Turing Complete Computational Models

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

1. Random Access Machines

2. Loop and While Programs
3. Primitive Recursive and μ-recursive Functions
4. Further Turing Complete Models
5. The Chomsky Hierarchy
6. Real Computers

A Random Access Machine

A model closer to a real computer.

A Random Access Machine

- A random access machine (RAM):
- an infinite input tape I (whose cells can hold natural numbers of arbitrary size) with a read head position $i \in \mathbb{N}$,
- an infinite output tape O (whose cells can hold natural numbers of arbitrary size) with a write head position $o \in \mathbb{N}$,
- an accumulator A which can hold a natural number of arbitrary size,
- a program counter C which can hold an arbitrary natural number,
- a program consisting of a finite number of instructions $P[1], \ldots, P[m]$,
- a memory consisting of a countably infinite sequence of registers $R[1], R[2], \ldots$, each of which can hold an arbitrary natural number.
- Execution:
- Initially, $i=0, o=0, A=0, C=1, R[1]=R[2]=\ldots=0$.
- In every step, the RAM reads $P[C]$, increments C by 1 , and then performs the action indicated by the instruction.
- Execution terminates when $C=0$.

Program is a sequence of machine instructions.

RAM Instructions

Instruction	Description	Action
IN	Read value from input tape into accumulator	$A:=I[i] ; i:=i+1$
OUT	Write value from accumulator to output tape	$O[o]:=A ; o:=o+1$
LOAD \#n	Load constant n into accumulator	$A:=n$
LOAD n	Load content of register n into accumulator	$A:=R[n]$
LOAD (n)	Load content of register referenced by reg. n	$A:=R[R[n]]$
STORE n	Store content of accumulator into register n	$R[n]:=A$
STORE (n)	Store content into register referenced by reg. n	$R[R[n]]:=A$
ADD \#n	Increment content of accumulator by constant	$A:=A+n$
SUB \#n n	Decrement content of accumulator by constant	$A:=\max \{0, A-n\}$
JUMP n	Unconditional jump to instruction n	$C:=n$
BEQ i, n	Conditional jump to instruction n	if $A=i$ then $C:=n$

Immediate addressing, direct addressing, indirect addressing.

Example

START:	LOAD \#1	$A:=1$
	STORE 1	$R[1]:=A$
READ:	LOAD 1	$A:=R[1]$
	ADD \#1	$A:=A+1$
	STORE 1	$R[1]:=A$
	IN	$A:=I[i] ; i:=i+1$
	BEQ 0, WRITE	if $A=0$ then $C:=$ WRITE
	STORE (1)	$R[R[1]:=A$
	JUMP READ	$C:=$ READ
WRITE:	LOAD 1	$A:=R[1]$
	SUB \#1	$A:=A-1$
	STORE 1	$R[1]:=A$
	BEQ 1, HALT	if $A=1$ then $C:=$ HALT
	LOAD (1)	$A:=R[R[1]]$
	OUT	$O[o]:=A ; o:=o+1$
	JUMP WRITE	$C:=$ WRITE
HALT:	JUMP 0	$C:=0$

Reads $x_{1}, \ldots, x_{n}, 0$ and writes x_{n}, \ldots, x_{1} using stack $R[2], \ldots, R[n+1]$.

RAMs versus Turing Machines

Theorem: Every Turing machine can be simulated by a RAM.

- RAM uses registers $R[1], \ldots, R[c-1]$ for its own purposes,
- stores in $R[c]$ the position of the tape head of the Turing machine,
- uses $R[c+1], R[c+2], \ldots$ as a virtual Turing machine tape.
- Using "indirect addressing" operations $\operatorname{LOAD}(n)$ and $\operatorname{STORE}(n)$.
- RAM copies the input from the input tape into its virtual tape, then it mimics the execution of the Turing machine on the virtual tape.
- When the simulated Turing machine terminates, the content of the virtual tape is copied to the output tape.

RAMs represent a Turing complete computational model.

RAMs versus Turing Machines

Theorem: Every RAM can be simulated by a Turing machine.

- The Turing machine uses 5 tapes to simulate the RAM:
- Tape 1 represents the input tape of the RAM.
- Tape 2 represents the output tape of the RAM.
- Tape 3 holds a representation of that part of the memory that has been written by the simulation of the RAM.
- Tape 4 holds a representation of the accumulator of the RAM.
- Tape 5 serves as a working tape.
- Tape 3 holds a sequence of (address, contents) pairs that represent those registers of the RAM that have been written during the simulation (the contents of all other registers hold 0).
- Every instruction of the RAM is simulated by a sequence of steps of the Turing machine which reads respectively writes Tape 1 and 2 and updates on Tape 3 and 4 the tape representations of the contents of the memory and the accumulator.
RAMs are not more powerful than Turing machines.

Random Access Stored Program Machine

The program of a RAM is "read-only".

- Random Access Stored Program Machine (RASP).
- A RAM variant where the program is stored in memory R (there is no separate program store P).
- Every RASP can be simulated by a RAM.
- RAM is interpreter for RASP instructions (like a microprogram in a processor interprets machine instructions).
- Every RAM can be simulated by a RASP.
- Even if indirect addressing is removed from RASP.
- RAM instructions $\operatorname{LOAD}(n)$ and $\operatorname{STORE}(n)$ can be interpreted by self-modifying RASP code.

Self modifying programs do not add computational power to a RAM.

1. Random Access Machines

2. Loop and While Programs

3. Primitive Recursive and μ-recursive Functions
4. Further Turing Complete Models
5. The Chomsky Hierarchy
6. Real Computers

Loop Programs

- Loop Program P:

$$
P::=x_{i}:=0\left|x_{i}:=x_{j}+1\right| x_{i}:=x_{j}-1 \mid P ; P
$$ loop x_{i} do P end.

- Set $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ of program variables.
- Initial value of x_{i} determines the number of loop iterations.
- Loop must eventually terminate.

Programs with bounded iteration that necessarily terminate.

Semantics

- Semantics $\llbracket P \rrbracket(m)$ maps the start memory $m: \mathbb{N} \rightarrow \mathbb{N}$ to the final memory after the termination of P :

$$
\begin{array}{ll}
\llbracket x_{i}:=0 \rrbracket(m) & :=m[i \leftarrow 0] \\
\llbracket x_{i}:=x_{j}+1 \rrbracket(m) & :=m[i \leftarrow m(j)+1] \\
\llbracket x_{i}:=x_{j}-1 \rrbracket(m) & :=m[i \leftarrow \max \{0, m(j)-1\}] \\
\llbracket P_{1} ; P_{2} \rrbracket(m) & :=\llbracket P_{2} \rrbracket\left(\llbracket P_{1} \rrbracket(m)\right) \\
\llbracket \text { loop } x_{i} \text { do } P \text { end } \rrbracket(m) & :=\llbracket P \rrbracket^{m(i)}(m)
\end{array}
$$

- $m[i \leftarrow n]$: memory m after updating the value x_{i} by value n.
$\square \llbracket P \rrbracket^{n}(m)$: memory m after n times executing P :

$$
\begin{array}{ll}
\llbracket P \rrbracket^{0}(m) & :=m \\
\llbracket P \rrbracket^{n+1}(m) & :=\llbracket P \rrbracket\left(\llbracket P \rrbracket^{n}(m)\right)
\end{array}
$$

A loop program denotes a function over memories.

