## Specifying and Verifying System Properties

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at



- Starting from an initial state $s_{0}$, the system runs evolve.
- Consider the reachability graph as an infinite computation tree.
- Different tree nodes may denote occurrences of the same state.
- Each occurrence of a state has a unique predecessor in the tree
- Every path in this tree is infinite.
- Every finite run $s_{0} \rightarrow \ldots \rightarrow s_{n}$ is extended to an infinite run $s_{0} \rightarrow \ldots \rightarrow s_{n} \rightarrow s_{n} \rightarrow s_{n} \rightarrow \ldots$
- Or simply consider the graph as a set of system runs.
- Same state may occur multiple times (in one or in different runs).

Temporal logic describes such trees respectively sets of system runs.

## Computation Trees versus System Runs



1. The Basics of Temporal Logic
2. Specifying with Linear Time Logic
3. Verifying Safety Properties by Computer-Supported Proving


Figure 3.1
Computation trees.

## State Formula

Temporal logic is based on classical logic.

- A state formula $F$ is evaluated on a state $s$.
- Any predicate logic formula is a state formula: $p(x), \neg F, F_{0} \wedge F_{1}, F_{0} \vee F_{1}, F_{0} \Rightarrow F_{1}, F_{0} \Leftrightarrow F_{1}, \forall x: F, \exists x: F$
- In propositional temporal logic only propositional logic formulas are state formulas (no quantification):
$p, \neg F, F_{0} \wedge F_{1}, F_{0} \vee F_{1}, F_{0} \Rightarrow F_{1}, F_{0} \Leftrightarrow F_{1}$.
- Semantics: $s \models F$ (" $F$ holds in state $s$ ").
- Example: semantics of conjunction.
- $\left(s \models F_{0} \wedge F_{1}\right): \Leftrightarrow\left(s \models F_{0}\right) \wedge\left(s \models F_{1}\right)$.
- " $F_{0} \wedge F_{1}$ holds in $s$ if and only if $F_{0}$ holds in $s$ and $F_{1}$ holds in $s$ ".

Classical logic reasoning on individual states.

We use temporal logic to specify a system property $F$.

- Core question: $S \models F$ (" $F$ holds in system $S$ ").
- System $S=\langle I, R\rangle$, temporal logic formula $F$.
- Branching time logic:
- $S \vDash F: \Leftrightarrow S, s_{0} \models F$, for every initial state $s_{0}$ of $S$.
- Property $F$ must be evaluated on every pair of system $S$ and initial state $s_{0}$.
- Given a computation tree with root $s_{0}, F$ is evaluated on that tree.

CTL formulas are evaluated on computation trees.

Extension of classical logic to reason about multiple states.

- Temporal logic is an instance of modal logic.
- Logic of "multiple worlds (situations)" that are in some way related.
- Relationship may e.g. be a temporal one.
- Amir Pnueli, 1977: temporal logic is suited to system specifications.
- Many variants, two fundamental classes.
- Branching Time Logic
- Semantics defined over computation trees.

At each moment, there are multiple possible futures.

- Prominent variant: CTL.

Computation tree logic; a propositional branching time logic.

- Linear Time Logic
- Semantics defined over sets of system runs.

At each moment, there is only one possible future.

- Prominent variant: PLTL.

A propositional linear time logic.

## State Formulas



We have additional state formulas.

- A state formula $F$ is evaluated on state $s$ of System $S$.
- Every (classical) state formula $f$ is such a state formula.
- Let $P$ denote a path formula (later).
- Evaluated on a path (state sequence) $p=p_{0} \rightarrow p_{1} \rightarrow p_{2} \rightarrow \ldots$
$R\left(p_{i}, p_{i+1}\right)$ for every $i ; p_{0}$ need not be an initial state.
- Then the following are state formulas:

A $P$ ("in every path $P^{\prime \prime}$ ),
E $P$ ("in some path $P^{\prime \prime}$ ).

- Path quantifiers: A, E.
- Semantics: $S, s \neq F$ (" $F$ holds in state $s$ of system $S$ ").

$$
\begin{aligned}
& S, s \neq f: \Leftrightarrow s \models f . \\
& S, s \models \mathbf{A} P: \Leftrightarrow S, p \models P, \text { for every path } p \text { of } S \text { with } p_{0}=s . \\
& S, s \models \mathbf{E} P: \Leftrightarrow S, p \models P \text {, for some path } p \text { of } S \text { with } p_{0}=s .
\end{aligned}
$$

We have a class of formulas that are not evaluated over individual states.

- A path formula $P$ is evaluated on a path $p$ of system $S$.
- Let $F$ and $G$ denote state formulas.
- Then the following are path formulas:
$\mathbf{X} F($ "next time $F$ " $)$,
$\mathbf{G} F($ "always $F$ " $)$,
$\mathbf{F} F$ ("eventually $F$ "),
$F$ U $G($ " $F$ until $G$ ").
- Temporal operators: $\mathbf{X}, \mathbf{G}, \mathbf{F}, \mathbf{U}$.
- Semantics: $S, p \models P$ (" $P$ holds in path $p$ of system $\left.S^{\prime \prime}\right)$.

$$
\begin{aligned}
& S, p \models \mathbf{X} F: \Leftrightarrow S, p_{1} \models F . \\
& S, p \models \mathbf{G} F: \Leftrightarrow \forall i \in \mathbb{N}: S, p_{i} \models F . \\
& S, p \models \mathbf{F} F: \Leftrightarrow \exists i \in \mathbb{N}: S, p_{i} \models F . \\
& S, p \models F \mathbf{U} G: \Leftrightarrow \exists i \in \mathbb{N}: S, p_{i} \models G \wedge \forall j \in \mathbb{N}_{i}: S, p_{j} \models F .
\end{aligned}
$$



Edmund Clarke et al: "Model Checking", 1999.

## Path Formulas



## Linear Time Logic (LTL)

We use temporal logic to specify a system property $P$.

- Core question: $S \models P$ (" $P$ holds in system $S$ ").
- System $S=\langle I, R\rangle$, temporal logic formula $P$.
- Linear time logic:

■ $S \models P: \Leftrightarrow r \vDash P$, for every run $r$ of $S$

- Property $P$ must be evaluated on every run $r$ of $S$.
- Given a computation tree with root $s_{0}, P$ is evaluated on every path of that tree originating in $s_{0}$.
- If $P$ holds for every path, $P$ holds on $S$.

LTL formulas are evaluated on system runs.

## Formulas

No path quantifiers; all formulas are path formulas.

- Every formula is evaluated on a path $p$.
- Also every state formula $f$ of classical logic (see below).
- Let $F$ and $G$ denote formulas.
- Then also the following are formulas:

X $F$ ("next time $F$ "), often written $\bigcirc F$,
G F ("always $F$ "), often written $\square F$,
F $F$ ("eventually $F$ "), often written $\diamond F$,
$F$ U G ("F until G").

- Semantics: $p \models P$ (" $P$ holds in path $p$ ").
$\square p^{i}:=\left\langle p_{i}, p_{i+1}, \ldots\right\rangle$.
$p \models f: \Leftrightarrow p_{0} \models f$.
$p \models \mathbf{X} F: \Leftrightarrow p^{1} \models F$.
$p \models \mathbf{G} F: \Leftrightarrow \forall i \in \mathbb{N}: p^{i} \models F$.
$p \models \mathbf{F} F: \Leftrightarrow \exists i \in \mathbb{N}: p^{i} \models F$.
$p \models F \mathbf{U} G: \Leftrightarrow \exists i \in \mathbb{N}: p^{i} \models G \wedge \forall j \in \mathbb{N}_{i}: p^{j} \models F$.

We use temporal logic to specify a system property $P$.

- Core question: $S \models P$ (" $P$ holds in system $S$ ").
- System $S=\langle I, R\rangle$, temporal logic formula $P$.
- Branching time logic:

■ $S \vDash P: \Leftrightarrow S, s_{0} \models P$, for every initial state $s_{0}$ of $S$.

- Property $P$ must be evaluated on every pair $\left(S, s_{0}\right)$ of system $S$ and initial state $s_{0}$.
- Given a computation tree with root $s_{0}, P$ is evaluated on that tree.
- Linear time logic:
- $S \models P: \Leftrightarrow r \vDash P$, for every run $r$ of $s$.
- Property $P$ must be evaluated on every run $r$ of $S$.
- Given a computation tree with root $s_{0}, P$ is evaluated on every path of that tree originating in $s_{0}$.
- If $P$ holds for every path, $P$ holds on $S$.


## Branching versus Linear Time Logic

Is one temporal logic variant more expressive than the other one?

