CCS

The Calculus of Communicating Systems

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

CCS

The Calculus of Communicating Sys-
tems (CCS)

e Description of process networks
— Static communication topologies.
e History sketch

— Robin Milner, 1980.
— CCS: Calculus of Communicating Systems.
— Various revisions and elaborations.

— Later extended to mobile processes (m-calculus).
e Algebraic approach

— Concurrent system modeled by term.
— Theory of term manipulations.

— Externally visible behavior preserved.
e Observation equivalence

— External communications follow same pattern.

— Internal behavior may differ.

Modeling of communication and concurrency.

Wolfgang Schreiner 1

CCS

A Simple Example

I N out

o Agent C

— Dynamic system is network of agents.
— Each agent has own identity persisting over time.

— Agent performs actions (external communications or in-
ternal actions).

— Behavior of a system is its (observable) capability of com-
munication.

e Agent has labeled ports.
— Input port in.
— Output port out.
e Behavior of ("
— C := in(x).C'(x)
— (C'(x) := out(x).C

Process behaviors are defined by (mutually re-
cursive) equations.

Wolfgang Schreiner 2

CCS

Behavior Descriptions

e Agent names can take parameters.
e Prefix in(x)

— Handshake in which value is received at port in and be-
comes the value of variable z.

e Agent expression in(z).C’(z)
— Perform handshake and proceed as described by C".
e Agent expression out(z).C

— Output the value of x at port out and proceed according
to the definition of C'.

e Scope of local variables:
— Input prefix introduces variable whose scope is the agent
expression C'.

— Formal parameter of defining equation introduces variable
whose scope is the equation.

Wolfgang Schreiner 3

CCS

Another Example

I N out

e Bounded buffer Buff,(s)

— Buff,, () := in(x).Buff, (z)
— Buff, (vi,...,v,) ==
out(v,).Buff, (vi,...,Up_1)

— Buff, (vy,...,v;) =
in(x).Buff, {x,vi, ..., vp)
+ out(vy).Buff, (vi,...,v:_1)(0 < k < n)

e Basic combinator '+’
— P + () behaves like P or like ().

— When one performs its first action, other is discarded.
— |If both alternatives are allowed, selection is non-
deterministic.

e Combining forms

— Summation P + () of two agents.

— Sequencing «.P of action « and agent P.

Process definitions may be parameterized.

Wolfgang Schreiner

CCS

Further Examples

big little
O O

e A vending machine:

— Big chocolade costs 2p, small one costs 1p.

—V = 2p.big.collect.V
+ 1p.little.collect.V

I n out

e A multiplier
— Twice := in(z).out(2 * x). Twice.

— Output actions may take expressions.

Wolfgang Schreiner

CCS

A Larger Example: The Jobshop

e A simple production line:
— Two people (the jobbers).

— Two tools (hammer and mallet).

— Jobs arrive sequentially on a belt to be processed.
e Ports may be linked to multiple ports.

— Jobbers compete for use of hammer.
— Jobbers compete for use of job.

— Source of non-determinism.
e Ports of belt are omitted from system.
— in and out are external.

e Internal ports are not labelled:

— Ports by which jobbers acquire and release tools.

Wolfgang Schreiner

CCS

The Tools

get h

put h

e Behaviors:

get m

put m

— Hammer = geth.Busyhammer

Busyhammer := puth.Hammer

— Mallet := geth.Busymallet
Busymallet := puth.Mallet

e Sort = set of labels

— P : L ...agent P has sort L

— Hammer: {geth, puth}

Mallet: {getm, putm}
Jobshop: {in, out}

Wolfgang Schreiner

CCS

The Jobbers

e Different kinds of jobs:

— Easy jobs done with hands.
— Hard jobs done with hammer.
— Other jobs done with hammer or mallet.
e Behavior:
— Jobber := in(job).Start(job)
— Start(job) := if easy(job) then Finish(job)

else if hard(job) then Uhammer(job)
else Usetool(job)

— Usetool(job) := Uhammer(job)+Umallet(job)
— Uhammer(job) := geth.puth.Finish(job)

— Umallet(job) := getm.putm.Finish(job)

— Finish(job) := out(done(job)).Jobber

Wolfgang Schreiner

CCS

Composition of Agents

e Jobber-Hammer subsystem

— Jobber | Hammer
— Composition operator |

— Agents may procced independently or interact through
complementary ports.

