
Formal Models for
Parallel and Distributed Systems

Exercise 2 (June 19)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

June 9, 2017

The exercise is to be submitted by the deadline stated above via the Moodle interface as a single
.zip or .tgz file containing

1. a PDF file with a decent cover page (mentioning the title of the course, your full name and
Matrikelnummer) with

• listings of the model files and

• the outputs/screenshots of the tool,

2. the model files used in the exercise.

1



A Client/Server System

Take a distributed system of a server and N clients numbered 1, . . . ,N where the server maintains
a shared resource which it grants to at most one of the clients at a time, as depicted by the
following pseudo-code:

Server:
local given, waiting, sender

begin
given := 0; waiting := { }
loop
sender := receiveRequest()
if sender = given then
if waiting = { } then
given := 0

else
choose given from waiting
waiting := waiting \ { given }
sendAnswer(given)

endif
elsif given = 0 then
given := sender
sendAnswer(given)

else
waiting :=
waiting U { sender }

endif
endloop

end Server

Client(p):
param ident

begin
loop
...
c1: sendRequest()
c2: receiveAnswer()
... // critical region
c3: sendRequest()

endloop
end Client

Develop a CCS specification (in the value passing calculus presented in the lecture) of the system
with one server and N clients where the server and the clients interact by synchronous message
passing. You may use in your specification variables ranging over integers and can use the usual
integer operations in conditional expressions and output actions. Please note that a set S of at
most N integers 1, . . . ,N can be represented by a single N-bit integer whose bit i is set if and
only if i + 1 ∈ S. Please note that the server continuously receives a message and then choses
one of four possible execution paths (depending on the sender of the message and the local state
variables given and waiting); every client has a single execution path of sending, receiving, and
again sending a message.

Next translate this specification as directly as possible to a FSP model with N = 2 (possibly
N = 3, if the state space does not get too large).

Construct drawings for the labeled transition system of the server process, one client process,
and (if possible) of the composed system.

Construct manually in the animator a trace of a (part of a) system run where Client 1 requests
the resource, receives the resource, and releases the resource.

2



Check whether the system may run into a deadlock and give the output of the check.

Check whether the system maintains liveness for client 1 by defining a progress property that
includes the client’s action for entering the critical region, e.g.

progress LIVENESS = { c[1].enter }

(see also example Twocoin in LTSA).

Hide from the model all action names except those for entering and exiting the critical region by
the clients, perform minimization, and construct a drawing for the minimized system (see also
example User in LTSA).

Explain whether/how the drawing illustrates that mutual exclusion is preserved.

Check whether the system maintains mutual exclusion by defining a corresponding mutual ex-
clusion property, e.g.

property MUTEX = (c[i:1..N].enter->c[i].exit->MUTEX).

which is composed with the system (see also Example Mutex_property in LTSA).

Also check whether the system maintains mutual exclusion by defining a corresponding FLTL
property, e.g.

fluent CRITICAL[i:1..N] = < { c[i].enter }, { c[i].exit } >
assert MUTEX = forall[i1:1..N] forall[i2:1..N]
rigid(i1 < i2) -> [] !(CRITICAL[i1] && CRITICAL[i2])

(see also Example Mutex_fluent in LTSA).

3