- CTL formula: $\mathbf{A G}(E F F)$.
- "In every run, it is at any time still possible that later $F$ will hold".
- Property cannot be expressed by any LTL logic formula.
- LTL formula: $\diamond \square F$ (i.e. FG $F$ ).
- "In every run, there is a moment from which on $F$ holds forever."
- Naive translation AFG $F$ is not a CTL formula.
- G $F$ is a path formula, but $\mathbf{F}$ expects a state formula!
- Translation AFAG $F$ expresses a stronger property (see next page).
- Property cannot be expressed by any CTL formula.

None of the two variants is strictly more expressive than the other one; no variant can express every system property.

Fig. 48, Expersiveness of CTL* CTLT, CTL and ITL

Thomas Kropf: "Introduction to Formal Hardware Verification", 1999. http://www.risc.jku.at

1. The Basics of Temporal Logic

## 2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

## Branching versus Linear Time Logic

Proof that AFAG $F(C T L)$ is different from $\diamond \square F(L T L)$.


Wolfgang Schreiner

## Linear Time Logic

Why using linear time logic (LTL) for system specifications?

- LTL has many advantages:
- LTL formulas are easier to understand.
- Reasoning about computation paths, not computation trees.
- No explicit path quantifiers used.
- LTL can express most interesting system properties.
- Invariance, guarantee, response, ... (see later).
- LTL can express fairness constraints (see later).
- CTL cannot do this.
- But CTL can express that a state is reachable (which LTL cannot).
- LTL has also some disadvantages:
- LTL is strictly less expressive than other specification languages.
- CTL* or $\mu$-calculus.
- Asymptotic complexity of model checking is higher.
- LTL: exponential in size of formula; CTL: linear in size of formula
- In practice the number of states dominates the checking time.


## Frequently Used LTL Patterns

In practice, most temporal formulas are instances of particular patterns.

| Pattern | Pronounced | Name |
| :--- | :--- | :--- |
| $\square F$ | always $F$ | invariance |
| $\diamond F$ | eventually $F$ | guarantee |
| $\square \diamond F$ | $F$ holds infinitely often | recurrence |
| $\diamond \square F$ | eventually $F$ holds permanently | stability |
| $\square(F \Rightarrow \diamond G)$ | always, if $F$ holds, then response <br>  eventually $G$ holds |  |
| $\square(F \Rightarrow(G \cup H))$ | always, if $F$ holds, then  <br> $G$ holds until $H$ holds precedence |  |

Typically, there are at most two levels of nesting of temporal operators.


If event $a$ occurs, then $b$ must occur before $c$ can occur (a run $., a,(\neg b)^{*}, c, \ldots$ is illegal).

- First idea (wrong)

$$
a \Rightarrow \ldots
$$

- Every run $d, \ldots$ becomes legal.
$\square$ Next idea (correct)

$$
\square(a \Rightarrow \ldots)
$$

- First attempt (wrong)

$$
\square(a \Rightarrow(b \mathbf{U} c))
$$

- Run $a, b, \neg b, c, \ldots$ is illegal.
- Second attempt (better)

$$
\square(a \Rightarrow(\neg c \mathbf{U} b))
$$

- Run $a, \neg c, \neg c, \neg c, \ldots$ is illegal.
- Third attempt (correct)

$$
\square(a \Rightarrow((\square \neg c) \vee(\neg c \mathbf{U} b)))
$$

Specifier has to think in terms of allowed/prohibited sequences.
$\square$ Mutual exclusion: $\square \neg\left(p c_{1}=C \wedge p c_{2}=C\right)$.

- Alternatively: $\neg \diamond\left(p c_{1}=C \wedge p c_{2}=C\right)$.
- Never both components are simultaneously in the critical region.
- No starvation: $\forall i: \square\left(p c_{i}=W \Rightarrow \diamond p c_{i}=R\right)$.
- Always, if component $i$ waits for a response, it eventually receives it.

■ No deadlock: $\square \neg \forall i: p c_{i}=W$

- Never all components are simultaneously in a wait state $W$.
- Precedence: $\forall i: \square\left(p c_{i} \neq C \Rightarrow\left(p c_{i} \neq C \mathbf{U}\right.\right.$ lock $\left.\left.=i\right)\right)$.
- Always, if component $i$ is out of the critical region, it stays out until it receives the shared lock variable (which it eventually does).
- Partial correctness: $\square(p c=L \Rightarrow C)$.
- Always if the program reaches line $L$, the condition $C$ holds.
- Termination: $\forall i: \diamond\left(p c_{i}=T\right)$.
- Every component eventually terminates.

Wolfgang Schreiner

## Temporal Rules

Temporal operators obey a number of fairly intuitive rules.

- Extraction laws:
$\square \square F \Leftrightarrow F \wedge \circ \square F$
- $\diamond F \Leftrightarrow F \vee O \diamond F$.
- $F \mathbf{U} G \Leftrightarrow G \vee(F \wedge \bigcirc(F \mathbf{U} G))$
- Negation laws:
- $\neg \square F \Leftrightarrow \diamond \neg F$.
- $\neg \diamond F \Leftrightarrow \square \neg F$.
$\square \neg(F \mathbf{U} G) \Leftrightarrow((\neg G) \mathbf{U}(\neg F \wedge \neg G)) \vee \neg \diamond G$.
- Distributivity laws:
$\square \square(F \wedge G) \Leftrightarrow(\square F) \wedge(\square G)$.
$-\diamond(F \vee G) \Leftrightarrow(\diamond F) \vee(\diamond G)$.
- $(F \wedge G) \mathbf{U} H \Leftrightarrow(F \mathbf{U} H) \wedge(G \mathbf{U} H)$
- $F \mathbf{U}(G \vee H) \Leftrightarrow(F \mathbf{U} G) \vee(F \mathbf{U} H)$.
$\square \diamond(F \vee G) \Leftrightarrow(\square \diamond F) \vee(\square \diamond G)$.
$■ \diamond \square(F \wedge G) \Leftrightarrow(\diamond \square F) \wedge(\diamond \square G)$.


## Classes of System Properties

There exists two important classes of system properties.

- Safety Properties:
- A safety property is a property such that, if it is violated by a run, it
is already violated by some finite prefix of the run.
- This finite prefix cannot be extended in any way to a complete run satisfying the property.
- Example: $\square F$ (with state property $F$ ).
- The violating run $F \rightarrow F \rightarrow \neg F \rightarrow \ldots$ has the prefix $F \rightarrow F \rightarrow \neg F$ that cannot be extended in any way to a run satisfying $\square F$.
- Liveness Properties:
- A liveness property is a property such that every finite prefix can be extended to a complete run satisfying this property.
- Only a complete run itself can violate that property
- Example: $\diamond F$ (with state property $F$ ).
- Any finite prefix $p$ can be extended to a run $p \rightarrow F \rightarrow \ldots$ which satisfies $\diamond F$.

The real importance of the distinction is stated by the following theorem.

- Theorem:

Every system property $P$ is a conjunction $S \wedge L$ of some safety property $S$ and some liveness property $L$.

- If $L$ is "true", then $P$ itself is a safety property.
- If $S$ is "true", then $P$ itself is a liveness property.
- Consequence:
- Assume we can decompose $P$ into appropriate $S$ and $L$.
- For verifying $M \models P$, it then suffices to verify:
- Safety: $M \models S$.
- Liveness: $M \models L$.
- Different strategies for verifying safety and liveness properties.

For verification, it is important to decompose a system property in its "safety part" and its "liveness part".

Not every system property is itself a safety property or a liveness property.

- Example: $P: \Leftrightarrow(\square A) \wedge(\diamond B)$ (with state properties $A$ and $B$ )
- Conjunction of a safety property and a liveness property.
- Take the run $[A, \neg B] \rightarrow[A, \neg B] \rightarrow[A, \neg B] \rightarrow \ldots$ violating $P$.
- Any prefix $[A, \neg B] \rightarrow \ldots \rightarrow[A, \neg B]$ of this run can be extended to a run $[A, \neg B] \rightarrow \ldots \rightarrow[A, \neg B] \rightarrow[A, B] \rightarrow[A, B] \rightarrow \ldots$ satisfying $P$.
- Thus $P$ is not a safety property.
- Take the finite prefix $[\neg A, B]$.
- This prefix cannot be extended in any way to a run satisfying $P$
- Thus $P$ is not a liveness property.

So is the distinction "safety" versus "liveness" really useful?.

## Verifying Safety



We only consider a special case of a safety property.
$\square M \models \square F$.

