
Wolfgang Schreiner

Thinking Programs

Formal Modeling and Reasoning about
Languages, Data, and Computatations

July 18, 2017

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

Contents

Part I The Foundations

1 Syntax and Semantics . 3
1.1 Abstract Syntax . 3
1.2 Structural Induction . 6
1.3 Semantics . 10
1.4 Type Systems . 12
1.5 The Semantics of Typed Languages . 14

Exercises . 16
Further Reading . 17

Abstract Syntax Trees in OCaml . 19

2 The Language of Logic . 25
2.1 First-Order Logic . 25
2.2 Informal Interpretation . 29
2.3 Well-Formed Terms and Formulas . 32
2.4 Propositional Logic . 34
2.5 Free and Bound Variables . 41
2.6 Formal Semantics . 43
2.7 Validity and Equivalence . 47

Exercises . 53
Further Reading . 53

The Logic of the RISC ProofNavigator . 55

3 The Art of Reasoning . 61
3.1 Reasoning and Proofs . 61
3.2 Inference Rules and Proof Trees . 62
3.3 Reasoning in First Order Logic . 64
3.4 Reasoning by Induction . 79

v

vi Contents

Exercises . 86
Further Reading . 86

Reasoning with the RISC ProofNavigator . 89

4 Building Models . 97
4.1 Axioms and Definitions . 97
4.2 The Theory of Sets . 103
4.3 Products and Sums . 107
4.4 Set-Theoretic Functions and Relations . 110
4.5 More Type Constructions . 117
4.6 Implicit Definitions and Function Specifications 120

Exercises . 125
Further Reading . 126

Writing Definitions in Isabelle/HOL . 127

5 Recursion . 133
5.1 Recursive Definitions . 133
5.2 Primitive Recursion . 136
5.3 Least and Greatest Fixed Points . 138
5.4 Defining Continuous Functions . 148
5.5 Inductive and Coinductive Relation Definitions 152
5.6 Rule-Oriented Inductive and Coinductive Relation Definitions 155
5.7 Inductive and Coinductive Function Definitions 160
5.8 Inductive and Coinductive Proofs . 166

Exercises . 176
Further Reading . 176

Recursive Definitions in Isabelle/HOL . 177

Part II The Upper Floors

6 Abstract Data Types . 185
6.1 Introduction . 186
6.2 Declarations, Signatures, and Presentations . 190
6.3 Algebras, Homomorphisms, and Abstract Data Types 196
6.4 Loose Specifications . 204
6.5 Generated and Free Specifications . 210
6.6 Cogenerated and Cofree Specifications . 221
6.7 Specifying in the Large . 237
6.8 Reasoning about Specifications . 258

Exercises . 284
Further Reading . 284

Abstract Data Types in CafeOBJ and CASL . 287

© 2017 Wolfgang Schreiner.

Contents vii

7 Programming Languages . 299
7.1 Programs and Commands . 300
7.2 A Denotational Semantics . 303
7.3 An Operational Semantics . 323
7.4 The Correctness of Translations . 341
7.5 Programming Languages with Procedures . 364

Exercises . 385
Further Reading . 386

Language Semantics in OCaml and the K Framework 389

8 Computer Programs . 397

References . 399

Index . 405

© 2017 Wolfgang Schreiner.

Chapter 6
Abstract Data Types

Der Worte sind genug gewechselt, lasst uns endlich Daten sehen.
(That’s enough words for the moment, now let me see some data!) —
Gerhard Kocher (Vorsicht, Medizin!), after Johannn Wolfgang von
Goethe (Faust, “Taten/action” rather than “Daten/data”.)

Programs operate on data. It is thus natural to start our considerations of how to think
about programs by a discussion of how to think about data types. For this purpose,
we do not really need to know how the objects of a type are concretely represented
(such representations have been discussed in Chapter 4); we may rather focus on the
properties that are satisfied by the operations which have been given to us to work
with these objects. This view is also in line with modern software engineering that
abstracts from the implementation details of data by encapsulating them in classes
that only expose a (more or less) well documented method interface to the user.

This chapter presents the core of a theory of such “abstract data types” which
is a blend of universal algebra and logic; in particular we introduce a language for
specifying abstract data types and give it a formal semantics. Our presentation starts
in Section 6.1 with some examples of this language before we elaborate in Section 6.2
its core of “declarations”; this core give rise to the formal notions of “signatures”
and “presentations” which capture the syntactic aspects of declarations. We then
proceed in Section 6.3 to the mathematical concepts of (many-sorted) “algebras” and
“homomorphisms” on which the notion of an “abstract data type” is based which
captures the semantics of a declaration.

In Sections 6.4, 6.5, and 6.6, we give three classes of possible interpretations of
declarations as abstract data types: the “loose” one (which confines itself to the logical
characterization of a type), the “generated/free” one (which describes data types such
as finite lists by the means of their construction), and the dual “cogenerated/cofree”
one (which describes data types such as infinite streams by the ways of how they
can be observed). We then extend in Section 6.7 this language of “specifying in the
small” to a language of “specifying in the large”: that language allows to combine
specifications of individual data types to compound specifications and also to develop
“generic specifications” that can be instantiated in various ways.

While the previous elaborations have given abstract data type specifications a
formal semantics, it has not yet become really clear what we can practically “do”
with such specifications. We therefore conclude in Section 6.8 by discussing how to
reason about formally specified abstract data types, for instance, in programs that
operate on such types or that implement such types.

185

186 6 Abstract Data Types

6.1 Introduction

We start by presenting several examples of abstract data types that shall motivate the
formal concepts that will be discussed in the subsequent sections. We define abstract
data types by named specifications such as the following one:

% a domain with an associative operation and a neutral element
spec MONOIDB

{
sort Elem
const e: Elem
fun op: Elem × Elem→ Elem
pred isE ⊆ Elem
axiom ∀x:Elem. op(e,x) = x ∧ op(x,e) = x
axiom ∀x:Elem, y:Elem, z:Elem. op(x,op(y,z)) = op(op(x,y),z)
axiom ∀x:Elem. isE(x)⇔ x=e

}

This specification named MONOID introduces the following entities:

1. a sort Elem which denotes a non-empty set of elements;
2. a constant operation e which denotes one of these elements;
3. a function operation op which denotes a binary function on this set;
4. a predicate operation isE which denotes a unary predicate on this set.

We use the term operations to differentiate between a name and the entities denoted
by this name; if clear from the context, we may also drop the appendix “operation”
and just speak of constants, functions, and predicates.

Not every interpretation of these names is allowed: the specification contains
various axioms, i.e., formulas that must be true for the denoted set, constant, function,
and predicate to yield a valid implementation of the abstract data type. Conversely,
every interpretation obeying the axioms represents a valid implementation: for
instance, the specification might be implemented by

• the set of character strings for Elem, the empty string for e, string concatenation
for op, and the emptiness test for isE; however, it may also be implemented by

• the set of natural numbers for Elem, the number 0 for e, the addition operation for
op, and the nullness test for isE.

These two implementations differ in crucial features, e.g. the axiom

axiom ∀x:Elem, y:Elem. op(x,y) = op(y,x)

is false for the first but true for the second one. Above specification is therefore also
called loose, because it allows implementations with observably different behaviors.

However, a specification need not be loose. Take the specification

% the natural numbers
spec NATB

© 2017 Wolfgang Schreiner.

6.1 Introduction 187

free type NatB 0 | +1(Nat)
then
{

fun +: Nat × Nat→ Nat
axiom ∀n1:Nat, n2:Nat.

