
Formal Semantics of Programming
Languages

Exercise 3 (June 30)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

June 1, 2017

The exercise is to be submitted by the deadline stated above as a report with a decent cover page
(title of the course, your name, Matrikelnummer, email address) in one of the following forms:

1. either as a single PDF file uploaded in Moodle (no emails, please), or

2. as a stapled paper report handed out to me (in class or in my mailbox).

1



Exercise 3: For Loops

1. Take an imperative programming language with a loop command

C ::= . . . | for(C1;B;C2) C3

where the evaluation of a Boolean expression B may alter the store (see the previous
exercises). The semantics of the for loop is analogous to that one of C/Java-like languages:
first, C1 is executed, then B is evaluated. If the result is “true”, C3 and C2 are executed and
then B is evaluated again.

a) Give an operational semantics for this language assuming a judgment 〈B,s〉→ 〈t,s′〉
for the evaluation of boolean expression B in store s yielding a truth value t and a
store s′.

b) Give a denotational semantics for this language assuming a valuation function B :
BoolExp→ Store→ (Truth×Store). Please note that the evaluation of a command
may not terminate.

c) State for both commands and boolean expressions formally the equivalence of the
operational semantics and the denotational semantics (you need not prove that state-
ment).

2. Take an imperative programming language with a loop command

C ::= . . . | for I from E1 to E2 by E3 do C

where the evaluation of an expression E yields an integer and cannot alter the store. The
for loop iteratively executes the loop body C with the value of variable I set subsequently
to i1, i1 + i3, i1 +2 · i3, . . . , i1 +k · i3 where i1, i2, i3 are the values of E1,E2,E3, respectively,
and i1 +k · i3 is the largest value less than or equal i2 (if i1 > i2, the loop is not executed at
all). After the execution of the loop, I has the same value that it had before the execution
of the loop (i.e., I is only temporarily assigned).

a) Give an operational semantics for this language assuming a judgment 〈E,s〉 → i for
the evaluation of expression E in store s yielding an integer i.

b) Give a denotational semantics for this language assuming a valuation function E :
Expression→ Store→ Z. Please note that the evaluation of a command may not
terminate (since the language also contains general “while” loops).

c) State for both commands and expressions formally the equivalence of the operational
semantics and the denotational semantics (you need not prove that statement).

3. Bonus 15% (Optional): Apparently, for the second form of the for loop non-termination
cannot arise from the execution of the for loop itself (but only from the execution of the
loop body C). Therefore, for defining the semantics of the for loop it is not necessary to

2



resort to least fixed point semantics, but it suffices to use primitive recursion: any function
f : N× . . .→ . . . defined in the form

f (n, . . .) :=

{
. . . if n = 0
. . . f (n−1, . . .) . . . else

(where the only recursive call is the single call f (n− 1, . . .) denoted above) is uniquely
defined for any argument n ∈ N.

Define the semantics of the for loop by primitive recursion using as n the number of
iterations of the loop.

3