- $F$ is a state formula (a formula without temporal operator).
- Verify that $F$ is an invariant of system $M$.
$\square M=\langle I, R\rangle$.
$-I(s): \Leftrightarrow \ldots$
- $R\left(s, s^{\prime}\right): \Leftrightarrow R_{0}\left(s, s^{\prime}\right) \vee R_{1}\left(s, s^{\prime}\right) \vee \ldots \vee R_{n-1}\left(s, s^{\prime}\right)$.
- Induction Proof.
- $\forall s: I(s) \Rightarrow F(s)$.
- Proof that $F$ holds in every initial state.
- $\forall s, s^{\prime}: F(s) \wedge R\left(s, s^{\prime}\right) \Rightarrow F\left(s^{\prime}\right)$
- Proof that each transition preserves $F$.
- Reduces to a number of subproofs:

$$
F(s) \wedge R_{0}\left(s, s^{\prime}\right) \Rightarrow F\left(s^{\prime}\right)
$$

$$
F(s) \wedge R_{n-1}\left(s, s^{\prime}\right) \Rightarrow F\left(s^{\prime}\right)
$$

## Example

$$
\begin{aligned}
& \text { var } x:=0 \\
& \text { loop } \\
& \quad p_{0}: \text { wait } x=0 \\
& p_{1}: x:=x+1
\end{aligned} \quad \begin{aligned}
& \text { loop } \\
& q_{0}: \text { wait } x=1 \\
& q_{1}: x:=x-1
\end{aligned}
$$

State $=\left\{p_{0}, p_{1}\right\} \times\left\{q_{0}, q_{1}\right\} \times \mathbb{Z}$.
$I(p, q, x): \Leftrightarrow p=p_{0} \wedge q=q_{0} \wedge x=0$.
$R\left(\langle p, q, x\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}\right\rangle\right): \Leftrightarrow P_{0}(\ldots) \vee P_{1}(\ldots) \vee Q_{0}(\ldots) \vee Q_{1}(\ldots)$.
$P_{0}\left(\langle p, q, x\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}\right\rangle\right): \Leftrightarrow p=p_{0} \wedge x=0 \wedge p^{\prime}=p_{1} \wedge q^{\prime}=q \wedge x^{\prime}=x$.
$P_{1}\left(\langle p, q, x\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}\right\rangle\right): \Leftrightarrow p=p_{1} \wedge p^{\prime}=p_{0} \wedge q^{\prime}=q \wedge x^{\prime}=x+1$.
$Q_{0}\left(\langle p, q, x\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}\right\rangle\right): \Leftrightarrow q=q_{0} \wedge x=1 \wedge p^{\prime}=p \wedge q^{\prime}=q_{1} \wedge x^{\prime}=x$.
$Q_{1}\left(\langle p, q, x\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}\right\rangle\right): \Leftrightarrow q=q_{1} \wedge p^{\prime}=p \wedge q^{\prime}=q_{0} \wedge x^{\prime}=x-1$.
Prove $\langle I, R\rangle \models \square(x=0 \vee x=1)$.

## Example



- Prove $\langle I, R\rangle \models \square(x=0 \vee x=1)$.
- Proof attempt fails.
- Prove $\langle I, R\rangle \models \square G$.

$$
G: \Leftrightarrow
$$

$$
\begin{aligned}
& (x=0 \vee x=1) \wedge \\
& \left(p=p_{1} \Rightarrow x=0\right) \wedge \\
& \left(q=q_{1} \Rightarrow x=1\right) .
\end{aligned}
$$

- Proof works.
- $G \Rightarrow(x=0 \vee x=1)$ obvious.

See the proof presented in class.

The induction strategy may not work for proving $\square F$

- Problem: $F$ is not inductive.
- $F$ is too weak to prove the induction step.

$$
F(s) \wedge R\left(s, s^{\prime}\right) \Rightarrow F\left(s^{\prime}\right)
$$

- Solution: find stronger invariant $I$.

$$
\text { If } I \Rightarrow F \text {, then }(\square I) \Rightarrow(\square F) \text {. }
$$

- It thus suffices to prove $\square I$.
- Rationale: I may be inductive.
- If yes, $I$ is strong enough to prove the induction step.

$$
\square I(s) \wedge R\left(s, s^{\prime}\right) \Rightarrow I\left(s^{\prime}\right)
$$

- If not, find a stronger invariant $I^{\prime}$ and try again.
- Invariant / represents additional knowledge for every proof.
- Rather than proving $\square P$, prove $\square(I \Rightarrow P)$.

The behavior of a system is captured by its strongest invariant.
Wolfgang Schreiner

## Verifying Liveness



$$
\begin{aligned}
& \text { var } x:=0, y:=0 \\
& \begin{array}{l}
\text { loop } \\
\quad x:=x+1
\end{array} \quad \| \quad \text { loop } \\
& y:=y+1
\end{aligned}
$$

State $=\mathbb{N} \times \mathbb{N} ;$ Label $=\{p, q\}$.
$I(x, y): \Leftrightarrow x=0 \wedge y=0$.
$R\left(I,\langle x, y\rangle,\left\langle x^{\prime}, y^{\prime}\right\rangle\right): \Leftrightarrow$

$$
\left(I=p \wedge x^{\prime}=x+1 \wedge y^{\prime}=y\right) \vee\left(I=q \wedge x^{\prime}=x \wedge y^{\prime}=y+1\right)
$$

$\square\langle I, R\rangle \nLeftarrow \diamond x=1$.
$\square[x=0, y=0] \rightarrow[x=0, y=1] \rightarrow[x=0, y=2] \rightarrow \ldots$

- This run violates (as the only one) $\diamond x=1$.
- Thus the system as a whole does not satisfy $\diamond x=1$.

For verifying liveness properties, "unfair" runs have to be ruled out.

When is a particular transition enabled for execution?

- Enabled ${ }_{R}(I, s): \Leftrightarrow \exists t: R(I, s, t)$.
- Labeled transition relation $R$, label $I$, state $s$.
- Read: "Transition (with label) / is enabled in state $s$ (w.r.t. $R$ )".
- Example (previous slide):

$$
\text { Enabled }_{R}(p,\langle x, y\rangle)
$$

$\Leftrightarrow \exists x^{\prime}, y^{\prime}: R\left(p,\langle x, y\rangle,\left\langle x^{\prime}, y^{\prime}\right\rangle\right)$
$\Leftrightarrow \exists x^{\prime}, y^{\prime}:$

$$
\left(p=p \wedge x^{\prime}=x+1 \wedge y^{\prime}=y\right) \vee
$$

$$
\left(p=q \wedge x^{\prime}=x \wedge y^{\prime}=y+1\right)
$$

$\Leftrightarrow\left(\exists x^{\prime}, y^{\prime}: p=p \wedge x^{\prime}=x+1 \wedge y^{\prime}=y\right) \vee$
$\left(\exists x^{\prime}, y^{\prime}: p=q \wedge x^{\prime}=x \wedge y^{\prime}=y+1\right)$
$\Leftrightarrow$ true $\vee$ false
$\Leftrightarrow$ true.

- Transition $p$ is always enabled.

$$
\begin{aligned}
& \text { State }=\mathbb{N} \times \mathbb{N} ; \text { Label }=\{p, q\} . \\
& I(x, y): \Leftrightarrow x=0 \wedge y=0 . \\
& R\left(I,\langle x, y\rangle,\left\langle x^{\prime}, y^{\prime}\right\rangle\right): \Leftrightarrow \\
& \quad\left(I=p \wedge x^{\prime}=x+1 \wedge y^{\prime}=y\right) \vee\left(I=q \wedge x^{\prime}=x \wedge y^{\prime}=y+1\right) . \\
& \\
& \langle I, R\rangle \models \mathrm{WF}_{p} \Rightarrow \diamond x=1 . \\
& \quad[x=0, y=0] \rightarrow[x=0, y=1] \rightarrow[x=0, y=2] \rightarrow \ldots . \\
& \quad \text { This (only) violating run is not weakly fair to transition } p . \\
& \quad-p \text { is always enabled. } \\
& \quad-p \text { is never executed. }
\end{aligned}
$$

System satisfies specification if weak fairness is assumed.

- Weak Fairness
- A run $s_{0} \xrightarrow{\mathrm{l}_{2}} s_{1} \xrightarrow{l_{1}} s_{2} \xrightarrow{l_{2}} \ldots$ is weakly fair to a transition $I$, if
- if transition / is eventually permanently enabled in the run,
- then transition / is executed infinitely often in the run.
$\left(\exists i: \forall j \geq i: \operatorname{Enabled}_{R}\left(I, s_{j}\right)\right) \Rightarrow\left(\forall i: \exists j \geq i: l_{j}=l\right)$.
- The run in the previous example was not weakly fair to transition $p$.
- LTL formulas may explicitly specify weak fairness constraints.
- Let $E_{I}$ denote the enabling condition of transition $/$.
- Let $X_{l}$ denote the predicate "transition $/$ is executed"
$\square$ Define $W F_{l}: \Leftrightarrow\left(\diamond \square E_{l}\right) \Rightarrow\left(\square \diamond X_{l}\right)$.
If $I$ is eventually enabled forever, it is executed infinitely often.
- Prove $\langle I, R\rangle \models\left(W F_{I} \Rightarrow P\right)$.