+(0, n2) = n2 ∧
+(+1(n1), n2) = +1(+(n1, n2))

pred is0 ⊆ Nat, is0(n) :⇔ n=0
}

Here the declaration

free type NatB 0 | +1(Nat)

is a shortcut for the specification

free {
sort Nat
const 0: Nat
fun +1: Nat→ Nat

}

which introduces a sort Nat with a constant 0 and a unary constructor function +1.
This specification is tagged as free, which essentially means that every term that one
can build from the constructors represents a different element and that these are the
only elements of the specified sort. The set denoted by Nat thus consists of the distinct
elements denoted by 0, +1(0), +1(+1(0)), . . . ; consequently, this set can be identified
with the set of natural numbers.

Using the keyword then, this specification is subsequently extended by a loose
specification that introduces a binary function + on Nat which is however uniquely
characterized by an axiom: for every term of form +(T1,T2) where T1 and T2 are only
constructed by application of 0 and +1, the first argument T1 “matches” one of the
two universally quantified equations in the axiom: if T1 is 0, the first equation matches
and determines the value of the term to be the value of T2; if it is of form +1(U1), the
result is the value of +1(+(U1,T2))). By the freedom of the specification of Nat, exactly
one of the specification matches and determines unique values for the variables such
that the result is uniquely determined.

Furthermore, we introduce a predicate is0 by a declaration

pred is0 ⊆ Nat, is0(n) :⇔ n=0

which is a shortcut for

pred is0 ⊆ Nat
axiom ∀n:Nat. is0(n)⇔ n=0

The first format, however, makes it immediately clear that the predicate is uniquely
defined, because for every value of its argument, the resulting truth value is explicitly
described.

© 2017 Wolfgang Schreiner.

188 6 Abstract Data Types

A free specification introduces a sort whose values are “finite”, in the sense that
they can be constructed by finitely many applications of constructors to a constant.
For the following specification, this is not the case:

% infinite streams of natural numbers
spec NATSTREAM import NATB

cofree cotype NatStreamB head:Nat | tail:NatStream
then
{

fun cons: Nat × NatStream→ NatStream
axiom ∀n:Nat, s:NatStream.

head(cons(n,s)) = n ∧
tail(cons(n,s)) = s

fun counter: Nat→ NatStream, counter(n)B cons(n, counter(n+1))
}

Using the keyword import, this specification first “imports” the previously written
specification NAT (whose entities thus become available to the specification). It then
extends it by the declaration

cofree cotype NatStreamB head:Nat | tail:NatStream

which is a shortcut for the specification

cofree {
sort NatStream
fun head: NatStream→ Nat
fun tail: NatStream→ NatStream

}

that introduces two observer functions head and tail. This specification is tagged as
cofree which essentially means that the elements of the introduced sort are “black
boxes” which are only considered as different if they be distinguished by the (repeated)
application of observer operations; however, every term of the new sort that one
can build from the observers represents a different value. The sort NatStream can be
thus identified with the set of infinite streams of natural numbers: given a stream s,
head(s) denotes the first number (the “head”) of the stream and tail(s) denotes the
remainder of s (its “tail”) which is different from s itself.

This specification is subsequently extended by a loose specification

{
fun cons: Nat × NatStream→ NatStream
axiom ∀n:Nat, s:NatStream.

head(cons(n,s)) = n ∧
tail(cons(n,s)) = s

. . .
}

which introduces a function cons such that cons(n,s) denotes an infinite stream with
head n and tail s. This function is constrained by two “pattern-matching” equations

© 2017 Wolfgang Schreiner.

6.1 Introduction 189

that specify for every observer of NatStream the result of its application to cons(n,s).
Because of the co-freedom of NatStream, these equations determine unique values
for n and s such that s is a proper substream of the original stream; equations of this
kind can thus not introduce any inconsistencies but indeed define a function uniquely.

In the same style, we could by a specification

{
fun counter: Nat→ NatStream
axiom ∀n:Nat, s:NatStream.

head(counter(n)) = n ∧
tail(counter(n)) = counter(n+1)

}

define a function counter such that that counter(n) denotes the infinite stream
[n, n + 1, n + 2, . . .]. However, with the help of cons, this can be much more ele-
gantly achieved: the declaration

fun counter: Nat→ NatStream, counter(n)B cons(n, counter(n+1))

determines the same function, because the equations

head(counter(n)) = head(cons(n, counter(n+1))) = n
tail(counter(n)) = tail(cons(n, counter(n+1))) = counter(n+1)

follow from the axioms of the cons operation.
The specification NATSTREAM models streams of natural numbers; however,

streams behave more or less the same for all kinds of elements. We can express this
by creating a generic (parameterized) specification

% infinite streams of elements
spec STREAM[sort Elem]B

cofree cotype StreamB head:Elem | tail:Stream
then
{

fun cons: Elem × Stream→ Stream
axiom ∀e:Elem, s:Stream.

head(cons(e,s)) = e ∧
tail(cons(e,s)) = s

}

from which we derive NATSTREAM as a special instance:

spec NATSTREAM import NATB
STREAM[NAT fit Elem ↦→Nat] with Stream↦→NatStream
then fun counter: Nat→ NatStream, counter(n)B cons(n, counter(n+1))

The specification instantiation STREAM[NAT fit Elem↦→Nat] generates a version of
STREAM that replaces the formal parameter sort Elem by the actual argument sort Nat;
by the clause with Stream↦→NatStream the sort Stream of the resulting specification is
then renamed to NatStream.

© 2017 Wolfgang Schreiner.

Abstract Data Types in CafeOBJ and CASL

In this chapter we introduce two software systems that support algebraic
specifications of abstract data types, each in its own way:

• CafeOBJ [10, 14, 15] is an algebraic specification language in the tradi-
tion of OBJ. It is based on a many-sorted equational logic extended by
subsorts, unidirectional transitions, and hidden sorts with a notion of be-
havioral equivalence. A subset of CafeOBJ is executable: the core of the
CafeOBJ software is a term rewriting system that allows to execute initial
specifications with restricted forms of conditional equations as axioms. By
term rewriting, also proofs by structural induction or searches for specific
reduction sequences can be performed.

• The Heterogeneous Tool Set Hets [37] is a software framework for inte-
grating various specification languages, most prominently CASL and its
various extensions such as CoCASL. Hets constructs from CASL specifi-
cations “development graphs” which structure the proofs that have to be
performed to ensure various semantic constraints with which the speci-
fications may be annotated; for proving consistency, the ideas sketched
in the previous chapter have been implemented in a formal calculus [51].
Proofs of user-specified theorems are performed with the help of external
automatic and interactive provers.

A comparison of the languages of CafeOBJ and CASL can be found in [40].
The specifications used in the following presentations can be downloaded

from the URLs

https://www.risc.jku.at/people/schreine/TP/software/adt/adt.cafe
https://www.risc.jku.at/people/schreine/TP/software/adt/adt.casl

and loaded by executing from the command line the following commands:

cafeobj adt.cafe
hets adt.casl

287

288 Abstract Data Types in CafeOBJ and CASL

Fig. 6.16 CafeOBJ

CafeOBJ

CafeOBJ is a text-only system that is operated in a terminal; see Figure 6.16
for the startup message printed by the system. We start by writing a small
specification of the abstract data type “integer numbers”:

module! MYINTCORE {
protecting (NAT)

[Int]
op int : Nat Nat -> Int

vars N1 N2 : Nat
ceq int(N1,N2) = int(p(N1),p(N2)) if N1 =/= 0 and N2 =/= 0 .

}

This specification can be written either on the command-line or into a text
file, e.g. adt.cafe; then the command

input adt .

reads and processes the file. The specification introduces a module MYINTCORE
which defines the core of the abstract data type; the exclamation mark in the
keyword module! indicates that for the initial interpretation of the specifica-
tion is desired (this is essentially just a hint for the human user, the system

© 2017 Wolfgang Schreiner.

