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Denotational Semantics

Programming Language

Any notation for giving instructions, e.g.
Pascal, input commands to application pro-
gram, . . .

• Syntax
– Appearance and structure of sentences.

• Semantics
– Assignment of meaning to sentences e.g. numbers, func-

tions, machine actions, . . .

• Pragmatics
– Usability of the language e.g. application areas, perfor-

mance, . . .

Features of every computer program.
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Denotational Semantics

Implementation

Two main parts:

1. Input checker module (“Parser”)
• Reads input, verifies that it has proper syntax, generates

internal representation.

2. Evaluation module
• Evaluates input to corresponding output thus defining the

semantics of the language.

The implementation of language is a prag-
matic issue.
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Denotational Semantics

Evaluation

• Interpretation
– Execution of the program.

Interpreter defines meaning (by its ac-
tions).

• Compilation
– Transformation of the program into an equivalent version

in the machine language.

Compiler preserves meaning (by notion of
“equivalence”).
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Denotational Semantics

Formal Specifications

• Syntax: Backus-Naur Form (BNF)
– Correspondence between BNF and parser.

– Input to parser generator.

• Semantics: ?
– Precise Standard for implementation.

– Useful user documentation.

– Tool for design and analysis of language

– Input to compiler generator.

Semantics is much more difficult to describe
(“semantics is everything that cannot be de-
scribed in BNF”).
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Denotational Semantics

Operational Semantics

• Language defined by interpreter (abstract
machine).

• Each construct defined by a transition rule.

•Meaning of a program is a sequence of in-
terpreter states.

P : S1 → S2 → . . . → Sn

• P . . . program

• Si . . . interpreter state

Notation for interpreter may be as complex as
language itself.
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Denotational Semantics

Axiomatic semantics

• Language defined by system of logical ax-
ioms and inference rules.

• Each construct defined by an axiom.

• Not the meaning of a program but its prop-
erties are defined.

{A} P {B}
P . . . program
A . . . precondition
B . . . postcondition

Provable properties need not characterize pro-
gram uniquely.
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Denotational Semantics

Denotational semantics

• The meaning of a program is a (mathemat-
ical) object.

• Each construct is mapped by a valuation
function into its meaning (denotation).

F (P ) = D

P . . . program
F . . . valuation function
D . . . denotation

More abstract than operational semantics (no
computation steps), more concrete than ax-
iomatic semantics (explicit meaning).
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Denotational Semantics

Application Areas

• Axiomatic: initial specification.
– Which properties shall language have?

•Denotational: meaning.
– Which semantics provides properties?

•Operational: implementation.
– How can semantics be implemented?

Complementary aspects.
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Denotational Semantics

Relationship

DenotationMachine Code

Source Code

State Transitions

Parse Tree

Code Generation

Parsing

Execution

Correctness

Operational Denotational

Correctness of implementation can be verified
with respect to the denotation.
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Denotational Semantics

Valuation Function

•Domain: Abstract syntax structures
(“parse trees”) of the language.

• Target: Objects of semantic domains.

• Structural definition (meaning of a tree is
defined by meanings of its subtrees).

A valuation function maps an abstract syntax
into some semantic domain.
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Denotational Semantics

A Language of Binary Numerals

• Abstract Syntax:
Syntactic domains:

B ∈ Binary-numeral

D ∈ Binary-digit

Syntax rules:

B ::= BD D

D :: = 0 1

• Sentences:
B

/
B

/
B

D D D

1 0 1
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Denotational Semantics

Meaning of Terminal Sentences

• Subtree: D

0

•Meaning: D( D

0

) = zero

• Notation: D [[ 0 ]] = zero

Valuation function:
D [[ 0 ]] = zero
D [[ 1 ]] = one
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Denotational Semantics

Meaning of Non-Terminal Sentences

• Subtree: B

D

1

•Meaning: B( B

D
4

) = D( D
4

)

• Notation: B[[ D ]] = D[[ D ]]

Valuation function:
B[[ D ]] = D[[ D ]]
B[[ BD ]] =
(B[[ B ]] times two) plus D[[ D ]]
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Denotational Semantics

Meaning of Non-Terminal Sentences

Abstract Syntax
B ∈ Binary-numeral

D ∈ Binary-digit

B ::= BD D

D :: = 0 1

Semantic Algebras
Natural Numbers:

Domain Nat = N
Operations zero, one, two, . . . : Nat

plus, times: Nat × Nat → Nat

Valuation Functions
B: Binary-numeral → Nat

B[[ D ]] = D[[ D ]]

B[[ BD ]] = (B[[B]] times two) plus D[[ D ]]

D: Binary-digit → Nat

D [[ 0 ]] = zero

D [[ 1 ]] = one
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Denotational Semantics

Meaning of Sentence

Annotation of abstract syntax tree

Bfive

/

Btwo

/
Bone

Done Dzero Done

1 0 1

Computation can proceed bottom-up or top-
down!
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