— Join complementary ports.
e Two jobbers sharing hammer:
— Jobber | Hammer | Jobber

— Composition is commutative and associative.

Wolfgang Schreiner 9

CCS

Further Compositon

e Internalisation of ports:

— No further agents may be connected to ports:
— Restriction operator \

— \L internalizes all ports L.

— (Jobber | Jobber | Hammer)\{geth,puth}

e Complete system:

— Jobshop := (Jobber | Jobber | Hammer | Mallet)\ L
— L := {geth,puth,getm,putm}

Wolfgang Schreiner

10

CCS

Reformulations

e Alternative formulation:

— ((Jobber | Jobber | Hammer)\{geth, puth}
| Mallet)\{getm, putm}

— Algebra of combinators with certain laws of equivalence.

e Relabelling Operator

— P[ly/l,. 0/
get
put

- (1) = f()
e Semaphore agent
— Sem := get.put.Sem
e Reformulation of tools

— Hammer := Sem[geth/get, puth/put]
— Mallet := Sem|getm/get, putm/put]

Wolfgang Schreiner

11

CCS

Equality of Agents

e Strongjobber only needs hands:

— Strongjobber =
in(job).out(done(job)).Strongjobber

e Claim:

— Jobshop = Strongjobber | Strongjobber
— Specification of system Jobshop
— Proof of equality required.

In which sense are the processes equal?

Wolfgang Schreiner

12

CCS

The Core Calculus

e No value transmission between agents
— Just synchronization.
e Agent expressions

— Agent constants and variables
— Prefix a. E

— Summation > F;

— Composition F1|F;

— Restriction E\L

— Relabelling E|f]

e Names and co-names

— Set A of names (geth, ackin, ...)

— Set A of co-names (geth, ackin, ...)
—Setof labels L =AU A

e Actions

— Completed (perfect) action 7.
— Act = L U {7}

e [ransition P 4 () with action [

eth
— Hammer 85 Busyhammer

Wolfgang Schreiner

CCS

The Transition Rules

e Act aEYE

SN n]
«Sum, ZEJ,
Y b, = Ej
c E % g
® Lom
" BEIF S E|F
c F% pr
® Lom
* E|IF & E|F
el plp
) Com3 =
E|F L E'|F
« /
® Res b z b (o, @ not in L)
E\L % E\L
E Y g
o Rel f(a
17 By
p Y p
— (A=P
e Con 1 ()

Wolfgang Schreiner 14

CCS

The Value-Passing Calculus

e Values passed between agents

— Can be reduced to basic calculus.
— C := in(z).C'(x)
C'(x) := out(x).C
- C =%, in,.C}
C! :=out,.C (veV)
— Families of ports and agents.

e The full language

— Prefixes a(x).F, a(e).E, T.F
— Conditional if b then E
e [ranslation
—a(x).E = 2, E{v/x}
—a(e).E = a..F
—-7.5=T1FE
—if bthen £ = (F, if b and 0, otherwise)

Wolfgang Schreiner

15

CCS

Derivatives and Derivation Trees

e Immediate derivative of E
— Pair (o, F')
~-ES
— E' is a-derivative of E

e Derivative of E
— Pair (a1...ap, ')
i S
— E'is (ay. .. a,-)derivative of E

e Derivation tree of I

I

/o
/g N2

Wolfgang Schreiner

16

CCS

Examples of Derivation Trees

e Partial derivation tree

(E|F)\a
AT
((a.FE 4+ b.0)| a.F)\a
b
(0| a.F)\a
ea. X +b0Y
X
a
a.X +0.Y
WO
Y

e Behavioural equivalence

— Two agent expressions are behaviourally equivalent if they
yield the same total derivation trees

Wolfgang Schreiner 17

CCS

Transitions

e Agents A and B

afnpc cqB

—A:=aA, A :=¢cA
—B:=c¢c.B', B :=0b.B

e Composite Agent A|B

~ A% Aallows A|B % A'|B
— A" 5 Aallows A'|B S A|B
— A 5 Aand BS B allows A|B L A|B’

e Restriction (A|B)\c

— P % Pallows P\L & P\L
(if o, @ not in L)

Wolfgang Schreiner

18

CCS

Transition Trees and Graphs

e Transition (derivation) tree

(A|B)\c¢
la
(A'|B)\e
7
(A[B)\c
b &

(A[B)\c (A B")\c
la 10
(A'|B)\c (A'[B)\c

e [ransition graph
_ (AlB)\c
E/ V\
— (A|B)\c (A'[B)\c
a\x)/6
(A'|B)\c

— (A|B)\c b-equivalent to a.7.C
—C :=ab71.C + bar.C

Behavior can be defined by + and . only!

