The Calculus of Communicating Systems

Wolfgang Schreiner Research Institute for Symbolic Computation (RISC-Linz) Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

The Calculus of Communicating Systems (CCS)

- Description of process networks
 - Static communication topologies.

• History sketch

- Robin Milner, 1980.
- CCS: Calculus of Communicating Systems.
- Various revisions and elaborations.
- Later extended to *mobile* processes (π -calculus).

• Algebraic approach

- Concurrent system modeled by term.
- Theory of term manipulations.
- Externally visible behavior preserved.

• Observation equivalence

- External communications follow same pattern.
- Internal behavior may differ.

Modeling of communication and concurrency.

A Simple Example

- Agent C
 - Dynamic system is network of agents.
 - Each agent has own identity persisting over time.
 - Agent performs *actions* (external communications or internal actions).
 - *Behavior* of a system is its (observable) capability of communication.
- Agent has labeled ports.
 - Input port in.
 - Output port $\overline{\text{out}}$.
- Behavior of C:
 - $-C := \operatorname{in}(x).C'(x)$
 - $-C'(x) := \overline{\operatorname{out}}(x).C$

Process behaviors are defined by (mutually recursive) equations.

Behavior Descriptions

- Agent names can take parameters.
- Prefix in(x)
 - Handshake in which value is received at port in and becomes the value of variable x.
- Agent expression in(x).C'(x)
 - Perform handshake and proceed as described by C'.
- Agent expression $\overline{\operatorname{out}}(x).C$
 - Output the value of x at port $\overline{\text{out}}$ and proceed according to the definition of C.
- Scope of local variables:
 - *Input* prefix introduces variable whose scope is the agent expression C.
 - Formal parameter of defining equation introduces variable whose scope is the equation.

Another Example

• Bounded buffer $Buff_n(s)$

- $-\operatorname{Buff}_n\langle \rangle := \operatorname{in}(x).\operatorname{Buff}_n\langle x \rangle$
- $\operatorname{Buff}_n \langle v_1, \dots, v_n \rangle := \\ \overline{\operatorname{out}}(v_n).\operatorname{Buff}_n \langle v_1, \dots, v_{n-1} \rangle$
- $\begin{array}{l} \textit{Buff}_n \langle v_1, \dots, v_k \rangle := \\ \overline{\texttt{in}}(x).\textit{Buff}_n \langle x, v_1, \dots, v_k \rangle \\ + \overline{\texttt{out}}(v_k).\textit{Buff}_n \langle v_1, \dots, v_{k-1} \rangle (0 < k < n) \end{array}$

• Basic combinator '+'

- -P+Q behaves like P or like Q.
- When one performs its first action, other is discarded.
- If both alternatives are allowed, selection is nondeterministic.

• Combining forms

- Summation P + Q of two agents.
- Sequencing $\alpha . P$ of action α and agent P.

Process definitions may be parameterized.

Wolfgang Schreiner

Further Examples

- A vending machine:
 - Big chocolade costs 2p, small one costs 1p.
 - -V := 2p.big.collect.V
 - + 1p.little.collect.V

- A multiplier
 - $Twice := in(x).\overline{out}(2 * x).Twice.$
 - Output actions may take expressions.

A Larger Example: The Jobshop

• A simple production line:

- Two people (the *jobbers*).
- Two tools (hammer and mallet).
- Jobs arrive sequentially on a belt to be processed.
- Ports may be linked to multiple ports.
 - Jobbers compete for use of hammer.
 - Jobbers compete for use of job.
 - Source of non-determinism.
- Ports of belt are omitted from system.
 - in and $\overline{\text{out}}$ are external.
- Internal ports are not labelled:
 - Ports by which jobbers acquire and release tools.

The Tools

• Behaviors:

- Hammer := geth.Busyhammer Busyhammer := puth.Hammer
- Mallet := geth.Busymallet
 Busymallet := puth.Mallet
- Sort = set of labels
 - $-P:L\ldots$ agent P has sort L
 - Hammer: {geth, puth}
 Mallet: {getm, putm}
 Jobshop: {in, out}

The Jobbers

- Different kinds of jobs:
 - Easy jobs done with hands.
 - $-\ensuremath{\,\text{Hard}}$ jobs done with hammer.
 - Other jobs done with hammer or mallet.