289

treats all modules alike). The module imports the abstract data type NAT
which is subsequently extended by the specification; this data type is part
of the system library and provides an efficient implementation of the natural
numbers (based on machine integers). The keyword protecting indicates
that the interpretation of that type shall be preserved, i.e., not modified by
the extension (again this is just a hint for the user). The module then in-
troduces a new sort Int with a constructor int that maps pairs of natural
numbers to integers; the idea is that the term int(N1,N2) denotes the integer
N1 − N2.

The vars clause introduces universally quantified variables which may be
used in subsequent axioms. The keyword ceq indicates that the given axiom
is a conditional equation; i.e., the equation on the left hand side is true, pro-
vided that the condition on the right hand side holds. The right hand side may
be a propositional combination of equations T1 == T2 where T1 =/= T2 is a
shortcut for not T1 == T2. The CafeOBJ system treats axiomatic equations
as left-to-right rewrite rules; thus the given axiom says that any occurrence of
a term of form int(N1,N2) may be rewritten to the term int(p(N1),p(N2))
provided that the stated condition holds. The operation p imported from NAT
represents the predecessor function λx. x − 1; thus the conditional equation
all in all states that in an application of int(N1,N2) to non-zero values N1
and N2 both N1 and N2 may be replaced by their predecessors. The predicates
== respectively =/= actually represent “reduction (in)equality”; for determin-
ing their truth value the system reduces both argument terms as much as
possible (until no more rewriting rule can be applied); the predicates are then
considered as true if the resulting terms are identical respectively different.

If we would have not used the builtin representation of the natural num-
bers but provided our own definition in a specification MYNAT, we could have
written the axiom simply as

eq int(s(N1),s(N2)) = int(N1,N2) .

Here the keyword == indicates that the axiom is an unconditional equality.
The constructor s imported from MYNAT represents the successor function
λx. x + 1; the constraint that the reduction rule can be only applied to non-
zero values could be then expressed by pattern-matching. In any case, the
definition is executable; by executing

open MYINTCORE .

we enter the name space of the module such that we can execute

reduce int(5,3) .

which shows by the output

-- reduce in %MYINTCORE : (int(5,3)):Int
(int(2,0)):Int
(0.0000 sec for parse, 0.0040 sec for 26 rewrites + 36 matches)

© 2017 Wolfgang Schreiner.

290 Abstract Data Types in CafeOBJ and CASL

that 26 rewrite rules have been applied to reduce the given term to its canon-
ical form int(2,0). By setting the option

set trace on .

the application of all rewrite rules can be indeed monitored (we omit the
verbose output). By executing

close .

we leave the name space of the module again.
We continue by extending the data type by a couple of operations:

module* MYINT {
protecting (MYINTCORE)

op 0 : -> Int
op _ + _ : Int Int -> Int
op _ <= _ : Int Int -> Bool

vars N1 N2 M1 M2 : Nat
eq 0 = int(0,0) .
eq int(N1,N2) + int(M1,M2) = int(N1 + M1,N2 + M2) .
eq int(N1,N2) <= int(M1,M2) = N1 + M2 <= M1 + N2 .

}

Here an integer constant 0 is introduced (constants are in CafeOBJ just
operations without arguments), a binary integer function + and a binary in-
teger predicate <= (predicates are just operations into the predefined sort
Bool with constants true and false); CafeOBJ allows to use infix notation
for the binary operations. All three operations are uniquely defined by ax-
iomatic equations; thus we indicate by the asterisk in the keyword module*
that a loose interpretation of the extension suffices (again this is just a hint
to the user). We may also compute with this specification, e.g. if we execute

open MYINT .
reduce int(5,3) + int(2,7) .
close .

we get the result

-- reduce in %MYINT : (int(5,3) + int(2,7)):Int
(int(0,3)):Int
(0.0000 sec for parse, 0.0040 sec for 67 rewrites + 93 matches)

Next we are defining the core of a generic type “list of elements”:

module* ELEM { [Elem] }

module! LISTCORE[E :: ELEM] {
[List]
op empty : -> List
op cons : Elem List -> List

}

© 2017 Wolfgang Schreiner.

291

The loosely interpreted specification ELEM introduces a sort Elem; this spec-
ification is used for the parameter of the initially interpreted generic specifi-
cation LISTCORE which introduces a sort List with constructors empty and
cons. A generic module may in CafeOBJ have multiple parameters whose
identities can be distinguished by the given name (E in above example); if
there should be two ELEM parameters with name E1 and E2, we could distin-
guish by the notation Elem.E1 and Elem.E2 their respective sorts.

Furthermore, we extend the core type by the usual operations:

module* LIST[E :: ELEM] {
protecting (LISTCORE(E))
protecting (NAT)

op head : List -> Elem
op tail : List -> List
op append : List List -> List
op length : List -> Nat

var E : Elem
vars L L1 L2 : List

eq head(cons(E, L)) = E .
eq tail(cons(E, L)) = L .

eq append(empty, L2) = L2 .
eq append(cons(E,L1), L2) = cons(E, append(L1, L2)) .

eq length(empty) = 0 .
eq length(cons(E,L)) = 1 + length(L) .

}

Now we instantiate the generic type LIST with above type MYINT:

view INT->ELEM from ELEM to MYINT { sort Elem -> Int }
module* INTLIST { protecting (LIST(INT->ELEM)) }

The view declaration introduces a morphism INT->ELEM that maps the signa-
ture of ELEM to the signature of MYINT. We then define the module INTLIST
by the application of LIST to this view and thus derive the type “list of
integer numbers”. By the commands

open INTLIST .
let L =
append(cons(int(3,1),cons(int(5,8),empty)),cons(int(12,7),empty)) .

reduce L .
reduce length(L) .
close .

we locally define a list L; first we compute its canonical form, second its
length. The resulting output is

-- setting let variable "L" to : append(...) : List

© 2017 Wolfgang Schreiner.

292 Abstract Data Types in CafeOBJ and CASL

-- reduce in %INTLIST : (append(...)):List
(cons(int(2,0),cons(int(0,3),cons(int(5,0),empty)))):List
(0.0000 sec for parse, 0.0040 sec for 123 rewrites + 175 matches)

-- reduce in %INTLIST : (length(append(...)):Nat
(3):NzNat
(0.0000 sec for parse, 0.0000 sec for 148 rewrites + 215 matches)

While above examples have demonstrated the suitability of CafeOBJ for
executing specifications of a certain form, the capability of the underlying
term rewriting engine may be also applied to certain forms of reasoning. As
an example, we demonstrate the proof of
length(append(L1,L2)) == length(L1)+length(L2)

for arbitrary integer lists L1 and L2. Since sort List is generated with con-
structors empty and cons, we may perform this proof by structural induction
over L1.

First we start the proof of the base case by executing
open INTLIST .
op L2 : -> List .

Here we enter the name space of INTLIST which we extend by a new list
constant L2. We then show that the equality holds for empty and L2:
reduce length(append(empty,L2)) == length(empty) + length(L2) .

which is indeed confirmed:
-- reduce in %INTLIST : (... == ...):Bool
(true):Bool
(0.0000 sec for parse, 0.0000 sec for 4 rewrites + 13 matches)

Next we introduce a new list constant L1 which allows us to state the in-
duction assumption (namely that the property holds for L1 and L2) by an
additional rewrite rule:
op L1 : -> List .
eq length(append(L1,L2)) = length(L1) + length(L2) .

Finally we introduce a new integer constant I which allows us to formulate
the induction step (namely the claim that the property holds for cons(I,L1)
and L2):
op I : -> Int .
reduce length(append(cons(I,L1),L2)) == length(cons(I,L1)) + length(L2) .

