Verifying Java Programs with KeY

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

™,
W

Wolfgang Schreiner http://www.risc.jku.at 1/19
()
The KeY Tool 'M E‘
e ne 00
N

http://www.key-project.org

KeY: environment for verification of JavaCard programs.
Subset of Java for smartcard applications and embedded systems.
Universities of Karlsruhe, Koblenz, Chalmers, 1998—
Beckert et al: “Verification of Object-Oriented Software: The KeY
Approach”, Springer, 2007. (book)
Ahrendt et al: “The KeY Tool", 2005. (paper)
Engel and Roth: “KeY Quicktour for JML"”, 2006. (short paper)
Specification languages: OCL and JML.
Original: OCL (Object Constraint Language), part of UML standard.
Later added: JML (Java Modeling Language).
Logical framework: Dynamic Logic (DL).
Successor/generalization of Hoare Logic.
Integrated prover with interfaces to external decision procedures.
Simplify, CVC3, Yices, Z3.

We will only deal with the tool’s JML interface "JMLKeY".

http://www.risc.jku.at 3/19

Wolfgang Schreiner

Verifying Java Programs

Extended static checking of Java programs:
Even if no error is reported, a program may violate its specification.
Unsound calculus for verifying while loops.
Even correct programs may trigger error reports:
Incomplete calculus for verifying while loops.
Incomplete calculus in automatic decision procedure (Simplify).
Verification of Java programs:
Sound verification calculus.
Not unfolding of loops, but loop reasoning based on invariants.
Loop invariants must be typically provided by user.
Automatic generation of verification conditions.
From JML-annotated Java program, proof obligations are derived.
Human-guided proofs of these conditions (using a proof assistant).
Simple conditions automatically proved by automatic procedure.

We will now deal with an integrated environment for this purpose.

Wolfgang Schreiner http://www.risc.jku.at

Dynamic Logic

Further development of Hoare Logic to a modal logic.

Hoare logic: two separate kinds of statements.

Formulas P, Q constraining program states.

Hoare triples { P} C{Q} constraining state transitions.
Dynamic logic: single kind of statement.

Predicate logic formulas extended by two kinds of modalities.

[C]Q (& =(C)=Q)
Every state that can be reached by the execution of C satisfies Q.
The statement is trivially true, if C does not terminate.

(O)Q (& -[C]-Q)
There exists some state that can be reached by the execution of C

and that satisfies Q.
The statement is only true, if C terminates.

States and state transitions can be described by DL formulas.

Wolfgang Schreiner http://www.risc.jku.at 4/19

Dynamic Logic versus Hoare Logic .ﬁ <

Hoare triple {P}C{Q} can be expressed as a DL formula.

Partial correctness interpretation: P = [C]Q
If P holds in the current state and the execution of C reaches another
state, then @ holds in that state.
Equivalent to the partial correctness interpretation of {P}C{Q}.
Total correctness interpretation: P = (C)Q
If P holds in the current state, then there exists another state that
can be reached by the execution of C in which @ holds.
If C is deterministic, there exists at most one such state; then
equivalent to the total correctness interpretation of {P}C{Q}.

For deterministic programs, the interpretations coincide.

Wolfgang Schreiner http://www.risc.jku.at 5/19
AN
A Calculus for Dynamic Logic .E {‘
[]

A core language of commands (non-deterministic):

X:=T ... assignment
C: G ...sequential composition
GuUG .. non-deterministic choice
c* ... iteration (zero or more times)
F? ... test (blocks if F is false)
A high-level language of commands (deterministic):
skip = true?
abort = false?
X =T
G, G
if Fthen Gielse G, = (F7,G)U((=F)?; &)
if F then C = (F?, Q)U(—F)?
while F do C = (F?,O)%(=F)?

A calculus is defined for dynamic logic with the core command language.

Wolfgang Schreiner http://www.risc.jku.at 7/19

Advantages of Dynamic Logic

Modal formulas can also occur in the context of quantifiers.
Hoare Logic: {x = a} y:=x*x {x = aAy = a°}
Use of free mathematical variable a to denote the “old” value of x.
Dynamic logic: Ya:x = a = [y:=x*x] x =aAy = a

Quantifiers can be used to restrict the scopes of mathematical
variables across state transitions.

Set of DL formulas is closed under the usual logical operations.