Syntactic Abbreviations

- $x_{i}:=x_{j}$

$$
x_{i}:=x_{j}+1 ; x_{i}:=x_{i}-1
$$

- $x_{i}:=n$

$$
x_{i}:=0 ; x_{i}:=x_{i}+1 ; x_{i}:=x_{i}+1 ; \ldots ; x_{i}:=x_{i}+1
$$

if $x_{i}=0$ then P_{t} else P_{e} end

$$
\begin{aligned}
& x_{t}:=1 ; \text { loop } x_{i} \text { do } x_{t}:=0 ; \text { end; } \\
& x_{e}:=1 ; \text { loop } x_{t} \text { do } x_{e}:=0 ; \text { end; } \\
& \text { loop } x_{t} \text { do } P_{t} \text { end; loop } x_{e} \text { do } P_{e} \text { end; }
\end{aligned}
$$

The usual programming language constructs (except for unbounded iteration) can be represented.

Loop Computability

We consider the computability of functions over the natural numbers.
$f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ is loop computable, if there exists a loop program P such that for all $x_{1}, \ldots, x_{n} \in \mathbb{N}$ and memory $m: \mathbb{N} \rightarrow \mathbb{N}$ defined as

$$
m(i):= \begin{cases}x_{i} & \text { if } 1 \leq i \leq n \\ 0 & \text { else }\end{cases}
$$

we have

$$
\llbracket P \rrbracket(m)(0)=f\left(x_{1}, \ldots, x_{n}\right)
$$

When started in a state where x_{1}, \ldots, x_{n} contain the arguments of f, the program terminates in a state where x_{0} holds the result of f.

Example

Addition is computable by the program $x_{0}:=x_{1}+x_{2}$:

$$
\begin{aligned}
& x_{0}:=x_{1} ; \\
& \text { loop } x_{2} \text { do } \\
& x_{0}:=x_{0}+1 \\
& \text { end }
\end{aligned}
$$

- Multiplication is computable by the program $x_{0}:=x_{1} \cdot x_{2}$:

$$
\begin{aligned}
& x_{0}:=0 ; \\
& \text { loop } x_{2} \text { do } \\
& \quad x_{0}:=x_{0}+x_{1} \\
& \text { end }
\end{aligned}
$$

- Exponentiation is computable by the program $x_{0}:=x_{1}^{x_{2}}$:

$$
\begin{aligned}
& x_{0}:=1 ; \\
& \text { loop } x_{2} \text { do } \\
& \quad x_{0}:=x_{0} \cdot x_{1} \\
& \text { end }
\end{aligned}
$$

Natural number arithmetic is loop computable.

Arithmetic

$$
x_{0}:=x_{1} \cdot x_{2}:
$$

$x_{0}:=0 ;$
loop x_{2} do $\quad x_{0}:=x_{0}+x_{1}$ end
$x_{0}:=0 ;$ loop x_{2} do $x_{0}:=x_{0} ;$ loop x_{1} do $x_{0}:=x_{0}+1$ end end

Higher arithmetic needs multiply nested loops.

Beyond Exponentiation

$$
a \uparrow^{n} b:= \begin{cases}a^{b} & \text { if } n=1 \\ 1 & \text { if } b=0 \\ a \uparrow^{n-1}\left(a \uparrow^{n}(b-1)\right) & \text { else }\end{cases}
$$

- $a \uparrow^{1} b=a^{b}$

$$
a \uparrow^{1} b=a \cdot a \cdot \ldots \cdot a \quad(b \text { times })
$$

- $a \uparrow^{2} b=a^{a} \quad$ (b times)

$$
a \uparrow^{2} b=a \uparrow^{1} a \uparrow^{1} \ldots \uparrow^{1} a \text { (} b \text { times) }
$$

- $a \uparrow^{3} b:$

$$
a \uparrow^{3} b=a \uparrow^{2} a \uparrow^{2} \ldots \uparrow^{2} a \text { (} b \text { times) }
$$

The notation allows to define arbitrary "complex" arithmetic functions.

Limits of Loop Computability

- Theorem: for every $n>0$ and $f(a, b):=a \uparrow^{n} b$
- f is loop computable, and
- every loop program computing f requires at least $n+2$ nested loops.
- Theorem: $g: \mathbb{N}^{3} \rightarrow \mathbb{N}, g(a, b, n):=a \uparrow^{n+1} b$ is not loop computable.
- Assume g can be computed by a program P with n loops.
- Then the computation of $g(a, b, n)=a \uparrow^{n+1} b$ requires $n+3$ loops.
- Thus P cannot compute g.
- Also the Ackermann Function is not loop computable:

$$
\begin{aligned}
& \operatorname{ack}(0, m):=m+1 \\
& \operatorname{ack}(n, 0):=\operatorname{ack}(n-1,1) \\
& \operatorname{ack}(n, m):=\operatorname{ack}(n-1, \operatorname{ack}(n, m-1)), \text { if } n>0 \wedge m>0 \\
& \operatorname{ack}(n, m)=2 \uparrow^{n-2}(m+3)-3 \\
& \operatorname{ack}(4,2) \text { has } 20,000 \text { digits. }
\end{aligned}
$$

Some arithmetic functions grow "too fast" to be loop computable.

While Programs

- While Program P:

$$
P::=\ldots \text { (as for loop programs) }
$$ while x_{i} do P end.

- Set $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ of program variables.
- Loop is repeated as long as $x_{i} \neq 0$.
- If $x_{i} \neq 0$ forever, loop does not terminate.

Programs with unbounded iteration that may not terminate.

Semantics

- Semantics $\llbracket P \rrbracket(m)$ maps start memory $m: \mathbb{N} \rightarrow \mathbb{N}$
- to the final memory, if P terminates, and
- to the special value \perp (bottom), if P does not terminate.
- Semantics generalizes that of loop programs:

$$
\begin{aligned}
\llbracket P \rrbracket(m) & := \begin{cases}\perp & \text { if } m=\perp \\
\llbracket P \rrbracket^{\prime}(m) & \text { else }\end{cases} \\
\llbracket \ldots \rrbracket^{\prime}(m) & :=\ldots(\text { as for loop programs })
\end{aligned}
$$

- Semantics of unbounded iteration:

$$
\begin{aligned}
& \llbracket \text { while } x_{i} \text { do } P \text { end } \rrbracket^{\prime}(m):= \begin{cases}\perp & \text { if } L_{i}(P, m) \\
\llbracket P \rrbracket^{T_{i}(P, m)}(m) & \text { else }\end{cases} \\
& L_{i}(P, m): \Leftrightarrow \forall k \in \mathbb{N}: \llbracket P \rrbracket^{k}(m)(i) \neq 0 \\
& T_{i}(P, m):=\min \left\{k \in \mathbb{N} \mid \llbracket P \rrbracket^{k}(m)(i)=0\right\}
\end{aligned}
$$

A while program denotes a function whose result is either a memory or \perp.