Indeed the output
-- reduce in %INTLIST : (... == ...):Bool
(true):Bool
(0.0000 sec for parse, 0.0000 sec for 5 rewrites + 84 matches)

also confirms this claim. CafeOBJ may thus help to perform those kinds of
proofs which can be reduced to equality reasoning (or also to a search for
reduction/transition sequences, which we will not discuss further).

© 2017 Wolfgang Schreiner.

293

CASL and Hets

The heterogeneous toolset Hets can be started from the command line with a
list of CASL specification files as arguments; it then analyzes the correctness
of the syntax and of the static semantics of the specifications. For instance,
for the input file adt.casl whose content will be explained below, the tool
produces the following output:

> hets adt.casl
Analyzing library adt
Downloading Basic/Numbers ...
Analyzing library Basic/Numbers version 1.0
Analyzing spec Basic/Numbers#Nat
Analyzing spec Basic/Numbers#Int
Analyzing spec Basic/Numbers#Rat
Analyzing spec Basic/Numbers#DecimalFraction
... loaded Basic/Numbers
Analyzing spec adt#MyIntCore
Analyzing spec adt#MyInt
Analyzing spec adt#Elem
Analyzing spec adt#ListCore
Analyzing spec adt#List
Analyzing spec adt#IntList
Analyzing spec adt#ListProof

The content of file adt.casl represents the CASL counterpart to the
CafeOBJ specifications given in the previous section. It starts with a header

library adt
from Basic/Numbers get Nat

which ensures that the data type Nat from the standard library can be sub-
sequently used. It then continues with the specification

spec MyIntCore = Nat then %mono
free {
type Int ::= int(p:Nat;m:Nat)
forall n1,n2:Nat
. int(suc(n1),suc(n2)) = int(n1,n2)

}
end

which defines the core of the type “integer numbers” as an extension of the
given type Nat: the type declaration introduces a sort Int with a binary
constructor int from Nat to Int and two corresponding selectors p and m,
i.e., for any Int value i, we have i = int(p(i),m(i)). CASL is built upon
full first-order logic, thus the specification contains a quantified formula as
an axiom. The free interpretation of the extension constrained by this axiom
ensures that every integer has a canonical representation. The annotation
%mono asserts that the extension is monomorphic, i.e., that every algebra N
of Nat is extended to at least one algebra I, and that any two extensions I, I ′

of N are isomorphic.

© 2017 Wolfgang Schreiner.

294 Abstract Data Types in CafeOBJ and CASL

We continue by extending the core type by some operations:

spec MyInt = MyIntCore then %def
op 0: Int = int(0,0)
op __+__(i1,i2:Int): Int = int(p(i1)+p(i2),m(i1)+m(i2))
pred __<=__(i1,i2:Int) <=> p(i1)+m(i2) <= p(i2)+m(i1)

end

A constant is just a zero-ary operation, but predicates are in CASL different
from operations. Above specification introduces these entities by definitions
but the function and the predicate could have also been introduced in an
axiomatic form:

op __+__: Int * Int -> Int
pred __<=__: Int * Int
forall p1, m1, p2, m2: Nat
. int(p1,m1) + int(p2,m2) = int(p1+p2,m1+m2)
. int(p1,m1) <= int(p2,m2) <=> p1+m2 <= p2+m1

The annotation %def asserts that the extension is definitional , i.e., that every
algebra I of MyIntCore is extended to exactly one algebra I ′. The annotations
%mono and %def are special cases of the annotation %cons which just states
that an extension is conservative , i.e., that every algebra I of the original
type is extended to at least one algebra I ′; as we will see below, it is easier
to show that an extension is just conservative than to show that it is also
monomorphic or definitional.

For specifying the type “list of elements”, we start with the specification

spec ListCore[sort Elem] = %mono
free type List[Elem] ::= empty | cons(Elem,List[Elem])

end

where the generic specification ListCore extends by a free type declaration
every argument type with a sort Elem in a monomorphic way. The specifica-
tion introduces a sort with the compound name List[Elem] with construc-
tors empty and cons; the sorts resulting from specific instantiations of the
generic specification will thus receive correspondingly instantiated names.

We could have also written the type declaration as

free type List[Elem] ::= empty | cons(head:?Elem,tail:?List[Elem])

which additionally introduces two partial selectors head and tail; these op-
erations are only defined on values constructed by application of cons. We
could also introduce them in an axiomatic way

op head: List[Elem] ->? Elem
op tail: List[Elem] ->? List[Elem]

forall l:List[Elem]; e:Elem
. def head(l) <=> not l = empty
. head(cons(e,l)) = e
. def tail(l) <=> not l = empty
. tail(cons(e,l)) = l

© 2017 Wolfgang Schreiner.

295

where the arrows ->? indicate that the operations are partial and the corre-
sponding def predicates denote by preconditions the domains of these oper-
ations. However, since the selectors are subsequently not used (and adding
the additional axioms prevents a quick automatic proof given below), we do
without them.

Now we equip the data type with additional operations:

spec List[sort Elem] given Nat = ListCore[sort Elem] then %def
op append: List[Elem] * List[Elem] -> List[Elem]
forall l1,l2:List[Elem]; e:Elem
. append(empty,l2) = l2
. append(cons(e,l1),l2) = cons(e,append(l1,l2))

op length: List[Elem] -> Nat
forall l:List[Elem]; e:Elem
. length(empty) = 0
. length(cons(e,l)) = 1+length(l)

end

The given clause imports the specification Nat in such a way that it also
can appear as (a part of) an argument in an instantiation of the specification
(the previous chapter used the keyword import for this purpose). For instance,
we may now define the type “list of integers” as

spec IntList = List[MyInt fit Elem |-> Int]

Finally, we introduce by an extension

spec ListProof[sort Elem] = List[sort Elem] then %implies
forall l1,l2:List[Elem]
. length(append(l1,l2)) = length(l1)+length(l2)

end

an additional axiom; the annotation %implies indicates that the extension
is implied , i.e., that the original type is identical to the extended type.

The annotations given in the specifications represent claims that have to
be proved; the remainder of this section demonstrates how Hets supports
these proofs. By typing

hets -g adt.casl

Hets is started in a graphical mode where the window illustrated in Fig-
ure 6.17 is displayed. This window shows the “development graph” of the
included specifications; in this graph the named nodes represent specifica-
tions and the arrows represent dependencies among specifications. The black
arrows represent “definition links” that indicate that a specification is used
in the definition of another specification; the colored arrows represent “the-
orem links” that postulate relations between the theories; these links thus
represent proof obligations that have to be handled.

We start by selecting in menu Edit the entry Proofs and from the sub-
menu the Auto-DG-Prover which applies the rules of the proof calculus for

© 2017 Wolfgang Schreiner.

296 Abstract Data Types in CafeOBJ and CASL

Fig. 6.17 Hets Development Graph

development graphs. This reduces the original proof obligations to the core
obligations that we have to deal with; the results are shown in the left diagram
of Figure 6.18. The grey labels Mono? and Def? represent the obligations to
prove that the corresponding extensions are monomorphic respectively defi-
nitional; the red node indicates the obligation to prove the additional axiom
in the implied extension.

By selecting the link labeled Mono? between Elem and ListCore and right-
clicking the mouse, a menu pops up from which we may select the entry
Check conservativity. Indeed the builtin prover is able to deduce that
the extension is monomorphic and the question mark in the label disappears.
However, for the other two links labeled Mono? and Def? the resulting window
shows that the prover can only deduce that the extensions are conservative,
not that they are monomorphic respectively definitional. Since the first one
should be actually easy to establish (only an equational axiom is provided),
further investigations demonstrate that using the general kind of free { }
specifications lets the proof always fail (while a corresponding proof with a
free type declaration works); we thus suspect a limitation of the prover.
However, that the second one could not be established, is not surprising:
it demands convoluted reasoning that equations over free types with axioms
(representing quotient term algebras) are indeed definitional. We thus replace
the corresponding annotations by the simpler annotation %cons for which the
checks succeed: the edges are subsequently labeled Cons.