Wolfgang Schreiner http://www.risc.jku.at 6/19
AN
A Calculus for Dynamic Logic .ﬁ {‘
[]

Basic rules:
Rules for predicate logic extended by general rules for modalities.
Command-related rules:
e F[T/X]
[X :=TIF
[GIIG]F
[Cl; C2]F
[G]F T F [G]F
[+ [Cl U C2]F
r- fF T+ F=][CF
r = [C]F
M- F=G
r+ [F?]G

rr
rr
rr
rr

From these, Hoare-like rules for the high-level language can be derived.

Wolfgang Schreiner http://www.risc.jku.at 8/19

Objects and Updates .E {'

Calculus has to deal with the pointer semantics of Java objects.

Aliasing: two variables o, 0’ may refer to the same object.
Field assignment 0.2 := T may also affect the value of 0’.a.
Update formulas: {o0.a - T}F
Truth value of F in state after the assignment 0.a:=T.
Field assignment rule:
N+ {oa« T}F
Nt [0.a:=TIF
Field access rule:
MNo=o F F(T) T,o#0 F F(0.3)
It {o.a« T}F(0.a)

Case distinction depending on whether o and o’ refer to same object.
Only applied as last resort (after all other rules of the calculus).

Considerable complication of verifications.

Wolfgang Schreiner http://www.risc.jku.at 9/19
7™\
A Simple Example * *
N

Engel et al: “KeY Quicktour for JML", 2005.

package paycard; /%@ public normal_behavior
Q@ requires amount>0;

public class PayCard { @ requires amount+balance<limit && isValid()
/*@ public invariant log.\inv; @ ensures \result == true;

@ public invariant balance >= 0; @ ensures balance == amount+\old(balance);

@ public invariant limit > 0; @ ensures unsucc == \old(unsucc);

@ public invariant unsucc >= 0; @ assignable balance, unsucc;

@ public invariant log != null; @ also

@x/ @x/
public boolean charge(int amount)
throws IllegalArgumentException {
if (amount <= 0)
throw new IllegalArgumentException();
if (balancetamount<limit && isValid()) {
balance=balance+amount;
return true;

}

/%@ spec_public @+/ int 1limit=1000;
/*@ spec_public @*/ int unsucc;
/*@ spec_public @*/ int id;
/*@ spec_public @*/ int balance=0;
/*@ spec_public @x*/

protected LogFile log;

}...

Wolfgang Schreiner http://www.risc.jku.at 11/19

The JMLKeY Prover .Xﬂ {‘

/zvol/formal/bin/startProver &

Eile View Proof Options

[%] [runz3 vices, cves, simpiify

Proofs
Env. with model linsearch@2:37:39 PM #1
& linsearch

® mmE

& ((a.<created> = TRUE | a = null) & inInt(x))
& ('a=null & !a = null)
-> {heapAtPre:=heap || _a:=a || _x:=x}
i<t

[l Il I

(Proof Search Strategy | Rules |
oof G

oals exc=null;try {result=linsearch. Main. search(_a,_x)@Linsearch. Main;
Jeatch (jave. lang. Exception e) {
exc=e;

& @ Normal Execution (_a |= null)

(C) Copyright 2001-2013 Karlsruhe Institute of Technology, Chalmers University of Technology, and Technische Universitat Darmstadt
K E §>/ WWW: http://key-project.org

Version 2.0.0 (internal:

& \forall int j;
(B<j
& j < result
& InInt(j)
> talf] = x))))
& exc = null
& | forall Field f;
| forall java. lang. Object o;
0 = null

& ! boolean: :select (heapAtPre,
0.
<createds)
= TRUE
| of
= any: :select (heaphtPre, o, 7)) =l

KR strategy: Applied 1122 rules (6.6 sed), closed 14 goals, 0 remaining

Wolfgang Schreiner http://www.risc.jku.at

A Simple Example (Contd) °§3{

10/19

Proof Management x
By Target | By Proof

Contract Targets Contracts

ML exceptional_behavior operation contract 0

¢ [paycard resuit = self.charge(amount) catchfexc)
pre amount <= 0 & self, <inv>

¢ 0 g:ggiﬁz‘;;"’” post lexc = null & ({ java.lang.Exception:instance(exc) = TRUE -> self. <inv) & java.lang llegalargumentes
getMessage() T nation damond
initCause java.|ang. Throwabl

& [LogFile JML normal_behavior operation contract 0

e [LogRecord result = self.charge(amount) catchlexc)

