
Denotational Semantics

Denotational Semantics

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC-Linz)

Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

Denotational Semantics

Programming Language

Any notation for giving instructions, e.g.
Pascal, input commands to application pro-
gram, . . .

• Syntax
– Appearance and structure of sentences.

• Semantics
– Assignment of meaning to sentences e.g. numbers, func-

tions, machine actions, . . .

• Pragmatics
– Usability of the language e.g. application areas, perfor-

mance, . . .

Features of every computer program.

Wolfgang Schreiner 1

Denotational Semantics

Implementation

Two main parts:

1. Input checker module (“Parser”)
• Reads input, verifies that it has proper syntax, generates

internal representation.

2. Evaluation module
• Evaluates input to corresponding output thus defining the

semantics of the language.

The implementation of language is a prag-
matic issue.

Wolfgang Schreiner 2

Denotational Semantics

Evaluation

• Interpretation
– Execution of the program.

Interpreter defines meaning (by its ac-
tions).

• Compilation
– Transformation of the program into an equivalent version

in the machine language.

Compiler preserves meaning (by notion of
“equivalence”).

Wolfgang Schreiner 3

Denotational Semantics

Formal Specifications

• Syntax: Backus-Naur Form (BNF)
– Correspondence between BNF and parser.

– Input to parser generator.

• Semantics: ?
– Precise Standard for implementation.

– Useful user documentation.

– Tool for design and analysis of language

– Input to compiler generator.

Semantics is much more difficult to describe
(“semantics is everything that cannot be de-
scribed in BNF”).

Wolfgang Schreiner 4

Denotational Semantics

Operational Semantics

• Language defined by interpreter (abstract
machine).

• Each construct defined by a transition rule.

•Meaning of a program is a sequence of in-
terpreter states.

P : S1 → S2 → . . . → Sn

• P . . . program

• Si . . . interpreter state

Notation for interpreter may be as complex as
language itself.

Wolfgang Schreiner 5

Denotational Semantics

Axiomatic semantics

• Language defined by system of logical ax-
ioms and inference rules.

• Each construct defined by an axiom.

• Not the meaning of a program but its prop-
erties are defined.

{A} P {B}
P . . . program
A . . . precondition
B . . . postcondition

Provable properties need not characterize pro-
gram uniquely.

Wolfgang Schreiner 6

Denotational Semantics

Denotational semantics

• The meaning of a program is a (mathemat-
ical) object.

• Each construct is mapped by a valuation
function into its meaning (denotation).

F (P) = D

P . . . program
F . . . valuation function
D . . . denotation

More abstract than operational semantics (no
computation steps), more concrete than ax-
iomatic semantics (explicit meaning).

Wolfgang Schreiner 7

Denotational Semantics

Application Areas

• Axiomatic: initial specification.
– Which properties shall language have?

•Denotational: meaning.
– Which semantics provides properties?

•Operational: implementation.
– How can semantics be implemented?

Complementary aspects.

Wolfgang Schreiner 8

Denotational Semantics

Relationship

DenotationMachine Code

Source Code

State Transitions

Parse Tree

Code Generation

Parsing

Execution

Correctness

Operational Denotational

Correctness of implementation can be verified
with respect to the denotation.

Wolfgang Schreiner 9

Denotational Semantics

Valuation Function

•Domain: Abstract syntax structures
(“parse trees”) of the language.

• Target: Objects of semantic domains.

• Structural definition (meaning of a tree is
defined by meanings of its subtrees).

A valuation function maps an abstract syntax
into some semantic domain.

Wolfgang Schreiner 10

Denotational Semantics

A Language of Binary Numerals

• Abstract Syntax:
Syntactic domains:

B ∈ Binary-numeral

D ∈ Binary-digit

Syntax rules:

B ::= BD D

D :: = 0 1

• Sentences:
B

/
B

/
B

D D D

1 0 1

Wolfgang Schreiner 11

Denotational Semantics

Meaning of Terminal Sentences

• Subtree: D

0

•Meaning: D(D

0

) = zero

• Notation: D [[0]] = zero

Valuation function:
D [[0]] = zero
D [[1]] = one

Wolfgang Schreiner 12

Denotational Semantics

Meaning of Non-Terminal Sentences

• Subtree: B

D

1

•Meaning: B(B

D
4

) = D(D
4

)

• Notation: B[[D]] = D[[D]]

Valuation function:
B[[D]] = D[[D]]
B[[BD]] =
(B[[B]] times two) plus D[[D]]

Wolfgang Schreiner 13

Denotational Semantics

Meaning of Non-Terminal Sentences

Abstract Syntax
B ∈ Binary-numeral

D ∈ Binary-digit

B ::= BD D

D :: = 0 1

Semantic Algebras
Natural Numbers:

Domain Nat = N
Operations zero, one, two, . . . : Nat

plus, times: Nat × Nat → Nat

Valuation Functions
B: Binary-numeral → Nat

B[[D]] = D[[D]]

B[[BD]] = (B[[B]] times two) plus D[[D]]

D: Binary-digit → Nat

D [[0]] = zero

D [[1]] = one

Wolfgang Schreiner 14

Denotational Semantics

Meaning of Sentence

Annotation of abstract syntax tree

Bfive

/

Btwo

/
Bone

Done Dzero Done

1 0 1

Computation can proceed bottom-up or top-
down!

Wolfgang Schreiner 15