Syntactic Abbreviations

while $x_{i}<x_{j}$ do P end

$$
\begin{aligned}
& x_{k}:=x_{j}-x_{i} ; \\
& \text { while } x_{k} \text { do } P ; x_{k}:=x_{j}-x_{i} ; \text { end }
\end{aligned}
$$

Analogous constructions possible for other termination conditions.

While Computability

$f: \mathbb{N}^{n} \rightarrow_{\mathrm{p}} \mathbb{N}$ is while computable, if there exists a while program P such that for all $x_{1}, \ldots, x_{n} \in \mathbb{N}$ and memory $m: \mathbb{N} \rightarrow \mathbb{N}$ defined as

$$
m(i):= \begin{cases}x_{i} & \text { if } 1 \leq i \leq n \\ 0 & \text { else }\end{cases}
$$

the following holds:

- If $x_{1}, \ldots, x_{n} \in \operatorname{domain}(f)$, then $\llbracket P \rrbracket(m): \mathbb{N} \rightarrow \mathbb{N}$ and

$$
\llbracket P \rrbracket(m)(0)=f\left(x_{1}, \ldots, x_{n}\right)
$$

- If $x_{1}, \ldots, x_{n} \notin \operatorname{domain}(f)$, then

$$
\llbracket P \rrbracket(m)=\perp
$$

For a defined value of $f\left(x_{1}, \ldots, x_{n}\right), P$ terminates with this value in variable x_{0}. If $f\left(x_{1}, \ldots, x_{n}\right)$ is undefined, the program does not terminate.

Example

The Ackermann function is while computable with the help of a stack.

```
function \(\operatorname{ack}(n, m)\) :
    if \(n=0\) then
        return \(m+1\)
    else if \(m=0\) then
        return \(\operatorname{ack}(n-1,1)\)
    end if
    return \(\operatorname{ack}(n-1, \operatorname{ack}(n, m-1))\)
end function
```

```
function ack(x, 和):
    push(x)
    while size() > 1 do
        x }\leftarrow\leftarrow\operatorname{pop}();\mp@subsup{x}{1}{}\leftarrow\operatorname{pop}(
        if }\mp@subsup{x}{1}{}=0\mathrm{ then
        push(x2+1)
        else if }\mp@subsup{x}{2}{}=0\mathrm{ then
        push(x1-1); push(1);
    else
        push(x1-1);
        push(x1); push( }\mp@subsup{x}{2}{}-1
        end if
    end while
    return pop()
end function
```

While programs are computationally more powerful than loop programs.

Normal Form of a While Program

Kleene's Normal Form Theorem: every while computable function can be computed by a while program in Kleene's normal form:

```
\(x_{c}:=1 ;\)
while \(x_{c}\) do
    if \(x_{c}=1\) then \(P_{1}\)
    else if \(x_{c}=2\) then \(P_{2}\)
    else if \(x_{c}=n\) then \(P_{n}\)
    end if
end while
```

- P_{1}, \ldots, P_{n} do not contain while loops.
- Control variable x_{c} determines which P_{i} to execute next.

A single while loop is all that is needed.

Normal Form of a While Program

We sketch the proof of Kleene's Normal Form Theorem.

- A while program can be translated into a goto program:

$$
\begin{array}{|ll}
\text { while } x_{i} \text { do } P \text { end } \rightsquigarrow \begin{array}{ll}
L_{i}: & \begin{array}{l}
\text { if } x_{i}=0 \text { goto } L_{i+1} \\
P ; \\
\text { goto } L_{i} \\
L_{i+1}: \\
\cdots
\end{array} \\
\hline
\end{array} . \begin{array}{l}
\text { (} \\
\hline
\end{array} \\
\hline
\end{array}
$$

- Gotos can be translated to control variable assignments:

$$
\text { goto } L_{j} \rightsquigarrow x_{c}:=j
$$

- The resulting program can be translated into normal form:

$L_{1}:$	P_{1}		
$L_{2}:$	P_{2}		
\ldots			
$L_{n}:$	P_{n}	\quad	$x_{c}:=1 ;$ while x_{c} do if $x_{c}=1$ then $x_{c}:=2 ; P_{1}$ else if $x_{c}=2$ then $x_{c}:=3 ; P_{2}$ \ldots else if $x_{c}=n$ then $x_{c}:=0 ; P_{n}$ end if end while
:---			

In essence, the execution loop of a processor.

Turing Machines and While Programs

- Theorem: Every Turing machine can be simulated by a while program and vice versa.
- Consequence: every Turing computable function is while computable and vice versa.

Proof \Rightarrow : construct P to simulate M.

- x_{0} holds initial tape content.
- Determines initial configuration.
- Machine configuration (x_{l}, x_{q}, x_{r}):
- x_{q} : the current state.
- x_{i} : the tape left to the tape head,
- x_{r} : the tape under/right to head.
- State x_{q} and symbol x_{a} under head determine the state transition.
- If none is possible, final tape content is written to x_{0}.

```
(xl, xq, x ) := input(x
xa}:=head(\mp@subsup{x}{r}{}
while transition( }\mp@subsup{x}{q}{},\mp@subsup{x}{a}{})\mathrm{ do
    if }\mp@subsup{x}{q}{}=\mp@subsup{q}{1}{}\wedge\mp@subsup{x}{a}{}=\mp@subsup{a}{1}{}\mathrm{ then
        P
    else if }\mp@subsup{x}{q}{}=\mp@subsup{q}{2}{}\wedge\mp@subsup{x}{a}{}=\mp@subsup{a}{2}{}\mathrm{ then
        P
    else if ... then
    else if }\mp@subsup{x}{q}{}=\mp@subsup{q}{n}{}\wedge\mp@subsup{x}{a}{}=\mp@subsup{a}{n}{}\mathrm{ then
        P
    end
    xa}:=\operatorname{head}(\mp@subsup{x}{r}{}
end
x := output ( }\mp@subsup{x}{l}{},\mp@subsup{x}{q}{},\mp@subsup{x}{r}{}
```


Turing Machines and While Programs

Proof \Leftarrow : construct M to simulate P (given in normal form).

- Each program fragment P_{i} is translated into a corresponding fragment of the transition function of M with sequence of states $c_{i}, p_{i}, \ldots, c_{0}$.

1. Random Access Machines

2. Loop and While Programs
3. Primitive Recursive and μ-recursive Functions
4. Further Turing Complete Models
5. The Chomsky Hierarchy
6. Real Computers

Primitive Recursive Functions

The following functions over the natural numbers are primitive recursive:

- The constant null function $0 \in \mathbb{N}$.
- The successor function $s: \mathbb{N} \rightarrow \mathbb{N}, s(x):=x+1$.
- The projection functions $p_{i}^{n}: \mathbb{N}^{n} \rightarrow \mathbb{N}, p_{i}^{n}\left(x_{1}, \ldots, x_{n}\right):=x_{i}$.
- Every function $h: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by composition

$$
h\left(x_{1}, \ldots, x_{n}\right):=f\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{k}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

from primitive recursive $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $g_{1}, \ldots, g_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N}$.