Property $P$ is only proved for runs that are weakly fair to $I$.
Alternatively, a model may also have weak fairness "built in".
Wolfgang Schreiner
http://www.risc.jku.at
34/65

## Strong Fairness

- Strong Fairness
- A run $s_{0} \xrightarrow{I_{0}} s_{1} \xrightarrow{l_{1}} s_{2} \xrightarrow{l_{2}} \ldots$ is strongly fair to a transition I, if
- if $I$ is infinitely often enabled in the run,
- then $I$ is also infinitely often executed the run.
$\left(\forall i: \exists j \geq i: \operatorname{Enabled}_{R}\left(I, s_{j}\right)\right) \Rightarrow\left(\forall i: \exists j \geq i: l_{j}=l\right)$.
- If $r$ is strongly fair to $I$, it is also weakly fair to $I$ (but not vice versa).
- LTL formulas may explicitly specify strong fairness constraints.
- Let $E_{I}$ denote the enabling condition of transition $I$.
- Let $X_{l}$ denote the predicate "transition I is executed"
- Define $S F_{I}: \Leftrightarrow\left(\square \diamond E_{I}\right) \Rightarrow\left(\square \diamond X_{I}\right)$.

If $l$ is enabled infinitely often, it is executed infinitely often.

- Prove $\langle I, R\rangle \models\left(S F_{I} \Rightarrow P\right)$.

Property $P$ is only proved for runs that are strongly fair to $I$.
A much stronger requirement to the fairness of a system.

## Example

$$
\begin{aligned}
& \text { var } \mathrm{x}=0 \\
& \text { loop } \\
& a: x:=-x \\
& b \text { : choose } x:=0[] x:=1 \\
& \text { State }:=\{a, b\} \times \mathbb{Z} \text {; Label }=\left\{A, B_{0}, B_{1}\right\} . \\
& I(p, x): \Leftrightarrow p=a \wedge x=0 \text {. } \\
& R\left(I,\langle p, x\rangle,\left\langle p^{\prime}, x^{\prime}\right\rangle\right): \Leftrightarrow \\
& \left(I=A \wedge\left(p=a \wedge p^{\prime}=b \wedge x^{\prime}=-x\right)\right) \vee \\
& \left(I=B_{0} \wedge\left(p=b \wedge p^{\prime}=a \wedge x^{\prime}=0\right)\right) \vee \\
& \left(I=B_{1} \wedge\left(p=b \wedge p^{\prime}=a \wedge x^{\prime}=1\right)\right) . \\
& \text { - }\langle I, R\rangle \vDash \mathrm{SF}_{B_{1}} \Rightarrow \Delta x=1 \text {. } \\
& \text { - }[a, 0] \xrightarrow{A}[b, 0] \xrightarrow{B_{0}}[a, 0] \xrightarrow{A}[b, 0] \xrightarrow{B_{0}}[a, 0] \xrightarrow{A} \ldots \\
& \text { - This (only) violating run is not strongly fair to } B_{1} \text { (but weakly fair) } \\
& \text { - } B_{1} \text { is infinitely often enabled. } \\
& \text { - } B_{1} \text { is never executed. }
\end{aligned}
$$

System satisfies specification if strong fairness is assumed.
Wolfgang Schreiner

1. The Basics of Temporal Logic
2. Specifying with Linear Time Logic
3. Verifying Safety Properties by Computer-Supported Proving

## Weak versus Strong Fairness

In which situations is which notion of fairness appropriate?

- Process just waits to be scheduled for execution.
- Only CPU time is required.
- Weak fairness suffices.
- Process waits for resource that may be temporarily blocked.
- Critical region protected by lock variable (mutex/semaphore).
- Strong fairness is required.
- Non-deterministic choices are repeatedly made in program.
- Simultaneous listing on multiple communication channels.
- Strong fairness is required.

Many other notions or fairness exist.

var $x, y$
$\operatorname{var} v:=0, r:=0, a:=0$

| S: loop | R: loop |
| :---: | :---: |
| $\quad$ choose $x \in\{0,1\}$ | 1 |
| $1: v, r:=x, 1$ | $y, a:=v, 1$ |
| $2:$ wait $a=1$ | $2:$ wait $r=0$ |
| $r:=0$ | $a:=0$ |

Transmit a sequence of bits through a wire.

## A (Simplified) Model of the Protocol

```
State : \(=P C^{2} \times\left(\mathbb{N}_{2}\right)^{5}\)
\(I(p, q, x, y, v, r, a): \Leftrightarrow p=q=1 \wedge x \in \mathbb{N}_{2} \wedge v=r=a=0\)
\(R\left(\langle p, q, x, y, v, r, a\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}, y^{\prime}, v^{\prime}, r^{\prime}, a^{\prime}\right\rangle\right): \Leftrightarrow\)
    \(S 1(\ldots) \vee S 2(\ldots) \vee S 3(\ldots) \vee R 1(\ldots) \vee R 2(\ldots)\)
\(S 1\left(\langle p, q, x, y, v, r, a\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}, y^{\prime}, v^{\prime}, r^{\prime}, a^{\prime}\right\rangle\right): \Leftrightarrow\)
    \(p=1 \wedge p^{\prime}=2 \wedge v^{\prime}=x \wedge r^{\prime}=1 \wedge\)
    \(q^{\prime}=q \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge a^{\prime}=a\).
\(S 2\left(\langle p, q, x, y, v, r, a\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}, y^{\prime}, v^{\prime}, r^{\prime}, a^{\prime}\right\rangle\right): \Leftrightarrow\)
    \(p=2 \wedge p^{\prime}=3 \wedge a=1 \wedge r^{\prime}=0 \wedge\)
    \(q^{\prime}=q \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge v^{\prime}=v \wedge a^{\prime}=a\).
S3 \(\left(\langle p, q, x, y, v, r, a\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}, y^{\prime}, v^{\prime}, r^{\prime}, a^{\prime}\right\rangle\right): \Leftrightarrow\)
    \(p=3 \wedge p^{\prime}=1 \wedge a=0 \wedge x^{\prime} \in \mathbb{N}_{2} \wedge\)
    \(p=3 \wedge p^{\prime}=1 \wedge a=0 \wedge x^{\prime} \in \mathbb{N}_{2} \wedge\)
\(q^{\prime}=q \wedge y^{\prime}=y \wedge v^{\prime}=v \wedge r^{\prime}=r \wedge a^{\prime}=a\).
\(R 1\left(\langle p, q, x, y, v, r, a\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}, y^{\prime}, v^{\prime}, r^{\prime}, a^{\prime}\right\rangle\right): \Leftrightarrow\)
    \(q=1 \wedge q^{\prime}=2 \wedge r=1 \wedge y^{\prime}=v \wedge a^{\prime}=1 \wedge\)
    \(p^{\prime}=p \wedge x^{\prime}=x \wedge v^{\prime}=v \wedge r^{\prime}=r\).
\(R 2\left(\langle p, q, x, y, v, r, a\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}, y^{\prime}, v^{\prime}, r^{\prime}, a^{\prime}\right\rangle\right): \Leftrightarrow\)
    \(q=2 \wedge q^{\prime}=1 \wedge r=0 \wedge a^{\prime}=0 \wedge\)
    \(p^{\prime}=p \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge v^{\prime}=v \wedge r^{\prime}=r\).
```