• Behavior:

- Jobber := in(job).Start(job)
- Start(job) := if easy(job) then Finish(job)
 else if hard(job) then Uhammer(job)
 else Usetool(job)
- Usetool(job) := Uhammer(job)+Umallet(job)
- Uhammer(job) := $\overline{\texttt{geth}}.\overline{\texttt{puth}}.Finish(job)$
- Umallet(job) := <u>getm</u>.<u>putm</u>.Finish(job)
- Finish(job) := $\overline{\operatorname{out}}(\operatorname{done}(\operatorname{job}))$.Jobber

Composition of Agents

- Jobber-Hammer subsystem
 - Jobber | Hammer
 - Composition operator
 - Agents may proceed independently or interact through complementary ports.
 - Join complementary ports.
- Two jobbers sharing hammer:
 - Jobber | Hammer | Jobber
 - Composition is commutative and associative.

Further Compositon

- Internalisation of ports:
 - No further agents may be connected to ports:
 - Restriction operator $\$
 - \L internalizes all ports L.
 - (Jobber | Jobber | Hammer) \{geth, puth}
- Complete system:
 - Jobshop := (Jobber | Jobber | Hammer | Mallet)\L
 - $-L := \{\texttt{geth,puth,getm,putm}\}$

Reformulations

• Alternative formulation:

- ((Jobber | Jobber | Hammer)\{geth, puth}
 | Mallet)\{getm, putm}
- Algebra of combinators with certain laws of equivalence.

• Relabelling Operator

- $-P[l'_1/l_1,\ldots,l'_n/l_n]$
- $-f(\overline{l}) = \overline{f(l)}$

• Semaphore agent

- Sem := get.put.Sem
- Reformulation of tools
 - Hammer := Sem[geth/get, puth/put]
 - Mallet := Sem[getm/get, putm/put]

Equality of Agents

- Strongjobber only needs hands:
 - Strongjobber :=
 in(job).out(done(job)).Strongjobber

• Claim:

- Jobshop = Strongjobber | Strongjobber
- Specification of system Jobshop
- Proof of equality required.

In which sense are the processes equal?

The Core Calculus

• No value transmission between agents

- Just synchronization.

Agent expressions

- Agent constants and variables
- Prefix $\alpha.E$
- Summation ΣE_i
- Composition $E_1|E_2$
- Restriction $E \ L$
- Relabelling E[f]

• Names and co-names

- Set A of *names* (geth, ackin, ...)
- Set \underline{A} of *co-names* ($\overline{\text{geth}}$, $\overline{\text{ackin}}$, ...)
- Set of labels $L = A \cup \overline{A}$

Actions

- Completed (perfect) action au.
- $-Act = L \cup \{\tau\}$
- Transition $P \xrightarrow{l} Q$ with action l

- Hammer $\stackrel{\texttt{geth}}{\to}$ Busyhammer

The Transition Rules

• Act
$$\alpha.E \xrightarrow{\alpha} E$$

• Sum_j $\frac{E_j \xrightarrow{\alpha} E'_j}{\sum E_i \xrightarrow{\alpha} E'_j}$
• Com₁ $\frac{E \xrightarrow{\alpha} E'}{E|F \xrightarrow{\alpha} E'|F}$
• Com₂ $\frac{F \xrightarrow{\alpha} F'}{E|F \xrightarrow{\alpha} E|F'}$
• Com₃ $\frac{E \xrightarrow{l} E' F \xrightarrow{l} F'}{E|F \xrightarrow{\tau} E'|F'}$
• Res $\frac{E \xrightarrow{\alpha} E'}{E \setminus L \xrightarrow{\alpha} E' \setminus L}$ ($\alpha, \overline{\alpha} \text{ not in } L$)
• Rel $\frac{E \xrightarrow{\alpha} E'}{E[f] \xrightarrow{f(\alpha)} E'[f]}$
• Con $\frac{P \xrightarrow{\alpha} P'}{A \xrightarrow{\alpha} P'}$ ($A := P$)

The Value-Passing Calculus

• Values passed between agents

- Can be reduced to basic calculus.
- -C := in(x).C'(x) $C'(x) := \overline{out}(x).C$
- $-C := \Sigma_v \operatorname{in}_v C'_v$ $C'_v := \overline{\operatorname{out}}_v C \ (v \in V)$
- Families of ports and agents.