© 2017 Wolfgang Schreiner.

297

Fig. 6.18 Hets Development Graph (before and after proof)

It then remains to prove the formula introduced by the %implies clause.
After selecting with the mouse the red node, a right-click shows a menu from
which we select the Prove entry; this lets the proof management GUI pop
up that is displayed as the left window in Figure 6.19. Here we see in the list
Goals the formula Ax1 to be proved; by selecting this formula and pressing
the button Display, the window shown at the bottom of Figure 6.19 pops
up and displays the formula. Furthermore, we may select in the list Pick
theorem prover from a choice of automatic and interactive provers the one
we wish to apply for the given task.

Since the stated axiom crucially depends on equational reasoning, we
choose by the entry eprover the theorem prover E which is a powerful auto-
matic prover for first-order logic with equality. Furthermore, since the proof is
based on the principle of structural induction, we select in the list Selected
comorphism path a sequence of logic translations from CASL to E which
ends with the translation CASL2SoftFOLInduction2 that replaces goals with
induction premises. We then press the button Prove which lets the interface
to the E prover pop us that is displayed in the right window in Figure 6.19.
Pressing the button Prove in that window lets the proof almost immediately
succeed (however, if we would not have removed the partial selectors head
and tail from the specification, the proof would even after a minute not have
terminated yet). Thus also the red node in the development graph disappears;
the resulting view is depicted to the right of Figure 6.18.

© 2017 Wolfgang Schreiner.

298 Abstract Data Types in CafeOBJ and CASL

Fig. 6.19 Hets Proof Management GUI

Summary

The main benefit of CafeOBJ is that it allows to validate certain specifi-
cations by executing them and investigating the outcomes. This allows to
rapidly prototype an abstract data type by first modeling and analyzing it
in CafeOBJ; once its properties are thoroughly understood, it may be imple-
mented in a more efficient form in a real programming language. However,
this is only possible for specifications with initial semantics whose axioms are
expressed in a restricted form of conditional equational logic, which resem-
bles very much functional programming; the data type specifications thus
look more like concrete programs than abstract theories.

The characteristic feature of CASL is its expressiveness which allows to
write specifications on a very high-level of abstraction by leveraging the full
power of first-order logic without being restricted by considerations of ex-
ecutability. Certain important aspects (such as the conservativity of exten-
sions) may be fully automatically checked, albeit only for restricted forms
of specifications. Also the specifier may state general theorems which can be
proved with computer assistance. Here fully automatic proving, however, is
only rarely successful; typically (at least partially) interactive proofs are re-
quired. CASL/Hets thus represents a framework for building and analyzing
libraries of high-level data type theories; the comprehensive CASL standard
library may serve as a starting point for own developments.

© 2017 Wolfgang Schreiner.

Chapter 7
Programming Languages

Alles ist eine Frage der Sprache. (Everything is a question of
language.) — Ingeborg Bachmann (Alles)

In daily life, virtually all of human communication is expressed in one of the thousands
of natural languages that are spoken world-wide; these languages are rich in their
expressive capabilities, flexible in their applications, subtle in their nuances, and
beautiful in their form. However, they are also full of gaps and ambiguities; while
most of these can be usually overcome by intelligent beings that are able to deduce
the intended interpretation from the context of the communication, they are from time
to time are also the source of misunderstandings and disagreements, minor mishaps
as well as major disasters. Thus, when communicating with ignorant partners such as
computers, software developers use artificial languages that are designed in order to
unambiguously express their intentions of how a computer program shall operate
to solve a specific computational problem. However, even if millions of software
developers use such programming languages every day, it is probably fair to say that
only a minor fraction understands these languages in a sufficient depth to be able to
answer subtle and critical questions about the behavior of the resulting programs.
Ultimately, such an in-depth understanding requires a formal basis.

The goal of this chapter is to provide such a basis by showing how the semantics
of programming languages can be precisely described in the language of logic, using
the same kinds of techniques that have been introduced in the previous chapters for
modeling “mathematical” languages. For this purpose, building upon the language of
data types introduced in Chapter 6, Section 7.1 introduces an imperative programming
language, i.e., a language whose core elements are commands that operate by reading
from and writing to a common store. For this language we will give a formal type
system; only well-typed programs will subsequently receive a semantics. Then
Section 7.2 gives this language a “denotational” semantics that interprets commands
as functions on stores; these functions are partial, i.e., may not return a result,
which indicates that a program aborts or loops forever. Because partial functions are
comparably inconvenient to deal with, we subsequently switch from a functional
semantics to a relational one that allows arbitrarily many outcomes, which will also
become useful in later chapters. Based on these results, we are able to prove the
correctness of program transformations such as loop unrolling.

299

References

1. V.S. Alagar and K. Periyasamy. Specification of Software Systems. Texts in Computer Science.
Springer, London, UK, 2nd edition, 2011. https://doi.org/10.1007/978-0-85729-277-
3.

2. Clark Barrett and Cesare Tinelli. CVC3. Department of Computer Science, NewYork University,
NY, USA, 2015. https://www.cs.nyu.edu/acsys/cvc3.

3. Mordechai Ben-Ari. Mathematical Logic for Computer Science. Springer, London, UK, 3rd
edition, 2012. https://doi.org/10.1007/978-1-4471-4129-7.

4. Michael Bidoit and Peter D. Mosses. CASL User Manual — Introduction to Using the Common
Algebraic Specification Language, volume 2900 of Lecture Notes in Computer Science. Springer,
Berlin, 2004. https://doi.org/10.1007/b11968 and http://www.informatik.uni-
bremen.de/cofi/CASL-UM.pdf.

5. Dines Bjørner and Martin Henson, editors. Logics of Specification Languages. Springer, Berlin,
Germany, 2008. https://doi.org/10.1007/978-3-540-74107-7.

6. Aaron R. Bradley and Zohar Manna. The Calculus of Computation — Decision Procedures
with Applications to Verification. Springer, Berlin, Germany, 2007. https://doi.org/10.
1007/978-3-540-74113-8.

7. Manfred Broy and Ralf Steinbrüggen, editors. Calculational System Design. NATO Science
Series. IOS Press, Amsterdam, The Netherlands, 2000. http://www.iospress.nl/book/
calculational-system-design.

8. Bruno Buchberger and Franz Lichtenberger. Mathematik für Informatiker. Springer, Berlin,
Germany, 2nd edition, 1981. In German, http://www.risc.jku.at/publications/
download/risc_2230/mathematik_informatiker_bookmarks.pdf.

9. Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and Polymorphism.
Computing Surveys, 17(4):471–522, December 1985. https://doi.org/10.1145/6041.
6042 and http://lucacardelli.name/papers/onunderstanding.a4.pdf.

10. Razvan Diaconescu. A Methodological Guide to the CafeOBJ Logic. In In [5], pages 153–240.
Springer, Berlin, Germany, 2008.

11. Gilles Dowek and Jean-Jacques Lévy. Introduction to the Theory of Programming Languages.
Undergraduate Topics in Computer Science. Springer, London, UK, 2011. https://doi.
org/10.1007/978-0-85729-076-2.

12. H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer, New York, NY,
USA, 1992. https://doi.org/10.1007/978-1-4757-2355-7.

13. Maribel Fernández. Programming Languages and Operational Semantics — A Concise
Overview. Undergraduate Topics in Computer Science. Springer, London, UK, 2014. https:
//doi.org/10.1007/978-1-4471-6368-8.

14. K. Futatsugi, A.T. Nakagawa, and T. Tamai, editors. CAFE: An Industrial-
Strength Algebraic Formal Method. Elsevier, Amsterdam, The Netherlands, 2000.