## The RISC ProofNavigator Theory

newcontext "protocol";
p: NAT; q: NAT; $x:$ NAT; $y: N A T ; ~ v: ~ N A T ; ~ r: ~ N A T ; ~ a: ~ N A T ; ~$
pO: NAT; q0: NAT; x0: NAT; yO: NAT; vO: NAT; rO: NAT; aO: NAT;
S1: BOOLEAN $=$
$\mathrm{p}=1 \mathrm{AND} \mathrm{pO}=2 \mathrm{AND} \mathrm{v} 0=\mathrm{x}$ AND r0 $=1 \mathrm{AND}$
$\mathrm{q} 0=\mathrm{q}$ AND $\mathrm{xO}=\mathrm{x}$ AND $\mathrm{y} 0=\mathrm{y}$ AND $\mathrm{aO}=\mathrm{a}$;
S2: BOOLEAN =
$\mathrm{p}=2 \mathrm{AND} \mathrm{pO}=3 \mathrm{AND} \mathrm{a}=1 \mathrm{AND} \mathrm{rO}=0 \mathrm{AND}$
$\mathrm{q} 0=\mathrm{q}$ AND $\mathrm{xO}=\mathrm{x}$ AND $\mathrm{yO}=\mathrm{y}$ AND $\mathrm{vO}=\mathrm{v}$ AND $\mathrm{aO}=\mathrm{a}$
S3: BOOLEAN =
$\mathrm{p}=3$ AND $\mathrm{pO}=1 \mathrm{AND} \mathrm{a}=0 \operatorname{AND}(\mathrm{xO}=0 \mathrm{OR} \mathrm{xO}=1)$ AND
$\mathrm{q} 0=\mathrm{q}$ AND $\mathrm{y} 0=\mathrm{y}$ AND $\mathrm{vO}=\mathrm{v}$ AND $\mathrm{rO}=\mathrm{r}$ AND $\mathrm{aO}=\mathrm{a}$;
R1: BOOLEAN $=$
$\mathrm{q}=1$ AND $\mathrm{q} 0=2$ AND $\mathrm{r}=1$ AND $\mathrm{yO}=\mathrm{v}$ AND $\mathrm{a} 0=1$ AND
$\mathrm{p} 0=\mathrm{p}$ AND $\mathrm{xO}=\mathrm{x}$ AND v0 $=\mathrm{v}$ AND $\mathrm{rO}=\mathrm{r}$;
R2: BOOLEAN $=$
$\mathrm{q}=2$ AND $\mathrm{qO}=1 \mathrm{AND} \mathrm{r}=0$ AND $\mathrm{aO}=0$ AND
$\mathrm{pO}=\mathrm{p}$ AND $\mathrm{x} 0=\mathrm{x}$ AND $\mathrm{y} 0=\mathrm{y}$ AND $\mathrm{vO}=\mathrm{v}$ AND $\mathrm{rO}=\mathrm{r}$;

A Verification Task

$$
\langle I, R\rangle \models \square(q=2 \Rightarrow y=x)
$$

$\operatorname{Invariant}(p, \ldots) \Rightarrow(q=2 \Rightarrow y=x)$
$I(p, \ldots) \Rightarrow \operatorname{Invariant}(p, \ldots)$
$R\left(\langle p, \ldots\rangle,\left\langle p^{\prime}, \ldots\right\rangle\right) \wedge \operatorname{Invariant}(p, \ldots) \Rightarrow \operatorname{Invariant}\left(p^{\prime}, \ldots\right)$
Invariant $(p, q, x, y, v, r, a): \Leftrightarrow$
$(p=1 \vee p=2 \vee p=3) \wedge(q=1 \vee q=2) \wedge$
$(x=0 \vee x=1) \wedge(v=0 \vee v=1) \wedge(r=0 \vee r=1) \wedge(a=0 \vee a=1) \wedge$
$(p=1 \Rightarrow q=1 \wedge r=0 \wedge a=0) \wedge$
$(p=2 \Rightarrow r=1 \wedge v=x) \wedge$
$(p=3 \Rightarrow r=0) \wedge$
$(q=1 \Rightarrow a=0) \wedge$
$(q=2 \Rightarrow(p=2 \vee p=3) \wedge a=1 \wedge y=x)$
The invariant captures the essence of the protocol

Wolfgang Schreiner

## The RISC ProofNavigator Theory

Init: BOOLEAN $=$
$\mathrm{p}=1 \operatorname{AND} \mathrm{q}=1 \operatorname{AND}(\mathrm{x}=0 \mathrm{OR} \mathrm{x}=1)$ AND
$\mathrm{v}=0$ AND $\mathrm{r}=0$ AND $\mathrm{a}=0$;
Step: BOOLEAN =
S1 OR S2 OR S3 OR R1 OR R2;
Invariant: (NAT, NAT, NAT, NAT, NAT, NAT, NAT)->BOOLEAN $=$
LAMBDA(p, $q, x, y, v, r, a: N A T)$
( $p=1$ OR $p=2$ OR $p=3$ ) AND
( $\mathrm{q}=1 \mathrm{OR} \mathrm{q}=2$ ) AND
( $\mathrm{x}=0 \mathrm{OR} \mathrm{x}=1$ ) AND
(v = O OR v = 1) AND
(r = O OR r = 1) AND
(a = O OR a = 1) AND
$\mathrm{p}=1 \mathrm{~m}=1$ AND $\mathrm{r}=0$ AND $\mathrm{a}=0$ ) AND
p $=2 \Rightarrow r=1$ AND $v=x$ ) AND
( $=3 \Rightarrow r=0$ ) AND
( $\mathrm{q}=1 \Rightarrow \mathrm{a}=0$ ) AND
$(\mathrm{q}=2 \Rightarrow(\mathrm{p}=2$ OR $\mathrm{p}=3)$ AND $\mathrm{a}=1$ AND $\mathrm{y}=\mathrm{x})$;

The RISC ProofNavigator Theory

Property: BOOLEAN =
$\mathrm{q}=2 \mathrm{=} \mathrm{y}=\mathrm{x}$;
VCO: FORMULA
Invariant (p, q, x, y, v, r, a) => Property;
VC1: FORMULA
Init => Invariant(p, q, x, y, v, r, a);
VC2: FORMULA
Step AND Invariant(p, q, x, y, v, r, a) => Invariant (p0, q0, x0, y0, v0, r0, a0);

The Proofs

```
[vd2]: expand Invariant, Property in m2v
    [rle]: proved (CVCL)
[wd2]: expand Init, Invariant in nra
    [ipl]: proved(CVCL)
[xd2]: expand Step, Invariant, S1, S2, S3, R1, R2
    [6ss]: proved(CVCL)
```

More instructive: proof attempts with wrong or too weak invariants (see demonstration).

## A Client/Server System (Contd)

Server system $S=\langle I S, R S\rangle$.
State $:=\left(\mathbb{N}_{3}\right)^{3} \times\left(\{1,2\} \rightarrow \mathbb{N}_{2}\right)^{2}$.
Int $:=\{D 1, D 2, F, A 1, A 2, W\}$.

IS(given, waiting, sender, rbuffer, sbuffer) : $\Leftrightarrow$ given $=$ waiting $=$ sender $=0 \wedge$
$\operatorname{rbuffer}(1)=\operatorname{rbuffer}(2)=\operatorname{sbuffer}(1)=\operatorname{sbuffer}(2)=0$.
$R S(I,\langle$ given, waiting, sender, rbuffer, sbuffer $\rangle$,
$\left\langle\right.$ given' $^{\prime}$, waiting ${ }^{\prime}$, sender ${ }^{\prime}$, rbuffer ${ }^{\prime}$, sbuffer $\left.{ }^{\prime}\right\rangle$ ) : $\Leftrightarrow$
$\exists i \in\{1,2\}$
$\left(I=D_{i} \wedge\right.$ sender $=0 \wedge r b u f f e r(i) \neq 0 \wedge$
sender ${ }^{\prime}=i \wedge$ rbuffer $^{\prime}(i)=0 \wedge$
$U($ given, waiting, sbuffer $) \wedge$
$\forall j \in\{1,2\} \backslash\{i\}: U_{j}($ rbuffer $\left.)\right) \vee$

$$
\begin{aligned}
& U\left(x_{1}, \ldots, x_{n}\right): \Leftrightarrow x_{1}^{\prime}=x_{1} \wedge \ldots \wedge x_{n}^{\prime}=x_{n} \\
& U_{j}\left(x_{1}, \ldots, x_{n}\right): \Leftrightarrow x_{1}^{\prime}(j)=x_{1}(j) \wedge \ldots \wedge x_{n}^{\prime}(j)=x_{n}(j) .
\end{aligned}
$$

Server
local given, waiting, sender
begin
given := 0; waiting := 0
loop
D: sender := receiveRequest() if sender = given then if waiting $=0$ then given := 0
else
given := waiting;
waiting := 0
sendAnswer (given) endif
elsif given $=0$ then
A2: given := sender sendAnswer (given)
else
W: waiting := sender endif
endloop end Server