- Every function $h: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by primitive recursion

$$
h\left(y, x_{1} \ldots x_{n}\right):= \begin{cases}f\left(x_{1}, \ldots, x_{n}\right) & \text { if } y=0 \\ g\left(y-1, h\left(y-1, x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right) & \text { else }\end{cases}
$$

from primitive recursive $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ and $g: \mathbb{N}^{n+2} \rightarrow \mathbb{N}$.
Starting with the base functions, by composition and primitive recursion new primitive recursive functions can be defined.

Understanding Primitive Recursion

- Primitive recursion can be defined by a pattern matching equation:

$$
\begin{aligned}
h\left(0, x_{1} \ldots, x_{n}\right) & :=f\left(x_{1}, \ldots, x_{n}\right) \\
h\left(y+1, x_{1} \ldots, x_{n}\right) & :=g\left(y, h\left(y, x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

- Primitive recursion can be defined by a pattern matching construct:

$$
\begin{aligned}
& h\left(y, x_{1} \ldots x_{n}\right):= \\
& \text { case } y \text { of } \\
& 0: f\left(x_{1}, \ldots, x_{n}\right) \\
& z+1: g\left(z, h\left(z, x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

- $h(y, x)$ denotes the $(y-1)$-times application of g starting with $f(x)$:

$$
\begin{aligned}
& h(0, x)=f(x) \\
& h(1, x)=g(0, h(0, x), x)=g(0, f(x), x) \\
& h(2, x)=g(1, h(1, x), x)=g(1, g(0, f(x), x), x) \\
& h(3, x)=g(2, h(2, x), x)=g(2, g(1, g(0, f(x), x), x), x) \\
& \quad \ldots \\
& h(y, x)=g(y-1, h(y-1, x), x)=g(y-1, g(y-2, \ldots, g(0, f(x), x), \ldots, x), x)
\end{aligned}
$$

Example

We consider arithmetic on natural numbers.

- Addition $y+x$ is primitive recursive:

$$
\begin{aligned}
0+x & :=x \\
(y+1)+x & :=(y+x)+1
\end{aligned}
$$

- Multiplication $y \cdot x$ is primitive recursive:

$$
\begin{aligned}
0 \cdot x & :=0 \\
(y+1) \cdot x & :=y \cdot x+x
\end{aligned}
$$

- Exponentiation x^{y} is primitive recursive:

$$
\begin{aligned}
x^{0} & :=1 \\
x^{y+1} & :=x^{y} \cdot x
\end{aligned}
$$

Natural number arithmetic is primitive recursive.

Primitive Recursion and Loop Computability

Both the execution of a loop program and the evaluation of a primitive recursive function are bounded; are they equally expressive?

Example: Compute in x_{0} the smallest $n<x_{1}$ for which $p(n)=1$ holds (respectively $x_{0}=x_{1}$, if $p(n) \neq 1$ for all $n<x_{1}$).

$$
\begin{aligned}
& x_{0}:=x_{1} \\
& x_{2}:=0 \\
& \text { loop } x_{1} \text { do } \\
& \text { if } x_{0}=x_{1} \wedge p\left(x_{2}\right)=1 \text { then } \\
& \quad x_{0}:=x_{2} \\
& \quad \text { end } \\
& \quad x_{2}:=x_{2}+1 \\
& \text { end }
\end{aligned}
$$

$$
\text { Assume } n=3 \text { : }
$$

x_{0}	x_{1}	x_{2}
5	5	0
5	5	1
5	5	2
5	5	3
3	5	4
3	5	5

We will construct a primitive recursive function computing the same value.

Primitive Recursion and Loop Computability

We mimic the execution of the loop by a primitive recursive function loop whose recursion parameter denotes the number of loop iterations.

$$
\begin{aligned}
\min \left(x_{1}\right) & :=\operatorname{loop}\left(x_{1}, x_{1}\right) \\
\operatorname{loop}\left(x_{2}, x_{1}\right) & := \begin{cases}x_{1} & \text { if } x_{2}=0 \\
\text { if }\left(x_{2}-1, \operatorname{loop}\left(x_{2}-1, x_{1}\right), x_{1}\right) & \text { else }\end{cases} \\
\operatorname{if}\left(x_{2}, x_{0}, x_{1}\right) & := \begin{cases}x_{2} & \text { if } x_{0}=x_{1} \wedge p\left(x_{2}\right)=1 \\
x_{0} & \text { else }\end{cases}
\end{aligned}
$$

- $\min \left(x_{1}\right):=\operatorname{loop}\left(x_{1}, x_{1}\right)$ computes the value assigned to x_{0} for input x_{1} (2nd argument) after x_{1} iterations of the loop (1st argument).
- $\operatorname{loop}\left(x_{2}, x_{1}\right)$ computes the value assigned to x_{0} for input x_{1} after x_{2} iterations of the loop.
- if $\left(x_{2}, x_{0}, x_{1}\right)$ computes the new value assigned to x_{0} from the old value of x_{0} for input x_{1} after x_{2} iterations by the if statement.

Primitive Recursion and Loop Computability

Evaluation of $\min (5)=\operatorname{loop}(5,5)$.

$$
\begin{aligned}
& \operatorname{loop}(0,5)=5 \\
& \operatorname{loop}(1,5)=i f(0, \operatorname{loop}(0,5), 5)=i f(0,5,5)=5 \\
& \operatorname{loop}(2,5)=i f(1, \operatorname{loop}(1,5), 5)=i f(1,5,5)=5 \\
& \operatorname{loop}(3,5)=i f(2, \operatorname{loop}(2,5), 5)=i f(2,5,5)=5 \\
& \operatorname{loop}(4,5)=i f(3, \operatorname{loop}(3,5), 5)=i f(3,5,5)=3 \\
& \operatorname{loop}(5,5)=i f(4, \operatorname{loop}(4,5), 5)=i f(4,3,5)=3
\end{aligned}
$$

x_{0}	x_{1}	x_{2}
5	5	0

$5 \quad 5 \quad 1$
$5 \quad 5 \quad 2$
$5 \quad 5 \quad 3$
$3 \quad 5 \quad 4$
355

In sequence of evaluations of $\operatorname{loop}\left(x_{2}, x_{1}\right)=x_{0}$ the values $\left(x_{0}, x_{1}, x_{2}\right)$
correspond to the program trace of the loop program.

Primitive Recursion and Loop Computability

Theorem: every prim. recursive function is loop computable and vice versa. Proof \Rightarrow : we show that primitive recursive function h is loop computable.