399

400 References

https://www.elsevier.com/books/cafe-an-industrial-strength-algebraic-
formal-method/futatsugi/978-0-444-50556-9.

15. Kokichi Futatsugi et al. Cafeobj. Japan Advanced Institute of Science and Technology (JAIST),
Nomi, Japan, 2015. https://cafeobj.org.

16. Jean H. Gallier. Logic for Computer Science — Foundations of Automatic
Theorem Proving. Harper and Row, New York, NY, USA, 1986. http:
//www.cis.upenn.edu/~jean/gbooks/logic.html and http://www.researchgate.
net/publication/31634432_Logic_for_computer_science__foundations_of_
automatic_theorem_proving__J.H._Gallier.

17. Joseph A. Goguen and Grant Malcom, editors. Software Engineering with OBJ — Algebraic
Specification in Action, volume 2 of Advances in Formal Methods. Springer US, New York,
NY, USA, 2000. https://doi.org/10.1007/978-1-4757-6541-0.

18. TheoremaWorking Group. The Theorema System. Research Institute for Symbolic Computation
(RISC), Johannes Kepler University, Linz, Austria, 2014. https://www.risc.jku.at/
research/theorema/software.

19. Carl A. Gunter. Semantics of Programming Languages — Structures and Techniques. MIT
Press, Cambridge, MA, USA, 1992. https://mitpress.mit.edu/books/semantics-
programming-languages.

20. John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University
Press, Cambridge, UK, 2009. http://www.cambridge.org/az/academic/subjects/
computer-science/programming-languages-and-applied-logic/handbook-
practical-logic-and-automated-reasoning.

21. C.A.R. Hoare. Programs are Predicates. Philosophical Transactions of the Royal Society of
London, 312(1522):475–489, October 1984. https://www.jstor.org/stable/37446.

22. C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall International,
Upper Saddle River, NJ, USA, 1998. http://www.unifyingtheories.org/.

23. Michael Huth and Mark Ryan. Logic in Computer Science — Modelling and
Reasoning about Systems. Cambridge University Press, Cambridge, UK, 2nd edi-
tion, 2004. http://www.cambridge.org/az/academic/subjects/computer-
science/programming-languages-and-applied-logic/logic-computer-
science-modelling-and-reasoning-about-systems-2nd-edition.

24. Bart Jacobs and Jan Rutten. An Introduction to (Co)algebra and (Co)induction. In
Davide Sangiori and Jan Rutten, editors, Advanced Topics in Bisimulation and Coin-
duction, number 52 in Cambridge Tracts in Theoretical Computer Science, chapter 2,
pages 38–99. Cambridge University Press, Cambridge, UK, November 2011. https://
doi.org/10.1017/CBO9780511792588.003 and http://www.cwi.nl/~janr/papers/
files-of-papers/2011_Jacobs_Rutten_new.pdf and http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.37.1418 (1997 version).

25. Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall, Upper Saddle
River, NJ, USA, 2nd edition, 1990. http://homepages.cs.ncl.ac.uk/cliff.jones/
publications/Jones1990.pdf.

26. Dexter Kozen and Alexandra Silva. Practical Coinduction. Technical report, Computing
and Information Science, Cornell University, Ithaca, NY, USA, November 2012. http:
//hdl.handle.net/1813/30510.

27. Steven G. Krantz. Handbook of Logic and Proof Techniques for Computer Science. Birkhäuser,
Boston, MA, USA, 2002. https://doi.org/10.1007/978-1-4612-0115-1.

28. Fred Kröger and Stephan Merz. Temporal Logic and State Systems. Texts in Theoretical
Computer Science. Springer, Berlin, Germany, 2008. https://doi.org/10.1007/978-3-
540-68635-4.

29. Thomas Kropf. Introduction to Formal Hardware Verification. Springer, Berlin, Germany,
1999. https://doi.org/10.1007/978-3-662-03809-3.

30. Leslie Lamport. Specifying Systems — The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Professional, Boston, MA, USA, 2002. http://
research.microsoft.com/en-us/um/people/lamport/tla/book.html.

© 2017 Wolfgang Schreiner.

References 401

31. Wei Li. Mathematical Logic — Foundations for Information Science, volume 25 of Progress
in Computer Science and Applied Logic. Birkhäuser, Basel, Switzerland, 2nd edition, 2014.
https://doi.org/10.1007/978-3-0348-0862-0.

32. Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of Ab-
stract Data Types. Wiley & Teubner, Chichester, UK & Stuttgart, Germany,
1996. https://books.google.at/books/about/Specification_of_Abstract_
Data_Types.html?id=L7NQAAAAMAAJ&redir_esc=y.

33. Robert Lover. Elementary Logic — For Software Development. Springer, London, UK, 2008.
https://doi.org/10.1007/978-1-84800-082-7.

34. David Makinson. Sets, Logic and Maths for Computing. Undergraduate Topics in Computer
Science. Springer, London, UK, 2008. https://doi.org/10.1007/978-1-4471-2500-6.

35. Zohar Manna, Stephen Ness, and Jean Vuillemin. Inductive Methods for Proving Properties of
Programs. Communications of the ACM, 16(8), August 1973. https://doi.org/10.1145/
355609.362336.

36. John C. Mitchell. Foundations for Programming Languages. Foundations of Computing
series. MIT Press, Cambridge, MA, USA, 1996. https://mitpress.mit.edu/books/
foundations-programming-languages.

37. Till Mossakowski et al. Hets — the Heterogeneous Tool Set. Research Group Theoretical
Computer Science, Otto von Guericke Universität Magdeburg, Germany, 2015. http://theo.
cs.uni-magdeburg.de/Research/Hets.html.

38. Till Mossakowski, Anne E. Haxthausen, Donald Sannella, and Andrzej Tarlecki. CASL —
the Common Algebraic Specification Language. In In [5], pages 241–298. Springer, Berlin,
Germany, 2008.

39. Till Mossakowski, Lutz Schröder, Markus Roggenbach, and Horst-Reichl. Algebraic-
Coalgebraic Specification in CoCASL. The Journal of Logic and Algebraic Programming,
67(1–2):146–197, 2005. https://doi.org/10.1016/j.jlap.2005.09.006.

40. Peter D. Mosses. CASL for CafeOBJ Users. In In [14], chapter 6, pages 121–144. Elsevier,
Amsterdam, The Netherlands, 2000. https://doi.org/10.1016/B978-044450556-9/
50066-6 and http://www.brics.dk/RS/00/51.

41. Peter D. Mosses, editor. CASL Reference Manual — The Complete Documentation of the
Common Algebraic Specification Language, volume 2960 of Lecture Notes in Computer
Science. Springer, Berlin, 2004. https://doi.org/10.1007/b96103 and http://www.
informatik.uni-bremen.de/cofi/CASL-RM.pdf.

42. Markus Nebel. Formale Grundlagen der Programmierung. Vieweg+Teubner, Wiesbaden,
Germany, 2012. https://doi.org/10.1007/978-3-8348-2296-3.

43. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.
Springer, Berlin, Germany, 1999. https://doi.org/10.1007/978-3-662-03811-6.

44. Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: An Appetizer.
Undergraduate Topics in Computer Science. Springer, London, UK, 2007. https://doi.
org/10.1007/978-1-84628-692-6 and http://www.daimi.au.dk/~bra8130/Wiley_
book/wiley.ps.gz.

45. Tibas Nipkow, Lawrence Paulson, et al. Isabelle. University of Cambridge, UK, and Technische
Universität München, Germany, 2015. https://isabelle.in.tum.de.

46. Tobias Nipkow and Gerwin Klein. Concrete Semantics — With Isabelle/HOL. Springer,
Heidelberg, Germany, 2014. https://doi.org/10.1007/978-3-319-10542-0.