Wolfgang Schreiner

19

CCS

Internal versus External Actions

e Action T:

— Simultaneous action of both agents.

— Internal to composed agent.
e Internal actions should be ignored.

— Only external actions are visible.

— Two systems are observationally equivalent if they exhibit
same pattern of external actions.

-prL P 5.5 P, o-equivalent to P R P,

— a.7.P o-equivalent to a. P

e Simpler variant of (A|B)\c:

— (A|B)\c¢ o-equivalent to a.D
— D :=ab.D + b.a.D

Wolfgang Schreiner 20

CCS

Equality of Agents

e Equality:

— Two agents P and () should be considered equal if and
only if no distinction can be detected by external agent
interacting with them.

e Strong (behavioral) equivalence ~:

— 7T is treated like any other (observable) action.

— Too strong to be considered as equality.
e Weak (observation) equivalence ~:

— 7 cannot be observed by external agent.

— Not a congruence relation, thus not suitable as equality.
e Observation congruence =:

— Congruence relation, i.e. preserved by all contexts.

— Suitable notion for process equality.
e Relations:
— P~(Q) implies P=() implies P~()

Observation congruence is the equality of the
process algebra.

Wolfgang Schreiner 21

CCS

Languages of Agents

e Example agents A and B

—A=a.(b.0+cdA)
— B =a.b0+a.cd.B

X

a a
A—» A1l —» A2 B—» B1 —» B2
\ X\
c
A3 B1' —» B3
d | d |

e “Language understood” by A and B
— (a.c.d)*.a.b.0

— A and B seem equivalent.
e Ports a, b, ¢, d.

— Initially only a is “unlocked”.
— Observer “presses button” a.
—1In A, b and ¢ are “unlocked”.
— In B, sometimes b, sometimes ¢ is “unlocked” .

— A and B can be experimentally distinguished!

Even agents with the same language can be

experimentally distinguished.

Wolfgang Schreiner

22

CCS

Strong Bisimulation

e Strong bisimulation

— Binary relation S over agents such that (P, Q) €5 implies
—f P& P, then Q & @ with (P',Q') € S and vice
versa.

— For every action «, every a-derivative of P is equivalent
to some a-derivative of ().

e Example

DD
C3
— Claim: (A|B)\c = C}
— True if S is a strong bisimulation:
S ={ (AIB)\¢, Ch), ((A'|B)\¢, Cs),
((A[B)\e, Co), ((A]B)\e, Co) }

— Check derivatives of each of the eight agents.

Wolfgang Schreiner 23

CCS

Strong Equivalence

e Strong equivalence P~()
— P~Q, if (P,Q) € S for some strong bisimulation S.
— ~ = U{S: S is a strong bisimulation}.
e Corollaries:
— ~ is the largest strong bisimulation.
— ~ is an equivalence relation.
e Proposition:

— P~Q) iff, for all o,
—f P& P, then Q & @ with (P',Q') € S and vice
Versa.

e Strong equivalence is a congruence.

— Substitutive under all combinators and recursive defini-
tions.

olet P, ~ P
—a.P ~ a. P
-P+Q~Ph+Q
- P|Q ~ B|Q
— PI\L ~ P\L
— Pi[f] ~ Py|f]

Wolfgang Schreiner 24

CCS

Observation Equivalence

e (Observation) equivalence:
— 7 action may be matched by zero or more 7 actions.
e Auxiliary definitions:

— 1 is the action sequence gained by deleting all occurences
of 7 from .

~rp4 E' ift=a;...q, and g4 Qg
—Eé Eift=ay...q, and
BBy (D3 LyE
— FE' is a t-descendant of E iff &/ :i> E'
e Relationship
—ptLp implies P L pr implies P :f> P’
o (Weak) bisimulation
— Binary relation S such that (P, Q) € S implies
—if P& P, then Q qQ Q' with (P, Q") € S (and vice

versa).
e Observation equivalence P~()

— P=Q if (P,Q) € S for some weak bisimulation S.
~ = U{S : S is a weak bisimulation}

Wolfgang Schreiner 25

CCS

Examples
~co =
N I—_' D ‘T_
—=C1 c2 T a b a |b
C3 D1 D2

e Agents Cy and D

— Bisimulation S =
{(Cy, D), (Cy, Dy),(Cy, Dy), (Cs,D)}

— No strong bisimulation containing (C, D) since Cy = C
but there is no D 5 D'

e Agents A and B

— Ay =a.Ag+b. A+ 7. A
Al = CL.Al + T.AQ

As = b. Ay
— By =a.Bi+ 7.5y
By = b.B;

— Bisimulation S = { (Ao, B1), (41, B1), (A2, Bs) } (note
that B, 4 By!)