- If h is one of the basic functions, it is clearly loop computable.
- Case $h\left(x_{1}, \ldots, x_{n}\right):=f\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{k}\left(x_{1}, \ldots, x_{n}\right)\right)$

$$
\begin{aligned}
& y_{1}:=g_{1}\left(x_{1}, \ldots, x_{n}\right) ; \\
& y_{2}:=g_{2}\left(x_{1}, \ldots, x_{n}\right) ; \\
& \ldots \\
& y_{k}:=g_{k}\left(x_{1}, \ldots, x_{n}\right) ; \\
& x_{0}:=f\left(y_{1}, \ldots, y_{k}\right)
\end{aligned}
$$

- Case $h\left(y, x_{1} \ldots x_{n}\right):= \begin{cases}f\left(x_{1}, \ldots, x_{n}\right) & \text { if } y=0 \\ g\left(y-1, h\left(y, x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right) & \text { else }\end{cases}$

$$
\begin{aligned}
& x_{0}:=f\left(x_{1}, \ldots, x_{n}\right) ; x_{y}:=0 \\
& \text { loop } y \text { do } \\
& \quad x_{0}:=g\left(x_{y}, x_{0}, x_{1}, \ldots, x_{n}\right) \\
& \quad x_{y}:=x_{y}+1 \\
& \text { end }
\end{aligned}
$$

Primitive Recursion and Loop Computability

Proof \Leftarrow : let h be computable by loop program P. Let $f_{P}: \mathbb{N}^{n+1} \rightarrow \mathbb{N}^{n+1}$ be the function that maps the initial values of the variables used by P to their final values. We show by induction on P that f_{P} is primitive recursive.

- Case $x_{i}:=k$:

$$
f_{P}\left(x_{0}, \ldots, x_{n}\right):=\left(x_{0}, \ldots, x_{i-1}, k, x_{i+1}, \ldots, x_{n}\right)
$$

- Case $x_{i}:=x_{j} \pm 1$.

$$
f_{P}\left(x_{0}, \ldots, x_{n}\right):=\left(x_{0}, \ldots, x_{i-1}, x_{j} \pm 1, x_{i+1}, \ldots, x_{n}\right)
$$

- Case $P_{1} ; P_{2}$:

$$
f_{P}\left(x_{0}, \ldots, x_{n}\right):=f_{P_{2}}\left(f_{P_{1}}\left(x_{0}, \ldots, x_{n}\right)\right)
$$

- Case loop x_{i} do P^{\prime} end

$$
\begin{aligned}
f_{P}\left(x_{0}, \ldots, x_{n}\right) & :=g\left(x_{i}, x_{0}, \ldots, x_{n}\right) \\
g\left(0, x_{0}, \ldots, x_{n}\right) & :=\left(x_{0}, \ldots, x_{n}\right) \\
g\left(m+1, x_{0}, \ldots, x_{n}\right) & :=f_{P^{\prime}}\left(g\left(m, x_{0}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

Thus the Ackermann function is also not primitive recursive.

μ-Recursive Functions

A partial function over the natural numbers is μ-recursive, if it

- is the constant null, successor, or a projection function,
- can be constructed from other μ-recursive functions by composition or primitive recursion, or
- is a function $h: \mathbb{N}^{n} \rightarrow_{\mathrm{p}} \mathbb{N}$ defined as

$$
h\left(x_{1}, \ldots, x_{n}\right):=(\mu f)\left(x_{1}, \ldots, x_{n}\right)
$$

with μ-recursive $f: \mathbb{N}^{n+1} \rightarrow_{\mathrm{p}} \mathbb{N}$ and $(\mu f): \mathbb{N}^{n} \rightarrow_{\mathrm{p}} \mathbb{N}$ defined as

$$
(\mu f)\left(x_{1}, \ldots, x_{n}\right):=\min \left\{\begin{array}{l|l}
y \in \mathbb{N} & \begin{array}{l}
f\left(y, x_{1}, \ldots, x_{n}\right)=0 \wedge \\
\forall z \leq y:\left(z, x_{1}, \ldots, x_{n}\right) \in \operatorname{domain}(f)
\end{array}
\end{array}\right\}
$$

$(\mu f)\left(x_{1}, \ldots, x_{n}\right)$ is the smallest y such that $f\left(y, x_{1}, \ldots, x_{n}\right)=0$ (and f is defined for all $z \leq y$); the result of h is undefined, if no such y exists.

μ-Recursive Functions

Every primitive recursive function is a total μ-recursive function; a μ-recursive function may or may not be total.

A μ-recursive Function

Consider particular sequences of numbers.

$$
\begin{aligned}
& f^{k}(n)=\underbrace{f(f(f(\ldots f(n))))}_{k \text { applications of } f} \\
& f(n):= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\
3 n+1 & \text { otherwise }\end{cases} \\
& f^{0}(10)=10 \\
& f^{1}(10)=f\left(f^{0}(10)\right)=f(10)=5 \\
& f^{2}(10)=f\left(f^{1}(10)\right)=f(5)=16 \\
& f^{3}(10)=f\left(f^{2}(10)\right)=f(16)=8 \\
& f^{4}(10)=f\left(f^{3}(10)\right)=f(8)=4 \\
& f^{5}(10)=f\left(f^{4}(10)\right)=f(4)=2 \\
& f^{6}(10)=f\left(f^{5}(10)\right)=f(2)=1
\end{aligned}
$$

Collatz Conjecture: for every $n \in \mathbb{N}, f^{k}(n)=1$ for some $k \in \mathbb{N}$.

A μ-recursive Function

We define $C(n)$ to denote the smallest k with $f^{k}(n)=1$.

$$
\begin{aligned}
C(n) & :=(\mu D)(n) \\
D(k, n) & :=f^{k}(n)-1 \\
f^{k}(n) & := \begin{cases}n & \text { if } k=0 \\
f\left(f^{k-1}(n)\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

(see lecture notes for completely formal definition)
Truth of conjecture is unknown: C may or may not be total (and may or may not be primitive recursive).

μ-Recursion and While Computability

Theorem: every μ-recursive function is while computable and vice versa.
Proof \Rightarrow : we show that μ-recursive h is while computable.

- If h is one of the basic functions or defined by composition or primitive recursion, it is clearly while computable.
- Case $h\left(x_{1}, \ldots, x_{n}\right):=(\mu f)\left(x_{1}, \ldots, x_{n}\right)$

$$
\begin{aligned}
& x_{0}:=0 ; \\
& y:=f\left(x_{0}, x_{1}, \ldots, x_{n}\right) ; \\
& \text { while } y \text { do } \\
& \quad x_{0}:=x_{0}+1 ; \\
& \quad y:=f\left(x_{0}, x_{1}, \ldots, x_{n}\right) \\
& \text { end }
\end{aligned}
$$

μ-recursion denotes unbounded iterative search.

μ-Recursion and While Computability

Proof \Leftarrow : let $h: \mathbb{N}^{k} \rightarrow_{\mathrm{p}} \mathbb{N}$ be computable by while program P with variables x_{0}, \ldots, x_{n}. Then $h\left(x_{1}, \ldots, x_{k}\right):=\operatorname{var}_{0}\left(f_{P}\left(0, x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)\right)$ where $\operatorname{var}_{i}\left(x_{0}, \ldots, x_{n}\right):=x_{i}$. We show that $f_{P}: \mathbb{N}^{n+1} \rightarrow_{\mathrm{p}} \mathbb{N}^{n+1}$ is μ-recursive by induction on P.