47. The ocaml.org Team. OCaml, 2015. https://ocaml.org.
48. University of Illinois and University of Iasi. K Framework, 2017. http://www.kframework.
org.

49. Peter Padawitz. Swinging Types = Functions + Relations + Transition Systems. Theoretical
Computer Science, 243:93–165, July 2000. https://doi.org/10.1016/S0304-3975(00)
00171-7 and http://fldit-www.cs.uni-dortmund.de/%7Epeter/Rome.ps.gz.

50. Lawrence C. Paulson. A Fixedpoint Approach to (Co)Inductive and (Co)Datatype Definitions.
In Gordon Plotkin, Colin P. Stirling, and Mads Tofte, editors, Proof, Language, and Interaction
— Essays in Honour of Robin Milner, pages 187–211. MIT Press, Cambridge, MA, USA, 2000.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.1835.

© 2017 Wolfgang Schreiner.

402 References

51. Markus Roggenbach and Lutz Schröder. Towards Trustworthy Specification I: Consistency
Checks. In Maura Cerioli and Gianna Reggio, editors, Recent Trends in Algebraic Development
Techniques: 15th International Workshop, WADT 2001 Joint with the CoFI WG Meeting
Genova, Italy, April 1–3, 2001, Selected Papers, volume 2267 of Lecture Notes in Computer
Science, pages 305–327. Springer, Berlin, Germany, 2002. https://doi.org/10.1007/3-
540-45645-7_15.

52. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, Upper Saddle River, NJ,
USA, 1997. http://www.cs.ox.ac.uk/bill.roscoe/publications/68b.pdf.

53. Kenneth Rosen. Discrete Mathematics and Its Applications. McGraw-Hill Education, Columbus,
OH, USA, 7th edition, 2012. http://highered.mheducation.com/sites/0073383090/
information_center_view0/index.html.

54. Grigore Roşu and Traian Florin Şerbănuţă. An Overview of the K Semantic Framework.
Journal of Logic and Algebraic Programming, 79(6):397–434, 2010. https://doi.org/10.
1016/j.jlap.2010.03.012.

55. David Sangiorgi. On the Origins of Bisimulation and Coinduction. ACM Transactions on
Programming Languages and Systems, 31(4):15:1–15:41, May 2009. https://doi.org/10.
1145/1516507.1516510.

56. Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Springer, Berlin, Germany, 2012. https://doi.org/10.1007/978-
3-642-17336-3.

57. Michael Schenke. Logikkalküle in der Informatik — Wie wird Logik vom Rechner genutzt?
Studienbücher Informatik. Springer Vieweg, Wiesbaden, Germany, 2013. https://doi.org/
10.1007/978-3-8348-2295-6.

58. David A. Schmidt. Denotational Semantics — A Methodology for Language Development.
Allyn and Bacon, Boston, MA, USA, 1986. http://people.cis.ksu.edu/~schmidt/
text/densem.html.

59. David A. Schmidt. The Structure of Typed Programming Languages. MIT Press,
Cambridge, MA, USA, 1994. https://mitpress.mit.edu/books/structure-typed-
programming-languages.

60. Klaus Schneider. Verification of Reactive Systems — Formal Methods and Algorithms. Texts
in Theoretical Computer Science. Springer, Berlin, Germany, 2004. https://doi.org/10.
1007/978-3-662-10778-2.

61. Wolfgang Schreiner. The RISC ProofNavigator: A Proving Assistant for Program Verifica-
tion in the Classroom. Formal Aspects of Computing, 21(3):277–291, May 2009. https:
//doi.org/10.1007/s00165-008-0069-4 and https://www.risc.jku.at/people/
schreine/papers/fac2008.pdf.

62. Wolfgang Schreiner. The RISC ProofNavigator. Research Institute for Symbolic Computation
(RISC), Johannes Kepler University, Linz, Austria, 2011. https://www.risc.jku.at/
research/formal/software/ProofNavigator.

63. Wolfgang Schreiner. Computer-Assisted Program Reasoning Based on a Relational Semantics
of Programs. Electronic Proceedings in Theoretical Computer Science (EPTCS), 79:124–142,
February 2012. Pedro Quaresma and Ralph-Johan Back (eds), Proceedings of the FirstWorkshop
on CTP Components for Educational Software (THedu’11), Wrocław, Poland, July 31, 2011,
https://doi.org/10.4204/EPTCS.79.8 and https://www.risc.jku.at/research/
formal/software/ProgramExplorer/papers/THeduPaper-2011.pdf.

64. Wolfgang Schreiner. The RISC ProgramExplorer. Research Institute for Symbolic Computation
(RISC), Johannes Kepler University, Linz, Austria, 2015. https://www.risc.jku.at/
research/formal/software/ProgramExplorer.

65. Jan van Leeuwen, editor. Handbook of Theoretical Computer Science, Volume B: Formal Models
and Semantics. Elsevier and MIT Press, Amsterdam, The Netherlands, and Cambridge, MA,
USA, 1990. https://mitpress.mit.edu/books/handbook-theoretical-computer-
science-0.

66. Daniel J. Velleman. How To Prove It — A Structured Approach. Cambridge Uni-
versity Press, Cambridge, UK, 2nd edition, 2006. http://www.cambridge.org/at/

© 2017 Wolfgang Schreiner.

References 403

academic/subjects/mathematics/logic-categories-and-sets/how-prove-it-
structured-approach-2nd-edition.

67. GlynnWinskel. The Formal Semantics of Programming Languages. MIT Press, Cambridge,MA,
USA, 1994. https://mitpress.mit.edu/books/formal-semantics-programming-
languages.

68. Martin Wirsing. Algebraic Specification. In In [65], chapter 13, pages 675–788. Elsevier and
MIT Press, Amsterdam, The Netherlands, and Cambridge, MA, USA, 1990.

69. Traian Florin Şerbănuţă. The K Primer (version 3.3). Electronic Notes in Theoretical Computer
Science, 304:57–80, June 2014. https://doi.org/10.1016/j.entcs.2014.05.003.

© 2017 Wolfgang Schreiner.

Index

A
Abstract Data Type, 203
Abstract Data Type Declaration, 190
Abstract Syntax, 3
Abstract Syntax Tree, 5
Abstraction Function, 361
Abstraction Homomorphism, 279
Address, 370
Addresses, 367
Adequate, 313
Σ-algebra, 196
Antecedent, 30
Arity, 26, 33, 191
Assignment, 44
A-states, 304
Atomic Predicate, 29
Axiom, 12, 63
Axioms, 98, 186

B
Behavior Algebra, 229
Behavior Homomorphism, 234
Behavior Tree, 230
Behaviorally Equivalent, 278
Big-step Operational Semantics, 325
Binary Relation, 111
Bisimilarity, 168
Bisimulation, 168, 266, 360
Bound, 41

C
Call By Reference, 364
Call By Value, 364
Calling Convention, 383
Carrier, 196
Chains, 145

Characteristic Term Algebra, 264
Choice Function, 105
Class, 117
Closed, 41
Closure, 375
Cofree, 188
Cofree Interpretation, 228
Cogenerated Interpretation, 225
Coinduction, 266
Coinductive Function Definition, 165
Coinductive Relation Definition, 152
Coinductive Rules, 157
Complete Induction, 81, 84
Complete Partial Order, 162
Compositional, 11
Conclusion, 63
Conclusion , 13
Concretization Relation, 361
Conditional Equational Logic, 214
Conditional Formula, 30
Conditional Term, 29
Configuration, 324
Conjunction, 30
Conjunctive Normal Form, 39
Consequent, 30
Conservative, 294
Conservative Extension, 102
Conservatively Extended, 270
Consistent, 99
Constant, 29
Constant Definition, 100
Constant Operation, 186
Constant Operations, 191
Constant Symbols, 25
Constants, 191
Constructor, 187