• The full language

- Prefixes a(x).E, $\overline{a}(e).E$, $\tau.E$
- Conditional if b then E

• Translation

$$-a(x).E \Rightarrow \Sigma_v.E\{v/x\}$$

$$-\overline{a}(e).E \Rightarrow \overline{a}_e.E$$

- $-\tau \cdot E \Rightarrow \tau \cdot E$
- if b then $E \Rightarrow (E, \text{ if } b \text{ and } 0, \text{ otherwise})$

Derivatives and Derivation Trees

• *Immediate derivative* of *E*

- Pair (α , E')
- $-E \xrightarrow{\alpha} E'$
- -E' is α -derivative of E

• Derivative of E

- Pair ($\alpha_1 \dots \alpha_n$, E')
- $-E \xrightarrow{\alpha_1} \ldots \xrightarrow{\alpha_n} E'$
- -E' is ($\alpha_1 \dots \alpha_n$ -)derivative of E
- Derivation tree of E

Examples of Derivation Trees

• Behavioural equivalence

Two agent expressions are *behaviourally equivalent* if they yield the same total derivation trees

Transitions

Wolfgang Schreiner

Transition Trees and Graphs

• Transition graph

 $-(A|B) \ c \text{ b-equivalent to } a.\tau.C$ $-C := a.\overline{b}.\tau.C + \overline{b}.a.\tau.C$

Behavior can be defined by + and . only!

Wolfgang Schreiner

Internal versus External Actions

• Action τ :

- Simultaneous action of both agents.
- Internal to composed agent.

• Internal actions should be ignored.

- Only external actions are visible.
- Two systems are *observationally equivalent* if they exhibit same pattern of external actions.
- $-P \xrightarrow{\tau} P_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} P_n$ o-equivalent to $P \xrightarrow{\tau} P_n$
- $-\,\alpha.\tau.P$ o-equivalent to $\alpha.P$
- Simpler variant of $(A|B) \backslash c$:
 - $-\left(A|B
 ight) \mathbf{\hat{c}}$ o-equivalent to a.D
 - $-D := a.\overline{b}.D + \overline{b}.a.D$

Equality of Agents

• Equality:

- Two agents P and Q should be considered equal if and only if no distinction can be detected by external agent interacting with them.

• Strong (behavioral) equivalence \sim :

- - au is treated like any other (observable) action.
- Too strong to be considered as equality.
- Weak (observation) equivalence \approx :
 - $-\,\tau$ cannot be observed by external agent.
 - Not a congruence relation, thus not suitable as equality.
- Observation *congruence* =:
 - Congruence relation, i.e. preserved by all contexts.
 - Suitable notion for process equality.

• Relations:

 $-P \sim Q$ implies P = Q implies $P \approx Q$

Observation congruence is the equality of the process algebra.

Languages of Agents

experimentally distinguished.

Strong Bisimulation

• Strong bisimulation

- Binary relation S over agents such that $(P,Q)\in\!S$ implies
- $\text{ If } P \xrightarrow{\alpha} P' \text{, then } Q \xrightarrow{\alpha} Q' \text{ with } (P',Q') \in S \text{ and vice versa.}$
- For every action α , every α -derivative of P is equivalent to some α -derivative of Q.

• Example

- Claim: $(A|B) \backslash c = C_1$
- True if S is a strong bisimulation: $S = \{ ((A|B) \setminus c, C_1), ((A'|B) \setminus c, C_3), ((A|B') \setminus c, C_0), ((A'|B') \setminus c, C_2) \}$
- Check derivatives of each of the eight agents.