- If P is an assignment, a sequence, of a bounded loop, then f_{P} is clearly μ-recursive.
- Case while x_{i} do P^{\prime} end

$$
\begin{aligned}
& f_{P}\left(x_{0}, \ldots, x_{n}\right):=g\left(\left(\mu g_{i}\right)\left(x_{0}, \ldots, x_{n}\right), x_{0}, \ldots, x_{n}\right) \\
& g_{i}: \mathbb{N}^{n+1} \rightarrow \mathbb{N} \\
& g_{i}\left(m, x_{0}, \ldots, x_{n}\right):=\operatorname{var}_{i}\left(g\left(m, x_{0}, \ldots, x_{n}\right)\right) \\
& g\left(0, x_{0}, \ldots, x_{n}\right):=\left(x_{0}, \ldots, x_{n}\right) \\
& g\left(m+1, x_{0}, \ldots, x_{n}\right):=f_{P^{\prime}}\left(g\left(m, x_{0}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

- $g_{i}\left(m, x_{0}, \ldots, x_{n}\right)$: the value of program variable i after m iterations
- $g\left(m, x_{0}, \ldots, x_{n}\right)$: the values of all variables after m iterations.

Thus the Ackermann function is also μ-recursive.

Normal Form of a μ-Recursive Function

Kleene's Normal Form Theorem: every μ-recursive function h can be defined in Kleene's normal form:

$$
h\left(x_{1}, \ldots, x_{k}\right):=f_{2}\left(x_{1}, \ldots, x_{k},(\mu g)\left(f_{1}\left(x_{1}, \ldots, x_{k}\right)\right)\right)
$$

- f_{1}, f_{2}, g are primitive recursive functions.

A single application of μ is all that is needed.

Normal Form of a μ-Recursive Function

We sketch the proof of Kleene's Normal Form Theorem.
Since h is μ-recursive, it is computable by a while program in normal form

$$
x_{c}:=1 ; \text { while } x c \text { do } \ldots \text { end }
$$

with memory function

$$
f_{P}\left(x_{0}, \ldots, x_{n}\right):=g\left(\left(\mu g_{c}\right)\left(\operatorname{init}\left(x_{0}, \ldots, x_{n}\right)\right), \operatorname{init}\left(x_{0}, \ldots, x_{n}\right)\right)
$$

with primitive recursive g and g_{c} and $\operatorname{init}\left(x_{0}, \ldots, x_{c}, \ldots, x_{n}\right):=\left(x_{0}, \ldots, 1, \ldots, x_{n}\right)$.
Thus we can define

$$
\begin{aligned}
h\left(x_{1}, \ldots, x_{k}\right) & :=\operatorname{var}_{0}\left(f_{P}\left(0, x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)\right) \\
& =\operatorname{var}_{0}\left(g\left(\left(\mu g_{c}\right)\left(\operatorname{init}\left(0, x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)\right), \operatorname{init}\left(0, x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)\right)\right) \\
& =f_{2}\left(x_{1}, \ldots, x_{k},\left(\mu g_{c}\right)\left(f_{1}\left(x_{1}, \ldots, x_{k}\right)\right)\right)
\end{aligned}
$$

with primitive recursive

$$
\begin{aligned}
f_{1}\left(x_{1}, \ldots, x_{k}\right) & :=\operatorname{init}\left(0, x_{1}, \ldots, x_{k}, 0, \ldots, 0\right) \\
f_{2}\left(x_{1}, \ldots, x_{k}, r\right) & :=\operatorname{var}_{0}\left(g\left(r, \operatorname{init}\left(0, x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)\right)\right)
\end{aligned}
$$

1. Random Access Machines

2. Loop and While Programs
3. Primitive Recursive and μ-recursive Functions

4. Further Turing Complete Models

5. The Chomsky Hierarchy
6. Real Computers

The Big Picture So Far

We are going to sketch some more Turing complete models.

Goto Programs

- A goto program has form

$$
L_{1}: P_{1} ; L_{2}: P_{2} ; \ldots ; P_{n}: A_{n}
$$

where L_{k} denotes a label and P_{k} an action:

$$
P::=x_{i}:=0\left|x_{i}:=x_{j}+1\right| x_{i}:=x_{j}-1 \mid \text { if } x_{i} \text { goto } L_{j}
$$

- Semantics $\llbracket P \rrbracket(k, m)$:
- A partial function which maps the initial state (k, m) of P, consisting of program counter $k \in \mathbb{N}$ and memory $m: \mathbb{N} \rightarrow \mathbb{N}$, to its final state (unless the program does not terminate).

$$
\begin{array}{ll}
\llbracket P \rrbracket(0, m) & :=m \\
\llbracket P=\ldots ; P_{k}: x_{i}:=0 ; \ldots \rrbracket(k, m) & :=\llbracket P \rrbracket(k+1, m[i \leftarrow 0]) \\
\llbracket P=\ldots, P_{k}: x_{i}:=x_{j}+1 ; \ldots \rrbracket(k, m) & :=\mathbb{1} P \rrbracket(k+1, m[i \leftarrow m[j]+1]) \\
\llbracket P=\ldots ; P_{k}: x_{i}:=x_{j}-1 ; \ldots \rrbracket(k, m) & :=\llbracket P \rrbracket(k+1, m[i \leftarrow \max \{0, m[j]-1]\}) \\
\llbracket P=\ldots ; P_{k}: \text { if } x_{i} \text { goto } L_{j} ; \ldots \rrbracket(k, m) & := \begin{cases}\llbracket P \rrbracket(k+1, m), \text { if } m(i)=0 \\
\llbracket P \rrbracket(j, m), \text { if } m(i) \neq 0\end{cases}
\end{array}
$$

We have already seen how goto programs can be translated to while programs and vice versa; goto programs are therefore Turing complete.

λ-Calculus

- A λ-term T :

$$
T::=x_{i}|(T T)|\left(\lambda x_{i} \cdot T\right)
$$

- x_{i} : a variable.
- ($T T$): an application.
$=\left(\lambda x_{i} . T\right)$: an abstraction.
- Reduction relation \rightarrow :

$$
\left(\left(\lambda x_{i} \cdot T_{1}\right) T_{2}\right) \rightarrow\left(T_{1}\left[x_{i} \leftarrow T_{2}\right]\right)
$$

- The result of the application of a function to an argument.
- Reduction sequence $T_{1} \rightarrow{ }^{*} T_{2}$

$$
T_{1} \rightarrow \ldots \rightarrow T_{2}
$$

- T_{2} is in normal form, if no further reduction is possible.
- Church-Rosser Theorem: If $T_{1} \rightarrow^{*} T_{2}$ and $T_{1} \rightarrow^{*} T_{2}^{\prime}$ such that both T_{2} and T_{2}^{\prime} are in normal form, then $T_{2}=T_{2}^{\prime}$.
Every computable function can be represented by a λ-term.