¢ [Paycard pre amount > 0 & (javaAddinttamourt, self.balance) < self.limit & self.isValid() = TRUE & self.<irv>-)
PayCardQ) post result = TRUE & amaunt = amount & (self.balance = javaaddint(amount, int:selecttheapAtPre, self. b
PayCard(int) mod {(self, balance)} \cup {(self, unsuccessfuloperations)}
chargelint) termination diamond

chargeandRecord(int)
createjuniorcard()
isvalid() result = self.charge(amount) catchlexc)
pre amount > 0 & ({ javaAddint(amount, self.balance) == self.limit | !self.isvalid() = TRUE) & self.<inv>)
post !result = TRUE & amount = amount & { self.unsuccessfuloperations = javaAddint(int::select(heapAtPr:
mod {(self, balance} \cup {(sef, unsuccessfuloperations)}
termination diamond

JML normal_behavior operation contract 1

[« 1L [To] [I [¥]

[stateroor || cancel

Generate the proof obligations and choose one for verification.

Wolfgang Schreiner http://www.risc.jku.at

12/19

A Simple Example (Contd’2) . * A Simple Example (Contd’3) ‘Xﬂ {‘
[]]
A=) ==>
il i About.
e — - wellFormed (heaj
[i] [m|m] B [prootanagement| ; (heap)
Praots [Current Goal = & !self = null & ...
G b) | verormedinean) i & (amount > 0
1f. d: : . .
- . . I & (javaAddInt(amount, self.balance) < self.limit
& inTnt (amount) s . _ .
e e] £ (ot (0 & self.isValid() = TRUE & self.<inv>))
(I & (javaAddInt(amount, self.balance) < self.limit
HProofTree : e 5Bt 90 S -> {heapAtPre:=heap || _amount:=amount}
e
§ SoREca -> {heapAtPre:=heap || _amount:=amount} \<{
\<{
e e exc=null;try {result=self.charge(_amount)@paycard.PayCard;
excee: . .
) catch (java.lang.Exception e) {exc=e;
W> i resitE = TRIE } J g P { s
amount = amourt N> (result = TRUE
& (self.balance i
i AddInt (am t, B =
T I L & amount = amount
1f. Fule
S & (self.balance
unsuccessfuLOperations) = javaAddInt (amount,
& self,<invs))
= null 1 ..
il - int::select (heapAtPre, self, balance))
e ey & (self.unsucc
\cup {(self, unsuccessfuloperationsi} .
1o = nutl = int::select(heapAtPre
| ———— (heapAtPre,
| o.f = any::select(heapAtPre, o, 1)) self .
o unsucc)
KR Integrated Deductive Software Design: Ready (Hint: type F3 to search in proof trees or sequents.) P 1£.<i >))
self.<inv
Th £ obli i in D i« Logi & exc = null & ...
e proot obligation In namic LOgIC. u "
P & y & Press button “Start” (green arrow).
Wolfgang Schreiner http://www.risc.jku.at 13/19 Wolfgang Schreiner http://www.risc.jku.at 14/19
7 7™\
A Simple Example (Contd’4) .E {‘ A Loop Example ‘Xﬂ {‘
L J []
/*@ requires a != null;
Eile View Proof Options about @ assignable \nothing;
[| [runza 7| E] [proof Management| @ ensures
fs [l Nodt
:nr:t«fh model paycard@1i57:53 PM #1 i w:;;rameumeap) B Q (\result == -1 &&
() paycard.PayCardipaycard.PayCard::chargelint)] & !self = null
f. o> = m! . = . 1=
i — - R e (\forall int j; 0 <= j & j < a.length; alj] != x)) II
—), @ (0 <= \result && \result < a.length && al[\result] == x &&
Proof Search Strategy | Rules ¢ javeAddrnt(BN A . .) .
Proof | Goais G e (¢ (\forall int j; 0 <= j && j < \result; a[jl != x));
i Proof Tree [<] & self.isvalid() = TRUE
1:0ne Step Simplification: 4 rules & self.<invs)) Qx/
2:impRight -> {heapAtPre:=heap || _amount:=anount} g
iZZZtZﬁE 1f. charge(_amatint) @aycard. PayCard; PUbllc static int search(int[] a, int x) {
g?i% @ . p— - int n = a.length; int i = 0; int r = -1;
anle L :) .
Banaier Tt /*@ loop_invariant
TS - @ a !=null & n == a.length && 0 <= i && i <= n &
ggg:s‘s;tega\s/g\zhﬂcatmn 2 rules t::selecr{gz?tl’:)e, @ (\forall int J ; 0 <= J &% J < i; a[J] 1= X) L&
U atance) .
T e & (self.unsuccessfuldperations Q (r -1 || (r==1 &% i < n && alr] == x));
16:eqSymm = int::select (heapAtPre, -
1, == - - . .
L I T— H @ decreases r 17n-1: 05
Hisey e e @ assignable r, i; // required by KeY, not legal JML
21:inEqsimp_gtToGeq & | forall Field f;
22:times_zero | forall java. lang. Object o; @*/
23:add_zero_right ((o, # \in {(self, balancel} . A
24:inEqSimp_tToLeq \etp {(self, while (r == -1 && i < n) {