## A Client/Server System (Contd'2)

Server:
local given, waiting, sender
$(I=F \wedge$ sender $\neq 0 \wedge$ sender $=$ given $\wedge$ waiting $=0 \wedge$ given ${ }^{\prime}=0 \wedge$ sender $=0 \wedge$
$U($ waiting, rbuffer, sbuffer $)) \vee$
$(I=A 1 \wedge$ sender $\neq 0 \wedge$ sbuffer $($ waiting $)=0 \wedge$ sender $=$ given $\wedge$ waiting $\neq 0 \wedge$
given' $=$ waiting $\wedge$ waiting $^{\prime}=0 \wedge$
sbuffer $^{\prime}\left(\right.$ waiting $\left.^{\prime}\right)=1 \wedge$ sender $^{\prime}=0 \wedge$
$U($ rbuffer $) \wedge$
$\forall j \in\{1,2\} \backslash\{$ waiting $\}: U_{j}($ sbuffer $\left.)\right) \vee$
$(I=A 2 \wedge$ sender $\neq 0 \wedge$ sbuffer (sender) $=0 \wedge$ sender $\neq$ given $\wedge$ given $=0 \wedge$
given' $=$ sender $\wedge$
sbuffer ${ }^{\prime}($ sender $)=1 \wedge$ sender $^{\prime}=0 \wedge$
U(waiting, rbuffer) ^
$\forall j \in\{1,2\} \backslash\{$ sender $\}: U_{j}($ sbuffer $\left.)\right) \vee$
given := 0; waiting := 0 loop
D: sender := receiveRequest() if sender = given then if waiting $=0$ then
given := 0
else
A1: given := waiting; waiting := 0 sendAnswer (given) endif
elsif given $=0$ then
A2: given := sender sendAnswer (given) else
W: waiting := sender endif
endloop
end Server

A Client/Server System (Contd'3)

Server:
local given, waiting, sender
$(I=W \wedge$ sender $\neq 0 \wedge$ sender $\neq$ given $\wedge$ given $\neq 0 \wedge$ waiting ${ }^{\prime}:=$ sender $\wedge$ sender ${ }^{\prime}=0 \wedge$ ( given, rbuffer, sbuffer)) $\vee$

$$
\exists i \in\{1,2\}:
$$

$\left(I=R E Q_{i} \wedge\right.$ rbuffer $^{\prime}(i)=1 \wedge$
$U($ given, waiting, sender, sbuffer $) \wedge$
$\forall j \in\{1,2\} \backslash\{i\}: U_{j}($ rbuffer $\left.)\right) \vee$
$\left(I=\overline{A_{N S}} \wedge \operatorname{sbuffer}(i) \neq 0 \wedge\right.$
sbuffer ${ }^{\prime}(i)=0 \wedge$
$U$ (given, waiting, sender, rbuffer) $\wedge$ $\forall j \in\{1,2\} \backslash\{i\}: U_{j}($ sbuffer $\left.)\right)$

## egin

tiven $:=0$; waiting $:=0$
loop
D: sender := receiveRequest() if sender $=$ given then if waiting $=0$ then given := 0 else
A1: given := waiting; waiting := 0 sendAnswer (given) endif
elsif given $=0$ then
A2: given := sender sendAnswer(given) else
W : waiting := sender endif
endloop
end Server

## A Client/Server System (Contd'4)

## The Verification Task



```
\(\langle I, R\rangle \vDash \square \neg\left(p c_{1}=C \wedge p c_{2}=C\right)\)
    Invariant(pc, request, answer, sender, given, waiting, rbuffer, sbuffer) : \(\Leftrightarrow\)
        \(\forall i \in\{1,2\}\)
        ( \(p c(i)=C \vee \operatorname{sbuffer}(i)=1 \vee\) answer \((i)=1 \Rightarrow\)
            given \(=i \wedge\)
        \(\forall j: j \neq i \Rightarrow p c(j) \neq C \wedge \operatorname{sbuffer}(j)=0 \wedge\) answer \((j)=0) \wedge\)
    ( \(p c(i)=R \Rightarrow\)
            sbuffer \((i)=0 \wedge\) answer \((i)=0 \wedge\)
            \((i=\operatorname{given} \Leftrightarrow \operatorname{request}(i)=1 \vee r b u f f e r(i)=1 \vee\) sender \(=i) \wedge\)
            \((\operatorname{request}(i)=0 \vee \operatorname{rbuffer}(i)=0)) \wedge\)
        (pc(i) \(=S \Rightarrow\)
            (sbuffer \((i)=1 \vee\) answer \((i)=1 \Rightarrow\)
            request \((i)=0 \wedge \operatorname{rbuffer}(i)=0 \wedge\) sender \(\neq i) \wedge\)
            ( \(i \neq\) given \(\Rightarrow\)
                request \((i)=0 \vee \operatorname{rbuffer}(i)=0)) \wedge\)
            \((p c(i)=C \Rightarrow\)
                request \((i)=0 \wedge\) rbuffer \((i)=0 \wedge\) sender \(\neq i \wedge\)
                sbuffer \((i)=0 \wedge\) answer \((i)=0) \wedge\)
```

State : $=(\{1,2\} \rightarrow P C) \times\left(\{1,2\} \rightarrow \mathbb{N}_{2}\right)^{2} \times\left(\mathbb{N}_{3}\right)^{2} \times\left(\{1,2\} \rightarrow \mathbb{N}_{2}\right)^{2}$
$I(p c$, request, answer, given, waiting, sender, rbuffer, sbuffer) $: \Leftrightarrow$
$\forall i \in\{1,2\}: I C\left(p c_{i}\right.$, request $_{i}$, answer $\left._{i}\right) \wedge$
IS (given, waiting, sender, rbuffer, sbuffer)
$R(\langle p c$, request, answer, given, waiting, sender, rbuffer, sbuffer $\rangle$,
$\left\langle p c^{\prime}\right.$, request ${ }^{\prime}$, answer' ${ }^{\prime}$, given', waiting' ${ }^{\prime}$, sender', rbuffer', sbuffer'$\left.\rangle\right): \Leftrightarrow$
$\left(\exists i \in\{1,2\}: R C_{\text {local }}\left(\left\langle p c_{i}\right.\right.\right.$, request $_{i}$, answer $\left._{i}\right\rangle,\left\langle p c_{i}^{\prime}\right.$, request $_{i}^{\prime}$, answer $\left.\left.{ }_{i}^{\prime}\right\rangle\right) \wedge$ $\langle$ given, waiting, sender, rbuffer, sbuffer〉 $=$
$\left\langle\right.$ given' $^{\prime}$, waiting' ${ }^{\prime}$, sender', rbuffer', sbuffer' ${ }^{\prime}$ ) $\vee$
( $R S_{\text {local }}(\langle$ given, waiting, sender, rbuffer, sbuffer $\rangle$,
$\left\langle\right.$ given' $^{\prime}$, waiting ${ }^{\prime}$, sender', rbuffer', sbuffer $\rangle$ ) $\wedge$
$\forall i \in\{1,2\}:\left\langle p c_{i}\right.$, request $_{i}$, answer $\left._{i}\right\rangle=\left\langle p c_{i}^{\prime}\right.$, request $_{i}^{\prime}$, answer $\left.\left.{ }_{i}^{\prime}\right\rangle\right) \vee$
( $\exists i \in\{1,2\}$ : External( $i,\left\langle\right.$ request $_{i}$, answer $_{i}$, rbuffer, sbuffer $\rangle$,
$\left\langle\right.$ request $_{i}^{\prime}$, answer ${ }_{i}^{\prime}$, rbuffer' ${ }^{\prime}$, sbuffer $\left.\left.{ }^{\prime}\right\rangle\right) \wedge$
$p c=p c^{\prime} \wedge\langle$ sender, waiting, given $\rangle=\left\langle\right.$ sender', waiting ${ }^{\prime}$, given $\left.\left.{ }^{\prime}\right\rangle\right)$
$($ sender $=0 \wedge($ request $(i)=1 \vee \operatorname{rbuffer}(i)=1) \Rightarrow$ sbuffer $(i)=0 \wedge$ answer $(i)=0) \wedge$
(sender $=i \Rightarrow$
(waiting $\neq i) \wedge$
(sender = given $\wedge p c(i)=R \Rightarrow$
request $(i)=0 \wedge$ rbuffer $(i)=0) \wedge$
$(p c(i)=S \wedge i \neq$ given $\Rightarrow$
request $(i)=0 \wedge$ rbuffer $(i)=0) \wedge$
( $p c(i)=S \wedge i=$ given $\Rightarrow$
request $(i)=0 \vee \operatorname{rbuffer}(i)=0)) \wedge$
(waiting $=i \Rightarrow$
given $\neq i \wedge p c_{i}=S \wedge$ request $_{i}=0 \wedge$ rbuffer $(i)=0 \wedge$
sbuffer
sbuffer $_{i}=0 \wedge$ answer $\left.(i)=0\right) \wedge$
(sbuffer $(i)=1 \Rightarrow$
$\operatorname{answer}(i)=0 \wedge \operatorname{request}(i)=0 \wedge r b u f f e r(i)=0)$
As usual, the invariant has been elaborated in the course of the proof.

```
% ----------------------
\% ----- state condition
```

