T2

T2 is in normal form, if no further reduction is possible.
Church-Rosser Theorem: If T1→∗ T2 and T1→∗ T ′2 such that both
T2 and T ′2 are in normal form, then T2 = T ′2.

Every computable function can be represented by a λ -term.
Wolfgang Schreiner http://www.risc.jku.at 48/66

λ -Calculus

How can we represent unbounded iteration (recursion)?
Can define fixpoint operator Y :

(YF)→∗ (F (YF))

Y := (λ f .((λx .(f (xx)))(λx .(f (xx)))))
Can translate recursive function definition to λ -term:

f (x) := . . . f (g(x)) . . . f := YF

F : = λh.λxh(g(x)) . . .

λ -term behaves like recursive function.

fa = (YF)a→∗ F (YF)a→∗ . . .(YF)(g(a)) . . . = . . . f (g(a)) . . .

Formal basis of functional programming languages.
Wolfgang Schreiner http://www.risc.jku.at 49/66

Rewriting Systems

A term rewriting system is a set of rules of form
L→ R

L,R: terms such that L is not a variable and every variable that
appears in R must also appear in L.

Rewriting Step T → T ′:
There is some rule L→ R and a substitution σ (a mapping of variables
to terms) such that
some subterm U of T matches the left hand side L of the rule under
the substitution σ , i.e., U = Lσ ,
T ′ is derived from T by replacing U with Rσ , i.e with the right hand
side of the rule after applying the variable replacement.

Rewriting Sequence T1→∗ T2
T1→ . . .→ T2

T2 is in normal form, if no further reduction is possible.
Every computable function can be represented by a term rewriting system.

Wolfgang Schreiner http://www.risc.jku.at 50/66

Rewriting Systems

Term rewriting system:

f (x , f (y ,z))→ f (f (x ,y),z)
f (x ,e)→ x

f (x , i(x))→ e

Rewriting sequence:

f (a, f (i(a),e))→ f (f (a, i(a)),e)→ f (e,e)→ e
f (a, f (i(a),e))→ f (a, i(a))→ e

Rewriting systems can be also defined over strings and graphs; the later
form the basis of tools for model driven architectures.

Wolfgang Schreiner http://www.risc.jku.at 51/66

1. Random Access Machines

2. Loop and While Programs

3. Primitive Recursive and µ-recursive Functions

4. Further Turing Complete Models

5. The Chomsky Hierarchy

6. Real Computers

Wolfgang Schreiner http://www.risc.jku.at 52/66

Languages and Machines

Regular languages:
Representable by regular expressions.
Recognizable by finite state machines.

Recursively enumerable languages:
Representable by . . . ?
Recognizable by Turing machines.

Relationship:
Every regular language is recursively enumerable.
Every finite state machine can be simulated by a Turing machine.

But not vice versa.

Are there any other interesting classes of languages and associated
machine models and how do they relate to those above?

Wolfgang Schreiner http://www.risc.jku.at 53/66

Grammars

Grammar G = (N,Σ,P,S):
N: a finite set of nonterminal symbols,
Σ: a finite set of terminal symbols disjoint from N.

N ∩Σ = /0
P: a finite set of production rules of form l → r such that

l ∈ (N ∪Σ)∗ ◦N ◦ (N ∪Σ)∗
r ∈ (N ∪Σ)∗

l and r consist of nonterminal and/or terminal symbols.
l must contain at least one nonterminal symbol.
Multiple rules l → r1, l → r2, . . . , l → rn can be abbreviated:

l → r1 | r2 | . . . | rn

S: the start symbol.
S ∈ N

Grammar G describes a language over alphabet Σ.
Wolfgang Schreiner http://www.risc.jku.at 54/66

The Language of a Grammar

Grammar G = (N,Σ,P,S), words w ,w1,w2 ∈ (N ∪Σ)∗.
Direct derivation w1⇒ w2 in G :

w1 = ulv and w2 = urv
for u,v ∈ (N ∪Σ)∗ and (l → r) ∈ P

Derivation w1⇒∗ w2 in G :
w1⇒ . . .⇒ w2 in G .

w is a sentential form in G :
S ⇒∗ w

w is a sentence in G :
w is a sentential form in G and w ∈ Σ∗.