25:polySimp_mulCommo
addComml 5.2 | to = null
Il | & ! boolean: : select (heapAtPre.
K strategy: Applied 363 rules (2.7 sec), closed 10 goals, 0 remaining

unsuccessfuloperations)}

[

Proof runs through automatically.

Wolfgang Schreiner http://www.risc.jku.at

if (ali] == x) r = i; else i = i+1;

}
return r;

}

15/19 Wolfgang Schreiner http://www.risc.jku.at 16/19

A Loop Example (Contd) 'ﬁ 4

| Eile View Proof Options About

[»] [mnzs

| B [proof Management |

Proofs inner Node
Env. with model @2:24132 PM #1 =
§ linsearch Maind linsearch,Main0: search({iint)] IR T) "
& ((a.<created> = TRUE | &= null) & inInt(x))
& (1a'=null & la = null)
[T I I [+ | -> {heapatPre:=heap || _a:=a || _X:=x}
\<{

T Tv]

Proof Search Strategy | Rules | exc=null;try {result=linsearch. Maind. search(_a,_x)@insearch. Main
oof [Goals Jeatch (java. Lang. Exception &) {

88 Proof Tree exc=e;

8 Normal Execution (_a 1= null) + —

&8 Nul Reference (_a = nul) TR

avaUnaryMinusInt (1)
it 3;

@ Proved.
Statistics:
Nodes:785
Branches: 11

3
nAw
I

(0<7

& J < result
& InInt(j)
taljl =x))))

>

& exc = null
& \forall Field f;
\forall java. lang. Object o;
¢ fo=null

& | boolean: : select (heapAtPre,
o,
<created>)

= TRUE
|

o.f
= any: : select (heapAtPre, o, 1))
I

Lal D]

K strategy: Applied 774 rules (3.5 sec), closed 11 goals, 0 remaining

Also this verification is completed automatically.

Wolfgang Schreiner http://www.risc.jku.at

i,
Summary E.{

Various academic approaches to verifying Java(Card) programs.
Jack: http://www-sop.inria.fr/everest/soft/Jack/jack.html
Jive: http://www.pm.inf.ethz.ch/research/jive
Mobius: http://kindsoftware.com/products/opensource/Mobius/
Do not yet scale to verification of full Java applications.
General language/program model is too complex.
Simplifying assumptions about program may be made.
Possibly only special properties may be verified.
Nevertheless very helpful for reasoning on Java in the small.
Much beyond Hoare calculus on programs in toy languages.

Probably all examples in this course can be solved automatically by

the use of the KeY prover and its integrated SMT solvers.
Enforce clearer understanding of language features.
Perhaps constructs with complex reasoning are not a good idea. . .

In a not too distant future, customers might demand that some critical

code is shipped with formal certificates (correctness proofs). . .

Wolfgang Schreiner http://www.risc.jku.at

Proof Structure

Proof Search Strategy | Rules |
Proof I Goals

Proof Tree

B B8 Normal Execution (_a != null)
Invariant Initially valid

Body Preserves Invariant
Use Case

Null Reference (_a = null)

Multiple conditions:
Invariant initially valid.
Body preserves invariant.
Use case (invariant implies postcondition).

If proof fails, elaborate which part causes trouble and potentially

correct program, specification, loop annotations.

For a successful proof, in general multiple iterations of automatic proof
search (button “Start”) and invocation of separate SMT solvers required

(button “Run Z3, Yices, CVC3, Simplify").

Wolfgang Schreiner http://www.risc.jku.at

18/19