λ-Calculus

How can we represent unbounded iteration (recursion)?

- Can define fixpoint operator Y :

$$
(Y F) \rightarrow^{*}(F(Y F))
$$

- $Y:=(\lambda f .((\lambda x .(f(x x)))(\lambda x .(f(x x)))))$
- Can translate recursive function definition to λ-term:

$$
\begin{gathered}
f(x):=\ldots f(g(x)) \ldots \rightsquigarrow f:=Y F \\
F:=\lambda h \cdot \lambda x \ldots h(g(x)) \ldots
\end{gathered}
$$

- λ-term behaves like recursive function.

$$
f a=(Y F) a \rightarrow^{*} F(Y F) a \rightarrow^{*} \ldots(Y F)(g(a)) \ldots=\ldots f(g(a)) \ldots
$$

Formal basis of functional programming languages.

Rewriting Systems

- A term rewriting system is a set of rules of form

$$
L \rightarrow R
$$

- L, R : terms such that L is not a variable and every variable that appears in R must also appear in L.
- Rewriting Step $T \rightarrow T^{\prime}$:
- There is some rule $L \rightarrow R$ and a substitution σ (a mapping of variables to terms) such that
- some subterm U of T matches the left hand side L of the rule under the substitution σ, i.e., $U=L \sigma$,
- T^{\prime} is derived from T by replacing U with $R \sigma$, i.e with the right hand side of the rule after applying the variable replacement.
- Rewriting Sequence $T_{1} \rightarrow{ }^{*} T_{2}$

$$
T_{1} \rightarrow \ldots \rightarrow T_{2}
$$

- T_{2} is in normal form, if no further reduction is possible.

Every computable function can be represented by a term rewriting system.

Rewriting Systems

- Term rewriting system:

$$
\begin{aligned}
f(x, f(y, z)) & \rightarrow f(f(x, y), z) \\
f(x, e) & \rightarrow x \\
f(x, i(x)) & \rightarrow e
\end{aligned}
$$

- Rewriting sequence:

$$
\begin{aligned}
& f(a, f(i(a), e)) \rightarrow f(f(a, i(a)), e) \rightarrow f(e, e) \rightarrow e \\
& f(a, f(i(a), e)) \rightarrow f(a, i(a)) \rightarrow e
\end{aligned}
$$

Rewriting systems can be also defined over strings and graphs; the later form the basis of tools for model driven architectures.

1. Random Access Machines

2. Loop and While Programs
3. Primitive Recursive and μ-recursive Functions
4. Further Turing Complete Models

5. The Chomsky Hierarchy

6. Real Computers

Languages and Machines

- Regular languages:
- Representable by regular expressions.
- Recognizable by finite state machines.
- Recursively enumerable languages:
- Representable by ?
- Recognizable by Turing machines.
- Relationship:
- Every regular language is recursively enumerable.
- Every finite state machine can be simulated by a Turing machine.

But not vice versa.
Are there any other interesting classes of languages and associated machine models and how do they relate to those above?

Grammars

Grammar $G=(N, \Sigma, P, S)$:

- N : a finite set of nonterminal symbols,
- Σ : a finite set of terminal symbols disjoint from N.

$$
N \cap \Sigma=\emptyset
$$

- P : a finite set of production rules of form $I \rightarrow r$ such that

$$
\begin{aligned}
& \underset{r \in(N \cup \Sigma)^{*} \circ}{l}(N \cup \Sigma)^{*} \\
& r \circ(N \cup \Sigma)^{*} \\
& \hline
\end{aligned}
$$

- I and r consist of nonterminal and/or terminal symbols.
- I must contain at least one nonterminal symbol.
- Multiple rules $I \rightarrow r_{1}, I \rightarrow r_{2}, \ldots, I \rightarrow r_{n}$ can be abbreviated:

$$
I \rightarrow r_{1}\left|r_{2}\right| \ldots \mid r_{n}
$$

- S: the start symbol.

$$
S \in N
$$

Grammar G describes a language over alphabet Σ.

The Language of a Grammar

Grammar $G=(N, \Sigma, P, S)$, words $w, w_{1}, w_{2} \in(N \cup \Sigma)^{*}$.

- Direct derivation $w_{1} \Rightarrow w_{2}$ in G :

$$
\begin{aligned}
& w_{1}=u l v \text { and } w_{2}=u r v \\
& \text { for } u, v \in(N \cup \Sigma)^{*} \text { and }(I \rightarrow r) \in P
\end{aligned}
$$

- Derivation $w_{1} \Rightarrow^{*} w_{2}$ in G :

$$
w_{1} \Rightarrow \ldots \Rightarrow w_{2} \text { in } G .
$$

- w is a sentential form in G :

$$
S \Rightarrow^{*} w
$$

- w is a sentence in G :
- w is a sentential form in G and $w \in \Sigma^{*}$.
- Language $L(G)$ of G :

$$
L(G):=\{w \text { is a sentence in } G\}
$$

The language of a grammar is the set of all words that consist only of terminal symbols and that are derivable from the start symbol.

Example

- Grammar $G=(N, \Sigma, P, S)$:

$$
\begin{aligned}
& N=\{S, A, B\} \\
& \Sigma=\{a, b, c\} \\
& P=\{S \rightarrow A c, A \rightarrow a B, A \rightarrow B B b, B \rightarrow b, B \rightarrow a b\}
\end{aligned}
$$

- Derivations:

$$
\begin{aligned}
& S \Rightarrow A c \Rightarrow a B c \Rightarrow a b c \\
& S \Rightarrow A c \Rightarrow B B b c \Rightarrow a b B b c \Rightarrow a b a b b c
\end{aligned}
$$

- Language:

$$
L(G)=\{a b c, a a b c, b b b c, b a b b c, a b b b c, a b a b b c\}
$$

This grammar defines a finite language.

Example

- Grammar $G=(N, \Sigma, P, S)$:

$$
\begin{aligned}
& N=\{S\} \\
& \Sigma=\left\{{ }^{\prime}(\text { ' ' ' ' ' ', '[', ']' }]\right\} \\
& P=\{S \rightarrow \varepsilon|S S|[S] \mid(S)\}
\end{aligned}
$$

- Derivations:

$$
S \Rightarrow[S] \Rightarrow[S S] \Rightarrow[(S) S] \Rightarrow[() S] \Rightarrow[()[S]] \Rightarrow[()[(S)]] \Rightarrow[()[()]]
$$

- Language: the "Dyck-Language"
$L(G)$ is the language of all expressions with matching pairs of parentheses "()" and brackets "[]"

This grammar defines an infinite language.

Right-Linear Grammars and Regular Lang.