Language L(G) of G :
L(G) := {w is a sentence in G}

The language of a grammar is the set of all words that consist only of
terminal symbols and that are derivable from the start symbol.

Wolfgang Schreiner http://www.risc.jku.at 55/66

Example

Grammar G = (N,Σ,P,S):
N = {S,A,B}
Σ = {a,b,c}
P = {S → Ac, A→ aB,A→ BBb,B→ b,B→ ab}

Derivations:
S⇒ Ac ⇒ aBc ⇒ abc
S⇒ Ac ⇒ BBbc ⇒ abBbc ⇒ ababbc

Language:
L(G) = {abc,aabc,bbbc,babbc,abbbc,ababbc}

This grammar defines a finite language.

Wolfgang Schreiner http://www.risc.jku.at 56/66

Example

Grammar G = (N,Σ,P,S):
N = {S}
Σ = {‘(’, ‘)’, ‘[’, ‘]’}
P = {S → ε | SS | [S] | (S)}

Derivations:
S⇒ [S]⇒ [SS]⇒ [(S)S]⇒ [()S]⇒ [()[S]]⇒ [()[(S)]]⇒ [()[()]]

Language: the “Dyck-Language”
L(G) is the language of all expressions with matching pairs of
parentheses “()” and brackets “[]”

This grammar defines an infinite language.

Wolfgang Schreiner http://www.risc.jku.at 57/66

Right-Linear Grammars and Regular Lang.

Grammar G = (N,Σ,P,S) is right linear if each rule in P has form
A→ ε, A→ a, A→ aB

with nonterminal symbols A,B ∈ N and terminal symbol a ∈ Σ.
Theorem: The languages of right linear grammars are exactly the
regular languages.

For every right linear grammar G , there exists a FSM M with
L(M) = L(G) and vice versa.
Proof ⇒: we construct from right linear grammar G a NFSM M. The
states are the nonterminal symbols extended by a final state qf ; the
start state is the start symbol.

For every rule A→ ε, the state A becomes final.
For every rule A→ a, we add a transition δ (A,a) = qf .
For every rule A→ aB, we add a transition δ (A,a) = B.

Proof ⇐: we construct from DFSM M right linear grammar G . The
nonterminal symbols are the states; the start symbol is the start state.

For every transition δ (q,a) = q′ we add a production rule q→ aq′.
For every final state q, we add a production rule q→ ε.

Wolfgang Schreiner http://www.risc.jku.at 58/66

Grammars and Recursively Enum. Lang.

Theorem: The languages of (unrestricted) grammars are exactly the
recursively enumerable languages.

Proof ⇒: construct 2-tape nondeterministic M with L(M) = L(G).
M uses the second tape to construct some sentence of L(G): it starts by writing S
on the tape and then nondeterministically chooses some rule l → r and applies it
to some occurrence of l on the tape, replacing it by r . Then M checks whether
the result equals the word on the first tape. If yes, M accepts the word, otherwise,
it continues with another production rule.
Proof ⇐: construct grammar G with L(G) = L(M).
Sentential forms encode pairs (w ,c) of input w and configuration c of M; every
form contains a non-terminal symbol such that by a rule application the current
configuration is replaced by the successor configuration. The rules ensure that

from the start symbol, every matching pair (w ,c) of M can be derived;
for every transition that moves c to c ′, a rule is constructed that allows a
derivation (w ,c)⇒ (w ,c ′);
if configuration c describes a final state from which no further transition is
possible, the derivation (w ,c)⇒ w is possible.

Unrestricted grammars represent another Turing complete model.
Wolfgang Schreiner http://www.risc.jku.at 59/66

The Chomsky Hierarchy

Noam Chomsky, 1959.

Type i Grammar G(i) Language L(i) Machine M(i)
0 unrestricted recursively enumerable Turing machine
1 context-sensitive context-sensitive linear bounded automaton
2 context-free context-free push down automaton
3 right linear regular finite state machine

L(i) is the set of languages of grammars G(i) and machines M(i).
For i > 0, the set of languages of type L(i) is a proper subset of the
set of languages L(i−1), i.e. L(i)⊂ L(i−1).
For i > 0, every machine in M(i) can be simulated by a machine in
M(i−1) (but not vice versa).