Strong Equivalence

- Strong equivalence $P{\sim}Q$
 - $-P \sim Q$, if $(P,Q) \in S$ for some strong bisimulation S.
 - $-\sim = \cup \{S: S \text{ is a strong bisimulation}\}.$

• Corollaries:

- $-\sim$ is the largest strong bisimulation.
- $-\sim$ is an equivalence relation.
- Proposition:
 - $-P{\sim}Q$ iff, for all α ,
 - $\text{ If } P \xrightarrow{\alpha} P' \text{, then } Q \xrightarrow{\alpha} Q' \text{ with } (P',Q') \in S \text{ and vice versa.}$

• Strong equivalence is a congruence.

- Substitutive under all combinators and recursive definitions.

• Let
$$P_1 \sim P_2$$

 $-\alpha P_1 \sim \alpha P_2$
 $-P_1 + Q \sim P_2 + Q$
 $-P_1 | Q \sim P_2 | Q$
 $-P_1 \setminus L \sim P_2 \setminus L$
 $-P_1[f] \sim P_2[f]$

Observation Equivalence

- (Observation) equivalence:
 - - au action may be matched by zero or more au actions.
- Auxiliary definitions:
 - $-\hat{t}$ is the action sequence gained by deleting all occurences of τ from t.
 - $-E \xrightarrow{t} E'$, if $t = \alpha_1 \dots \alpha_n$ and $E \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_n} E'$.
 - $E \stackrel{t}{\Rightarrow} E' \text{ if } t = \alpha_1 \dots \alpha_n \text{ and} \\ E(\stackrel{\tau}{\rightarrow})^* \stackrel{\alpha_1}{\rightarrow} (\stackrel{\tau}{\rightarrow})^* \dots (\stackrel{\tau}{\rightarrow})^* \stackrel{\alpha_n}{\rightarrow} (\stackrel{\tau}{\rightarrow})^* E'.$
 - -E' is a *t*-descendant of E iff $E \stackrel{t}{\Rightarrow} E'$.
- Relationship
 - $-P \xrightarrow{t} P'$ implies $P \xrightarrow{t} P'$ implies $P \xrightarrow{\hat{t}} P'$
- (Weak) bisimulation
 - Binary relation S such that $(P,Q) \in S$ implies
 - if $P \xrightarrow{\alpha} P'$, then $Q \xrightarrow{\widehat{\alpha}} Q'$ with $(P', Q') \in S$ (and vice versa).
- Observation equivalence $P \approx Q$
 - $-P \approx Q$ if $(P,Q) \in S$ for some weak bisimulation S.
 - $-\approx = \cup \{S : S \text{ is a weak bisimulation}\}$

Examples

• Agents C_0 and D

- $\begin{array}{l} \mbox{ Bisimulation } S = \\ \{(C_0,D), (C_1,D_1), (C_2,D_2), (C_3,D)\} \end{array}$
- No strong bisimulation containing (C_3, D) since $C_3 \xrightarrow{\tau} C_0$ but there is no $D \xrightarrow{\tau} D'$.

\bullet Agents A and B

$$-A_{0} = a.A_{0} + b.A_{1} + \tau.A_{1}$$
$$A_{1} = a.A_{1} + \tau.A_{2}$$
$$A_{2} = b.A_{0}$$

$$-B_1 = a.B_1 + \tau.B_2$$
$$B_2 = b.B_1$$

- Bisimulation $S = \{ (A_0, B_1), (A_1, B_1), (A_2, B_2) \}$ (note that $B_1 \stackrel{b}{\Rightarrow} B_1!$)

Properties of Bisimulation

• Propositions:

- -pprox is the largest bisimulation.
- -pprox is an equivalence relation.
- $-P \approx \tau . P$
- \approx is *not* a congruence:
 - -pprox not preserved by summation.
 - $-a.0 + b.0 \approx a.0 + \tau.b.0$ does not hold!
 - Proof: if (P,Q) were in a bisimulation S, then, since $Q \xrightarrow{\tau} b.0$, we need (P', b.0) in S with $P \stackrel{\epsilon}{\Rightarrow} P'$. But the only P' is P itself but (P, b.0) can be not in S, since $P \stackrel{a}{\rightarrow} 0$, while b.0 has no a-descendant.

Equality not yet fully captured.