405

406 Index

Constructors, 260
Continuous, 145
Contradiction, 68
Coproducts, 110
Course Of Values Induction, 81
Cut Rule, 68

D
Declarations, 365
Default Maps, 304
Definitional, 294
Definitions, 270
Denotational Semantics, 303
Denotations, 10
Derivable, 65
Direct Proofs, 68
Disjoint Union, 108
Disjunction, 30
Disjunctive Normal Form, 39
Domain, 43, 112
Downward Continuous, 145
Dual, 110
Dynamic Scoping, 364, 375

E
Empty Data Type, 251
Empty Set, 104
Empty Signature, 191, 251
Environment, 367, 370
Environments, 364
Equality, 29
Equivalence, 30
Equivalent, 36, 361
Evaluation Homomorphism, 214
Existential Quantification, 30
Extended, 191, 224
Extended Procedure Typings, 378
Extended State, 380
Extended Variable Typings, 378
Extension Class, 225
Extension Morphism, 256
Extensionality, 103

F
Final, 226
Finite Sequences, 118
Finite Set, 104
First-order, 110
First-order Language, 97
First-order Logic, 25
First-order Theory, 98
Fitting Morphism, 256
Fixed Point, 138
Fixed Point Induction, 319

Formula, 349
Formula, 98
Σ-formula, 192
Formulas, 25, 29, 35
Free, 41, 187
Free Extensions, 244
Free Interpretation, 212
Function, 112
Function Application, 29
Function Definition, 100, 114
Function Definition With Input Condition, 115
Function Operation, 186
Function Operations, 191
Function Symbols, 25
Function Term, 113
Functional, 138
Functions, 191

G
Generated Interpretation, 210
Generic Specification, 251
Global Variables, 364
Goal, 62
Greatest Fixed Point, 139

H
Σ-homomorphism, 198
Horizontal Composition (union), 246
Horn Clauses, 214

I
Identifiers, 190
Implementation, 124, 186, 276
Implements, 279
Implication, 30
Implicit Function Definition, 120
Implied, 295
Inclusive, 172
Inconsistent, 99
Indirect Proofs, 68
Induction, 79, 80, 260
Inductive Function Definition, 163
Inductive Relation Definition, 152
Inductive Rules, 155
Inductively Generated, 7
Inference Rules, 12
Inference Tree, 13
Infinite Downward Iteration, 142
Infinite Sequences, 117
Infinite Set, 104
Infinite Upward Iteration, 141
Initial, 211
Input Condition, 115, 120
Instance, 35, 63

© 2017 Wolfgang Schreiner.

Index 407

Instance Of A Rule, 63
Instantiate, 35
Interpretation, 43, 98
Intersection, 106
Is Cogenerated In, 224
Is Free For, 72
Is Generated In, 210
Σ-isomorphic, 202
Σ-isomorphism, 202

J
Judgements, 12

K
Knowledge, 62

L
Labeled Product (Record) Type, 118
Labeled Products, 118
Labeled Sum (Variant) Type, 119
Lambda Term, 113
Language, 4
Least Fixed Point, 139
Let Formula, 30
Let Term, 29
Lexical Scoping, 375
Literal, 39
Local Variables, 300
Location, 378
Logical Connectives, 26, 27
Logical Constants, 29
Logically Equivalent, 48
Loose, 186
Loose Interpretation, 205

M
Machine Instruction, 342
Maximal, 233
Modal Axioms, 233
Modal Formulas, 232
Model, 98
Σ-model, 205
Monomorphic, 203, 293
Monotonic, 140

N
Natural Semantics, 325
Negation, 29
Nondeterministic, 310
Nonterminals, 4

O
Observable Sorts, 278
Observationally Equivalent, 224

Observer, 188
Operational Semantics, 323
Operations, 186
Output Condition, 120
Overloading, 367

P
Parameters, 300, 364
Partial Function, 162
Partial Functions, 303
Partial Operations, 283
Patterns, 63
Polymorphic, 203
Postcondition, 120
Post-fixed Points, 141
Power Set, 105
Precondition, 115, 120, 283
Predicate Definition, 101
Predicate Logic, 25
Predicate Operation, 186
Predicate Operations, 191
Predicate Symbols, 25
Predicates, 191
Pre-fixed Points, 141
Premises, 13
Prenex Normal Form, 52
Presentation, 193
Presentation Of A Declaration, 193
Primitively Recursive, 136
Primitively Recursive Definition, 272
Procedure Calls, 364
Procedure Environment, 370
Procedure Typings, 366, 378
Procedures, 364
Product Type, 108
Product Types, 108
Products, 108
Program, 300
Program Counter, 342
Program Verification, 62
Program With Procedures, 365
Proof, 61, 63
Proper Subset, 106
Propositional Logic, 35
Propositional Variables, 35
Pushout, 257

Q
Quantifiers, 26, 27
Quotient Term Algebra, 213

R
Range, 112
Records, 118

© 2017 Wolfgang Schreiner.

408 Index

Recursive Function Definition, 134
Reduction, 225, 247
Reference Parameters, 364, 374
Refinement, 121
Reflexive Transitive Closure, 327
Regularity, 104
Relation, 110
Relation Application, 111
Relation Definition, 111
Relation Term, 111
Removal, 112
Repetition, 327
Replacement, 104
Representation Invariants, 280
Result Signature, 256
Result Sort, 191
Reverse Polish Notation, 347
Rule Induction, 16, 85
Rule Schema, 80
Rule-based Coinductive Relation Definition,

157
Rule-based Inductive Relation Definition, 155
Rules, 62

S
Satisfiability, 270
Schema, 35
Semantic Domain, 10
Semantics, 10, 44
Semantics Of A Procedure, 370
Sentence, 41
Sequence Of Fixed Length, 118
Sequent, 62
Sequent Calculi, 62
Set Builder, 104
Set Difference, 107
Sets, 103
Side Effects, 364
Signature, 190
Signature Combination, 191
Signature Morphism, 249
Simulation, 360
Small-step Operational Semantics, 326
Sort, 186
Sorts, 191
Specification, 104
Specification (expression), 237
Specification Definition, 237
Specification Definitions, 237
Specification Definitions, 249
Specification Expressions, 237
Specification Instantiation, 249, 253
Specifications, 237
Specifications, 186

Stack, 342, 369
State, 342, 367, 370
State Condition, 306
State Function, 306
State Relation, 306, 370
States, 304
Static (lexical) Scoping, 364
Static Scoping, 375
Store, 342, 367
Strong Induction, 81
Structural Induction, 82, 137, 272
Structural Operational Semantics, 326
Subset, 106
Sum Type, 108
Sum Types, 108
Sums, 108

T
Tagged Values, 108
Tautology, 35
Term, 349
Term, 98
Σ-term, 192
Term Sequences, 25
Terminals, 4
Terms, 25, 29
Theory, 98
Top Of Stack, 369
Total, 115
Transitions, 324
Translation, 248
Tree, 229
Tuple Type, 108
Tuples, 108
Type System, 12

U
Union, 105, 107
Universal Quantification, 30
Update, 112
Updated Assignment, 44
Upward Continuous, 145

V
Valid, 47
Value Condition, 306
Value Function, 306
Value Parameters, 364, 374
Value Relation, 306
Variable, 29
Variable Assignment, 371
Variable Environment, 370
Variable Typings, 193, 301, 378
Variables, 25

© 2017 Wolfgang Schreiner.

Index 409

Variants, 119
Vertical Composition (extension), 245

W
Well-definedness Predicate, 306

Well-formed, 114, 115, 120
Well-founded, 136
Witness Term, 74

© 2017 Wolfgang Schreiner.