Grammars correspond to machine models.

Wolfgang Schreiner http://www.risc.jku.at 60/66

Context-Free Languages (Type 2)

Context-free grammar G : every rule has form A→ r with A ∈ N.
Independent of the context, any occurrence of A can be replaced.

Example: L := {aibi | i ∈ N}
S → ε | aSb
S ⇒ aSb⇒ aaSbb⇒ aaaSbbb⇒ aaabbb

Pushdown automaton M: nondeterministic FSM with unbounded
stack of symbols as “working memory”:

in every transition δ (q,a,b) = (q′,w),
M reads the next input symbol a (a may be ε, i.e., M may not read a
symbol) and the symbol b on the top of the stack, and
replaces b by a (possibly empty) sequence w of symbols.

Most languages in computer science are context-free.

Wolfgang Schreiner http://www.risc.jku.at 61/66

Generation of Syntax Analyzers

“Compiler generators” for the generation of syntax analyzers (parsers).
Input: a (deterministic) context free grammar.

statement: assignment | conditional | whileloop | ... ;
whileloop: ’while’ ’(’ valexp ’)’ statement ;

Output: a (deterministic) push down automaton (as a program)
public final LoopStatement whileloop() throws ... {

...
pushFollow(FOLLOW_valexp_in_whileloop1457);
valexp();
state._fsp--;
if (state.failed) return value;
...
pushFollow(FOLLOW_statement_in_whileloop1484);
statement();
state._fsp--;
if (state.failed) return value;
...

}

Wolfgang Schreiner http://www.risc.jku.at 62/66

Context-Sensitive Languages (Type 1)

Context-sensitive grammar G :
in every rule l → r , we have |l | ≤ |r |, i.e., the length of left side l is less
than or equal the length of right side r ,
the rule S → ε is only allowed, if the start symbol S does not appear
on the right hand side of any rule.

Example: L := {aibic i | i ∈ N}
S→ ε | T ,T → ABC | TABC
BA→ AB,CB→ BC ,CA→ AC
AB→ ab,bC → bc,Aa→ aa,bB→ bb,cC → cc

S ⇒ T ⇒ TABC ⇒ ABCABC ⇒ ABACBC ⇒ AABCBC ⇒ AABBCC
⇒ AabBCC ⇒ aabBCC ⇒ aabbCC ⇒ aabbcC ⇒ aabbcc

Linear bounded automaton M: nondeterministic Turing machine with
k tapes (for some k).

For input of length n, only the first n cells of each tape are used.
The “space” used is a fixed multiple of the length of the input word.

Less practical importance.
Wolfgang Schreiner http://www.risc.jku.at 63/66

Summary

We have seen examples of each type of language.
Type 3: {(ab)n | n ∈ N}

Language is regular.
Type 2: {anbn | n ∈ N}

Language is context-free.
Type 1: {anbncn | n ∈ N}

Language is context-sensitive.
Type 0: {aibjck | k = ack(i , j)}

Language is recursively enumerable (also recursive).

None of these languages of type i is also of type i +1.

Wolfgang Schreiner http://www.risc.jku.at 64/66

1. Random Access Machines

2. Loop and While Programs

3. Primitive Recursive and µ-recursive Functions

4. Further Turing Complete Models

5. The Chomsky Hierarchy

6. Real Computers

Wolfgang Schreiner http://www.risc.jku.at 65/66

Real Computers

Are real computers Turing complete?
Hardware view:

Finite number of digital elements and thus a finite number of states.
Cannot simulate the infinite Turing machine tape.
Cannot perform unbounded arithmetic.
A computer is thus a finite state machine (i.e., not Turing complete).
View taken by model checkers.

Algorithm theory view:
On demand, arbitrary much (e.g., virtual) memory may be added.
Can thus simulate arbitrary large portion of the Turing machine tape.
Can thus perform unbounded arithmetic.
A computer is Turing complete.
View taken by algorithm design.

A matter of the point of view respectively the goal of the modeling.
Wolfgang Schreiner http://www.risc.jku.at 66/66