- Grammar $G=(N, \Sigma, P, S)$ is right linear if each rule in P has form
- $A \rightarrow \varepsilon, A \rightarrow a, A \rightarrow a B$
with nonterminal symbols $A, B \in N$ and terminal symbol $a \in \Sigma$.
- Theorem: The languages of right linear grammars are exactly the regular languages.
- For every right linear grammar G, there exists a FSM M with $L(M)=L(G)$ and vice versa.
- Proof \Rightarrow : we construct from right linear grammar G a NFSM M. The states are the nonterminal symbols extended by a final state q_{f}; the start state is the start symbol.
- For every rule $A \rightarrow \varepsilon$, the state A becomes final.
- For every rule $A \rightarrow a$, we add a transition $\delta(A, a)=q_{f}$.
- For every rule $A \rightarrow a B$, we add a transition $\delta(A, a)=B$.
- Proof \Leftarrow : we construct from DFSM M right linear grammar G. The nonterminal symbols are the states; the start symbol is the start state.
- For every transition $\delta(q, a)=q^{\prime}$ we add a production rule $q \rightarrow a q^{\prime}$.
- For every final state q, we add a production rule $q \rightarrow \varepsilon$.

Grammars and Recursively Enum. Lang.

Theorem: The languages of (unrestricted) grammars are exactly the recursively enumerable languages.

- Proof \Rightarrow : construct 2-tape nondeterministic M with $L(M)=L(G)$.
M uses the second tape to construct some sentence of $L(G)$: it starts by writing S on the tape and then nondeterministically chooses some rule $I \rightarrow r$ and applies it to some occurrence of I on the tape, replacing it by r. Then M checks whether the result equals the word on the first tape. If yes, M accepts the word, otherwise, it continues with another production rule.
- Proof \Leftarrow : construct grammar G with $L(G)=L(M)$.

Sentential forms encode pairs (w, c) of input w and configuration c of M; every form contains a non-terminal symbol such that by a rule application the current configuration is replaced by the successor configuration. The rules ensure that

- from the start symbol, every matching pair (w, c) of M can be derived;
- for every transition that moves c to c^{\prime}, a rule is constructed that allows a derivation $(w, c) \Rightarrow\left(w, c^{\prime}\right)$;
- if configuration c describes a final state from which no further transition is possible, the derivation $(w, c) \Rightarrow w$ is possible.
Unrestricted grammars represent another Turing complete model.

The Chomsky Hierarchy

Noam Chomsky, 1959.

Type i	Grammar $G(i)$	Language $L(i)$	Machine $M(i)$
0	unrestricted	recursively enumerable	Turing machine
1	context-sensitive	context-sensitive	linear bounded automaton
2	context-free	context-free	push down automaton
3	right linear	regular	finite state machine

$L(i)$ is the set of languages of grammars $G(i)$ and machines $M(i)$.

- For $i>0$, the set of languages of type $L(i)$ is a proper subset of the set of languages $L(i-1)$, i.e. $L(i) \subset L(i-1)$.
- For $i>0$, every machine in $M(i)$ can be simulated by a machine in $M(i-1)$ (but not vice versa).

Grammars correspond to machine models.

Context-Free Languages (Type 2)

- Context-free grammar G : every rule has form $A \rightarrow r$ with $A \in N$.
- Independent of the context, any occurrence of A can be replaced.
- Example: $L:=\left\{a^{i} b^{i} \mid i \in \mathbb{N}\right\}$

$$
\begin{aligned}
& S \rightarrow \varepsilon \mid a S b \\
& S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a a S b b b \Rightarrow \text { aaabbb }
\end{aligned}
$$

- Pushdown automaton M : nondeterministic FSM with unbounded stack of symbols as "working memory":
- in every transition $\delta(q, a, b)=\left(q^{\prime}, w\right)$,
- M reads the next input symbol a (a may be ε, i.e., M may not read a symbol) and the symbol b on the top of the stack, and
- replaces b by a (possibly empty) sequence w of symbols.

Most languages in computer science are context-free.

Generation of Syntax Analyzers

"Compiler generators" for the generation of syntax analyzers (parsers).

- Input: a (deterministic) context free grammar.
statement: assignment | conditional | whileloop | ... ;
whileloop: 'while' '(' valexp ')' statement ;
- Output: a (deterministic) push down automaton (as a program)

```
public final LoopStatement whileloop() throws ... {
```

pushFollow(FOLLOW_valexp_in_whileloop1457);
valexp();
state._fsp--;
if (state.failed) return value;
pushFollow(FOLLOW_statement_in_whileloop1484);
statement();
state._fsp--;
if (state.failed) return value;
\}

Context-Sensitive Languages (Type 1)

- Context-sensitive grammar G:
- in every rule $I \rightarrow r$, we have $|I| \leq|r|$, i.e., the length of left side I is less than or equal the length of right side r,
- the rule $S \rightarrow \varepsilon$ is only allowed, if the start symbol S does not appear on the right hand side of any rule.
- Example: $L:=\left\{a^{i} b^{i} f^{i} \mid i \in \mathbb{N}\right\}$

$$
S \rightarrow \varepsilon|T, T \rightarrow A B C| T A B C
$$

$B A \rightarrow A B, C B \rightarrow B C, C A \rightarrow A C$
$A B \rightarrow a b, b C \rightarrow b c, A a \rightarrow a a, b B \rightarrow b b, c C \rightarrow c c$

$$
\begin{aligned}
\underline{S} & \Rightarrow \underline{I} \Rightarrow \underline{I} A B C \Rightarrow A B C A B C \Rightarrow A B A C B C \Rightarrow A A B C B C \Rightarrow A A B B C C \\
& \Rightarrow \underline{A a} b B C C \Rightarrow a a \underline{b B} C C \Rightarrow a b \underline{b} \underline{C} C \Rightarrow a a b b \underline{C} \underline{C} \Rightarrow \text { aabbcc }
\end{aligned}
$$

- Linear bounded automaton M : nondeterministic Turing machine with k tapes (for some k).
- For input of length n, only the first n cells of each tape are used.
- The "space" used is a fixed multiple of the length of the input word.

Less practical importance.

Summary

We have seen examples of each type of language.

- Type 3: $\left\{(a b)^{n} \mid n \in \mathbb{N}\right\}$
- Language is regular.
- Type 2: $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$
- Language is context-free.
- Type 1: $\left\{a^{n} b^{n} f^{n} \mid n \in \mathbb{N}\right\}$
- Language is context-sensitive.
- Type 0: $\left\{a^{i} b^{j} f^{k} \mid k=\operatorname{ack}(i, j)\right\}$
- Language is recursively enumerable (also recursive).

None of these languages of type i is also of type $i+1$.

1. Random Access Machines

2. Loop and While Programs
3. Primitive Recursive and μ-recursive Functions
4. Further Turing Complete Models
5. The Chomsky Hierarchy

6. Real Computers

Real Computers

Are real computers Turing complete?

- Hardware view:
- Finite number of digital elements and thus a finite number of states.
- Cannot simulate the infinite Turing machine tape.
- Cannot perform unbounded arithmetic.
- A computer is thus a finite state machine (i.e., not Turing complete).

View taken by model checkers.

- Algorithm theory view:
- On demand, arbitrary much (e.g., virtual) memory may be added.
- Can thus simulate arbitrary large portion of the Turing machine tape.
- Can thus perform unbounded arithmetic.
- A computer is Turing complete.

View taken by algorithm design.
A matter of the point of view respectively the goal of the modeling.