IC: (PC, BOOLEAN, BOOLEAN) -> BOOLEAN =
LAMBDA(pc: PC, request: BOOLEAN, answer: BOOLEAN) :
$\mathrm{pc}=\mathrm{R}$ AND (request $\Leftrightarrow$ FALSE) AND (answer $\Leftrightarrow=>$ FALSE);
IS: (Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN) -> BOOLEAN = LAMBDA (given: Index0, waiting: Index0, sender: Index0, rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN) :
given $=0$ AND waiting $=0$ AND sender $=0$ AND
(FORALL(i:Index): (rbuffer(i)<=>FALSE) AND (sbuffer (i)<=>FALSE));

## Initial: BOOLEAN =

(FORALL(i:Index): IC(pc(i), request(i), answer(i))) AND
IS(given, waiting, sender, rbuffer, sbuffer);

## The RISC ProofNavigator Theory

newcontext "clientServer";
Index: TYPE = SUBTYPE (LAMBDA ( $\mathrm{x}:$ INT) : $\mathrm{x}=1$ OR $\mathrm{x}=2$ );
Index0: TYPE $=\operatorname{SUBTYPE}(\operatorname{LAMBDA}(x: I N T): ~ x=0$ OR $x=1$ OR $x=2)$;
\% program counter type
PCBASE: TYPE;
R: PCBASE; S: PCBASE; C: PCBASE;
PC: TYPE = SUBTYPE(LAMBDA( $x: P C B A S E): ~ x=R ~ O R ~ x=S ~ O R ~ x=C)$;
PCs: AXIOM $\mathrm{R} /=\mathrm{S}$ AND $\mathrm{R} /=\mathrm{C}$ AND $\mathrm{S} /=\mathrm{C}$;
\% client states
pc : Index->PC; pc0: Index->PC;
request: Index->BOOLEAN; request0: Index->BOOLEAN;
answer: Index->BOOLEAN; answer0: Index->BOOLEAN;
\% server state
given: Index0; given0: Index0;
waiting: Index0; waiting 0 : Index 0 ;
sender: Index0; sender0: Index0;
rbuffer: Index $\rightarrow$ BOOLEAN; rbuffer0: Index $\rightarrow$ BOOLEAN;
sbuffer: Index $\rightarrow$ BOOLEAN; sbuffer0: Index $\rightarrow$ BOOLEAN;
Wolfgang Schreiner
http://www.risc.jku.at

## The RISC ProofNavigator Theory (Contd'2)

## \% ------------------- \% transition relation


RC: (PC, BOOLEAN, BOOLEAN, PC, BOOLEAN, BOOLEAN)->BOOLEAN =
LAMBDA (pc: PC, request: BOOLEAN, answer: BOOLEAN,
pcO: PC, request0: BOOLEAN, answer0: BOOLEAN) :
( $\mathrm{pc}=\mathrm{R}$ AND (request $<=>$ FALSE) AND
pc0 $=\mathrm{S}$ AND (request0 <=> TRUE) AND (answer0 << answer)) OR ( $\mathrm{pc}=\mathrm{S}$ AND (answer $\Leftrightarrow$ TRUE) AND
$\mathrm{pcO}=\mathrm{C}$ AND (request0 $\Leftrightarrow$ request) AND (answer0 $\Leftrightarrow$ FALSE)) OR ( $\mathrm{pc}=\mathrm{C}$ AND (request $\Leftrightarrow$ FALSE) AND

$$
\text { pcO }=\mathrm{R} \text { AND (request0 } \Leftrightarrow \text { TRUE) AND (answer0 } \Leftrightarrow>\text { answer)); }
$$

RS: (Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN, Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN)->BOOLEAN $=$ LAMBDA(given: Index0, waiting: Index0, sender: Index0, rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN, given0: Index0, waiting0: Index0, sender0: Index0, rbuffer0: Index->BOOLEAN, sbuffer0: Index $\rightarrow$ BOOLEAN) :
(EXISTS(i:Index) :
sender = 0 AND (rbuffer (i) <=> TRUE) AND
sender0 = i AND (rbufferO(i) <=> FALSE) AND
given = given0 AND waiting = waitingO AND sbuffer = sbuffer0 AND
(FORALL(j:Index): $j /=i \Rightarrow(\operatorname{rbuffer}(j)<\operatorname{rbufferO}(j)))$ ) OR
(sender $/=0$ AND sender $=$ given AND waiting $=0$ AND
given0 $=0$ AND sender0 $=0$ AND
waiting = waiting0 AND rbuffer = rbuffer0 AND sbuffer = sbuffer0) OR
(sender /= 0 AND
sender = given AND waiting /= 0 AND
(sbuffer(waiting) <=> FALSE) AND
given0 $=$ waiting AND waiting0 $=0$ AND
(sbuffer0 (waiting) <=>TRUE) AND (sender0 = 0) AND
(rbuffer = rbuffer0) AND
(FORALL( $\mathrm{j}:$ Index) : $\mathrm{j} /=$ waiting $=>(\operatorname{sbuffer(j)~<=>~sbufferO(j))))~OR~}$
(sender /= 0 AND (sbuffer (sender) <=> FALSE) AND
sender /= given AND given $=0$ AND given0 $=$ sender AND
(sbuffer0(sender)<=>TRUE) AND sender0=0 AND
(waiting=waitingO) AND (rbuffer=rbuffer0) AND
(FORALL(j:Index): $j /=$ sender $=>~(s b u f f e r(j) ~<=>~ s b u f f e r O(j)))) ~ O R ~$
(sender /= 0 AND sender /= given AND given /= 0 AND
waiting $0=$ sender AND sender0 $=0$ AND


## The RISC ProofNavigator Theory (Contd'5)



Next: BOOLEAN =
((EXISTS (i: Index):
RC(pc(i), request(i), answer(i),
pcO(i), requestO(i), answerO(i)) AND
(FORALL ( $\mathrm{j}:$ Index): $\mathrm{j} /=\mathrm{i}=>$
$\mathrm{pc}(\mathrm{j})=\mathrm{pcO}(\mathrm{j})$ AND (request $(\mathrm{j})$ <=> requestO( j$)$ ) AND (answer $(j)$ <=> answer0 $(j))$ )) and
given = given0 AND waiting = waitingO AND sender = sender0 AND
rbuffer = rbuffer0 AND sbuffer = sbuffer0) OR
(RS(given, waiting, sender, rbuffer, sbuffer,
given0, waiting0, sender0, rbuffer0, sbuffer0) AND
(FORALL ( $\mathrm{j}:$ Index) : $\mathrm{pc}(\mathrm{j})=\mathrm{pc} 0(\mathrm{j})$ AND (request $(\mathrm{j})$ <=> requestO( j$)$ ) AND (answer(j) <=> answerO(j)))) OR
(EXISTS (i: Index):
External(i, pc(i), request(i), answer(i),

$$
\mathrm{pcO}(\mathrm{i}), \text { requesto(i), answer0(i), }
$$

given, waiting, sender, rbuffer, sbuffer,
given0, waiting0, sender0, rbuffer0, sbuffer0) AND
(FORALL (j: Index): j /= i =>
$\mathrm{pc}(\mathrm{j})=\mathrm{pcO}(\mathrm{j})$ AND (request( j$)$ <=> requestO( j$)$ ) AND (answer(j) <=> answerO(j))));

The RISC ProofNavigator Theory (Contd'4)

External: (Index, PC, BOOLEAN, BOOLEAN, PC, BOOLEAN, BOOLEAN,
Index0, Index0, Index0, Index $->$ BOOLEAN, Index $->$ BOOLEAN,
Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN)->BOOLEAN $=$
LAMBDA(i:Index,
$\mathrm{pc}: \mathrm{PC}$, request: BOOLEAN, answer: BOOLEAN,
pc0: PC, request0: BOOLEAN, answer0: BOOLEAN,
given: Index0, waiting: Index0, sender: Index0
rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN
given0: Index0, waiting0: Index0, sender0: Index0,
rbuffer0: Index->BOOLEAN, sbuffer0: Index->BOOLEAN):
((request <=> TRUE) AND
pc0 = pc AND (request0 <=> FALSE) AND (answer0 <=> answer) AND
(rbuffer0(i) <=> TRUE) AND given = given0 AND waiting = waiting0
AND sender $=$ sender0 AND sbuffer $=$ sbuffer0 AND
(FORALL ( $\mathrm{j}:$ Index): $\mathrm{j} /=\mathrm{i} \Rightarrow(\operatorname{rbuffer}(\mathrm{j}) \Leftrightarrow \operatorname{rbufferO}(\mathrm{j}))$ )) OR
(pc0 = pc AND (requestO <=> request) AND (answer0 <=> TRUE) AND (sbuffer(i) <=> TRUE) AND (sbufferO(i) <=> FALSE) AND
given = given0 AND waiting = waitingO AND sender = sender0 AND rbuffer = rbuffer0 AND
(FORALL (j: Index): j /= i => (sbuffer (j) <=> sbufferO(j))));