Wolfgang Schreiner 26

CCS

Properties of Bisimulation

e Propositions:

— & is the largest bisimulation.
— &2 is an equivalence relation.
—P~71.P

® 2 IS not a congruence:

— =& not preserved by summation.
—a.04 0.0 = a.047.b.0 does not hold!

— Proof: if (P,Q)) were in a bisimulation S, then, since @
L5 5.0, we need (P, b.0) in S with P < P’ But the only

P'is P itself but (P,b.0) can be not in S, since P % 0,
while 0.0 has no a-descendant.

Equality not yet fully captured.

Wolfgang Schreiner 27

CCS

Observation Congruence

e P = () (observation congruence)
—1f P& P, then Q £ Q' with P/ = Q' (and vice versa).
— Preserved under all process operators.

e Relationship to observation equivalence:

— P is stable if P has no 7-derivative.
— If P = () and both are stable, then P = ().
— It P =~ @ then a.P = a.()

Observation congruence is the equality of the
process algebra.

Wolfgang Schreiner 28

CCS

Equational Laws

e Static laws

— Static combinators: composition, restriction, labelling.

— Action rules do not change graph structure.

— Algebra of flow graphs.
e Dynamic laws

— Dynamic combinators: prefix, summation, constants.
— Action rules change graph structure.

— Algebra of transition graphs.
e Expansion law

— Relating static laws to dynamic laws.

Laws for equality reasoning on processes.

Wolfgang Schreiner

29

CCS

Static Laws

e Composition laws

- PlQ=0Q|P
- Pl(QIR) = (P|Q)|R
~Pl0=P

e Restriction laws

~P\L=P,if L(P)N(LU L) =0.

— PAK\L = P\(K U L)

e Relabelling laws
— P[ld] = P
= P[f][f'] = P[f" o f]

Wolfgang Schreiner

30

CCS

Dynamic Laws

e Monoid laws

-P+Q=Q+P
~-P+(Q+R)=(P+Q)+R
—-P+P=P
—P+0=P

o 7 laws
—a.7.P =a.P
- P+717.P=1P

—a.(P+7.0Q)+a.Q =a.(P+71.0Q)

Wolfgang Schreiner

CCS

Non-Laws

oT.P =P
—A=a.A+71b.A
— A =a A +bA

— A may switch to state in which only b is possible.

— A’ always allows a or b.

ea.(P+Q)=aP+a@
—a.(b.P+c.Q)=a.bP+a.cQ
— b.P is a-derivative of right side, not capable of ¢ action.

— a-derivative of left side is capable of ¢ action!

— Action sequence a, ¢ may yield deadlock for right side.

Wolfgang Schreiner

CCS

The Expansion Law

e The Expansion Law
—Let P = (A[fill... |Palfu\L

— P =x{fil).(BPlfill ... [E/[fi] - - - [Pal fa])\L:
P& P fi(a) notin LUL}
—I‘Z{T(1
P, L\ P/, P; L P, fi(ly) = fi(ly),i < 5}

e Corollary

—Let P= (P...|P)\L

—P=x{a.(P]...|F|...[P)\L :
P& P/ anotin LUL’}
Pyl BB POAL
P,

lP'PLP'zq}

e Example

— P =aP +b.P!
—P,=a.P,+c.P

— (P|P)\a = b.(P]'|P2)\a + c.(P|PYy)\a + 7.(P]| Py)\a

Al BN AR - Bl fa AL

Wolfgang Schreiner

33

CCS

Summary

e Algebraic approach to system modeling.

— Main interest: how do processes interact with each other?
— Processes/specifications are described by terms.

— Calculus describes process reactions by term manipulation.
e Central notions:

— Strong bisimilarity: equivalence even for internal actions.

— Observation equivalence: equivalence only for observable
actions.

— Observation congruence: observation equivalence pre-
served under all substitutions.

An implementation must ‘equal” (be obser-
vationally congruent to) its specification.

Wolfgang Schreiner 34