Observation Congruence

- P = Q (observation congruence)
 - If $P \xrightarrow{\alpha} P'$, then $Q \xrightarrow{\alpha} Q'$ with $P' \approx Q'$ (and vice versa).
 - Preserved under all process operators.
- Relationship to observation equivalence:
 - -P is *stable* if P has no au-derivative.
 - If $P \approx Q$ and both are stable, then P = Q.
 - If $P\approx Q$ then $\alpha.P=\alpha.Q$

Observation congruence is the equality of the process algebra.

Equational Laws

• Static laws

- Static combinators: composition, restriction, labelling.
- Action rules do not change graph structure.
- Algebra of flow graphs.

• Dynamic laws

- Dynamic combinators: prefix, summation, constants.
- Action rules change graph structure.
- Algebra of transition graphs.
- Expansion law
 - Relating static laws to dynamic laws.

Laws for equality reasoning on processes.

Static Laws

• Composition laws

- -P|Q = Q|P
- -P|(Q|R) = (P|Q)|R
- -P|0=P

• Restriction laws

- $-P \setminus L = P$, if $L(P) \cap (L \cup \overline{L}) = \emptyset$.
- $-P\backslash K\backslash L = P\backslash (K\cup L)$

- . . .

- . . .

• Relabelling laws

$$-P[Id] = P$$
$$-P[f][f'] = P[f' \circ f]$$

Dynamic Laws

• Monoid laws

$$-P + Q = Q + P$$
$$-P + (Q + R) = (P + Q) + R$$
$$-P + P = P$$
$$-P + 0 = P$$

•
$$au$$
 laws

Non-Laws

– Action sequence a, c may yield deadlock for right side.

of c action.

The Expansion Law

• The Expansion Law

$$-\operatorname{Let} P \equiv (P_{1}[f_{1}]| \dots |P_{n}[f_{n}]) \setminus L$$

$$-P = \sum \{f_{1}(\alpha) . (P_{1}[f_{1}]| \dots |P'_{i}[f_{i}]| \dots |P_{n}[f_{n}]) \setminus L;$$

$$P_{i} \xrightarrow{\alpha} P'_{i}, f_{i}(\alpha) \text{ not in } L \cup \overline{L} \}$$

$$+ \sum \{\tau . (P_{1}[f_{1}]| \dots |P'_{i}[f_{i}]| \dots |P'_{j}[f_{j}]| \dots |P_{n}[f_{n}]) \setminus L;$$

$$P_{i} \xrightarrow{l_{1}} P'_{i}, P_{j} \xrightarrow{l_{2}} P'_{j}, f_{i}(l_{1}) = \overline{f_{i}(l_{2})}, i < j \}$$

• Corollary

$$-\operatorname{Let} P \equiv (P_1 | \dots | P_n) \backslash L$$

$$-P = \Sigma \{ \alpha. (P_1 | \dots | P'_i | \dots | P_n) \backslash L :$$

$$P_i \xrightarrow{\alpha} P'_i, \alpha \text{ not in } L \cup L' \}$$

$$+ \Sigma \{ \tau. (P_1 | \dots | P'_i | \dots | P'_j | \dots P_n) \backslash L :$$

$$P_i \xrightarrow{l} P'_i, P_j \xrightarrow{\overline{l}} P'_j, i < j \}$$

• Example

$$-P_{1} = a.P_{1}' + b.P_{1}''$$

$$-P_{2} = \overline{a}.P_{2}' + c.P_{2}''$$

$$-(P_{1}|P_{2}) \setminus a = b.(P_{1}''|P_{2}) \setminus a + c.(P_{1}|P_{2}'') \setminus a + \tau.(P_{1}'|P_{2}') \setminus a$$

Summary

- Algebraic approach to system modeling.
 - Main interest: how do processes interact with each other?
 - Processes/specifications are described by terms.
 - Calculus describes process reactions by term manipulation.

• Central notions:

- Strong bisimilarity: equivalence even for internal actions.
- Observation equivalence: equivalence only for observable actions.
- Observation congruence: observation equivalence preserved under all substitutions.

An implementation must "equal" (be observationally congruent to) its specification.