## The RISC ProofNavigator Theory (Contd'6)

[^0]The RISC ProofNavigator Theory (Contd'7)
(pc(i) $=$ S =>
((sbuffer (i) <=> TRUE) OR (answer(i) <=> TRUE) => (request (i) <=> FALSE) AND (rbuffer (i) << FALSE) AND sender /= i) AND
(i /= given =>
(request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND
pc(i) = C =>
(request (i) <=> FALSE) AND (rbuffer(i) <=> FALSE) AND sender /= i AND (sbuffer (i) <=> FALSE) AND (answer(i) <=> FALSE)) AND
(sender = 0 AND ((request(i) <> TRUE) OR (rbuffer(i) <=> TRUE)) => (sbuffer(i) <=> FALSE) AND (answer(i) <=> FALSE)) AND
(sender = i $=>$
(sender = given AND pc(i) $=\mathrm{R} \Rightarrow$
(request (i) << FALSE) AND (rbuffer(i) < FALSE)) AND
waiting /= i AND
(pc(i) = S AND i /= given =>
(request(i) <=> FALSE) AND (rbuffer (i) <=> FALSE)) AND
(pc(i) = S AND i = given =>
(request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND

## The RISC ProofNavigator Theory (Contd'9)

\% -----------------------
$\%$
\% mutual exclusion proof
\%
MutEx: FORMULA
Invariant(pc, request, answer, given, waiting, sender, rbuffer, sbuffer) => $\operatorname{NOT}(\mathrm{pc}(1)=\mathrm{C}$ AND $\mathrm{pc}(2)=\mathrm{C})$;
\% ----------------
\% invariance proof
\% invariance
Inv1: FORMULA
Initial $=>$
nitial =>
Invariant(pc, request, answer, given, waiting, sender, rbuffer, sbuffer);

## Inv2: FORMULA

Invariant(pc, request, answer, given, waiting, sender,
rbuffer, sbuffer) AND Next =>
Invariant(pc0, request0, answer0, given0, waiting0, sender0, rbuffer0, sbuffer0);

The Proofs: MutEx and Inv1

| [z3f]: expand Invariant, IC, IS <br> [nhn]: scatter <br> [znj]: auto <br> [n1u]: proved (CVCL) <br> Single application of autostar. | [oas]: expand Initial, Invariant, IC, IS <br> [eij]: scatter <br> [5ul]: auto <br> [uvj]: proved (CVCL) <br> [6ul]: auto <br> [2u6]: proved (CVCL) <br> [avl]: auto <br> [cuv]: proved (CVCL) <br> [bvl]: auto <br> [jtl]: proved (CVCL) <br> [cvl]: auto <br> [qsb]: proved (CVCL) <br> [dvil]: auto <br> [xrx]: proved (CVCL) <br> [evl]: auto <br> [5qn]: proved (CVCL) <br> [fvil]: auto <br> [fqd]: proved (CVCL) <br> [gvl]: auto <br> [mpz]: proved (CVCL) <br> [hvl]: proved (CVCL) <br> [h5h]: auto <br> [p3z]: proved (CVCL) <br> [i5h]: auto <br> [gjb]: proved (CVCL) <br> [j5h]: auto <br> [4vi]: proved (CVCL) <br> [k5h]: auto <br> [ucq]: proved (CVCL) <br> [15h]: auto <br> [lpx]: proved (CVCL) | [m5h]: proved (CVCL) <br> [n5h]: proved (CVCL) <br> [05h]: proved (CVCL) <br> [p5h]: proved (CVCL) <br> [q5h]: proved (CVCL) <br> [q5i]: proved (CVCL) <br> [r5i]: proved (CVCL) <br> [s5i]: proved (CVCL) <br> [t5i]: proved (CVCL) <br> [u5i]: auto <br> [1br]: proved (CVCL) [v5i]: auto <br> [roy]: proved (CVCL) [w5i]: auto <br> [i26]: proved (CVCL) [x5i]: proved (CVCL) [y5i]: auto <br> [wuo]: proved (CVCL) [z5i]: auto <br> [nbw]: proved (CVCL) [z5j]: auto <br> [nbn]: proved (CVCL) [15j]: auto <br> [eou]: proved (CVCL) [25j]: proved (CVCL) <br> [35j]: proved (CVCL) <br> [45j]: proved (CVCL) <br> [55j]: proved (CVCL) <br> [65j]: proved (CVCL) |
| :---: | :---: | :---: |

The Proofs: Inv2
[pas]: scatter
[1bh]: expan
bh] : expand Next
[pzi]: split bf
[1eh]: decompose
[pkr]: expand RS
[1pn]: split
[1pn]: split 5xv
[pt6]: expand Invariant
[pt6]: expand Invaria
[1cw]: : scatter
[puh] : auto
[143]: proved (CVCL)
... (tuh]: proved (cvCL)
qt6]: expand Invariant
[snq]: scatter
[avi]: auto
snq]: scater
[avi]: auto
[cct]: pro
$\therefore$ (26 times) [w3z]: expand External
[gvi]: proved (CvCL)
$\ldots$ ( 6 times)
rt6]: scatter
[zyk]: expand Invariant
$[\mathrm{rvj]}$ : scatter
$[\mathrm{zgj]}:$ auto
[rhd]: proved (CVCL)
$\ldots(31$ times)
$[2 \mathrm{f} 3]:$ proved (CVCL)

[st6]: scatter $\quad$ [h4b]: scatter
nd Invariant
[cwk]: scatter
[q16]: auto
[seg]: proved (CvCL)
[w16]: proved (CVCL) [neh]: scatter (3imes
$\begin{array}{cc}\text { [tt6]: scatter } & \text { [40c]: expand RC } \\ {[\text { nuh] }: ~ s p l i t ~ n w Z ~}\end{array}$
[hp6]: expand Invariant
[tw1]: scatter
[hqv] : auto
[hqv] : auto
[tbj]: proved (CVCL)
.. (27 times)
[nqu]: proved (CVCL)
: scatter
[3rk]: split lhe
[g4b]: scatter
[mdh]: expand Invariant
[wz]: scater
[wzf]: scatter
[3ys]: auto
[gsh]: proved (CVCL)
$\stackrel{\text { (36sh times) }}{\text { Le }}$
[nuh]: split nwz
[ney]: expand Invariant
[ney]: expand Invari
[45d]: scatter
[45d]: scatter
[nii]: auto
[4wr]: proved (CVCL)
$\ldots$ (36 times)
[5ge]: scatter
[ups]: expand Invariant
[ups] : expand Inv
[o6e]: scatter
[o6e]: scatter
[ez5]: auto
[5tu]: proved (CVCL)
$(36$ times)
[6ge]: $\begin{aligned} & \text { scatter }\end{aligned}$
[6ge]: scatter
$[21 \mathrm{~m}]$ : expand Invariant
21m : expand Inv
[66f]: scatter
[24u]: auto
[6qx]: proved (CVCL)
[6 (36 times)
Ten main branches each requiring only single application of autostar.
Wolfgang Schreiner


[^0]:    \% --------
    \% ------------------------------------------------------->
    Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN) $->$ BOOLEAN $=$
    LAMBDA(pc: Index->PC, request: Index->BOOLEAN, answer: Index->BOOLEAN given: Index0, waiting: Index0, sender: Index0,
    rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN):
    FORALL (i: Index):
    (pc(i) = C OR (sbuffer (i) <=> TRUE) OR (answer (i) <=> TRUE) =>
    given $=$ i AND
    (FORALL ( $\mathrm{j}:$ Index) : $\mathrm{j} /=\mathrm{i}=>$
    $\mathrm{pc}(\mathrm{j}) /=\mathrm{C}$ AND
    (sbuffer(j) <=> FALSE) AND (answer (j) <=> FALSE))) AND
    (pc(i) $=R=>$
    (sbuffer(i) <=> FALSE) AND (answer (i) <=> FALSE) AND
    (i /= given =>
    (request(i) << FALSE) AND (rbuffer(i) <<> FALSE) AND sender /= i) AND
    (i = given $\Rightarrow$
    (request(i) << TRUE) OR (rbuffer(i) <=> TRUE) OR sender = i) AND ((request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND

