Specifying and Verifying Programs (Part 2)

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

Hoare calculus and predicate transformers use state predicates
\square Formulas that talk about a single (pre/post-)state.

- In such a formula, a reference x means "the value of program variable x in the given state"
- Relationship between pre/post-state is not directly expressible.
- Requires uninterpreted mathematical constants

$$
\{x=a\} x:=x+1\{x=a+1\}
$$

- Unchanged variables have to be explicitly specified.

$$
\{x=a \wedge y=b\} x:=x+1\{x=a+1 \wedge y=b\}
$$

- The semantics of a command c is only implicitly specified.
- Specifications depend on auxiliary state conditions P, Q.

$$
\begin{aligned}
& \{P\} c\{Q\} \\
& \operatorname{wp}(c, Q)=P
\end{aligned}
$$

Let us turn our focus from individual states to pairs of states.

1. Programs as State Relations
2. The RISC ProgramExplorer

Specification by State Relations

- We introduce formulas that denote state relations.
- Talk about a pair of states (the pre-state and the post-state).
- old x : "the value of program variable x in the pre-state".
- var x : "the value of program variable x in the post-state".
- We introduce the logical judgment $c:[F]^{x}$.,
- If the execution of c terminates normally, the resulting post-state is related to the pre-state as described by F.
- Every variable y not listed in the set of variables x, \ldots has the same value in the pre-state and in the post-state.
$c: F \wedge \operatorname{var} y=$ old $y \wedge \ldots$

$$
\begin{aligned}
& x:=x+1:[\operatorname{var} x=\text { old } x+1]^{x} \\
& x:=x+1: \operatorname{var} x=\operatorname{old} x+1 \wedge \operatorname{var} y=\text { old } y \wedge \operatorname{var} z=\operatorname{old} z \wedge \ldots
\end{aligned}
$$

We will discuss the termination of commands later

State Relation Rules

$$
\frac{c:[F]^{x s} \quad y \notin x s}{c:[F \wedge \operatorname{var} y=\operatorname{old} y]^{\text {sSUTy\}}}}
$$

skip : [true $]^{\emptyset} \quad$ abort : $[\text { true }]^{\emptyset} \quad x=e:\left[\text { var } x=e^{\prime}\right]^{x}$

$$
\begin{aligned}
& \frac{c_{1}:\left[F_{1}\right]^{\times s} c_{2}:\left[F_{2}\right]^{\times s}}{c_{1} ; c_{2}:\left[\exists y s: F_{1}[y s / \text { var } x s] \wedge F_{2}[y s / \text { old } x s]\right]^{\times s}} \\
& c:[F]^{x s} \\
& \text { if } e \text { then } c:\left[\text { if } e^{\prime} \text { then } F \text { else var } x s=\text { old } x s\right]^{x s} \\
& c:[F]^{\times s}
\end{aligned}
$$

$\vdash \forall x s, y s, z s: l[x s / o l d x s, y s / v a r x s] \wedge e[y s / x s] \wedge F[y s / o l d x s, z s / v a r x s] \Rightarrow$
$\quad I[x s /$ old $x s, z s / \mathrm{var} \times s]$
$l[x s /$ old $x s, z s /$ var $x s]$
if e then F_{1} else $F_{2}: \Leftrightarrow\left(e \Rightarrow F_{1}\right) \wedge\left(\neg e \Rightarrow F_{2}\right)$
$e^{\prime}:=e[$ old $x s / x s], e^{\prime \prime}:=e[\operatorname{var} x s / x s]$ (for all program variables $x s$)
Wolfgang Schreine
http://www.risc.jku.at

Loops

$c:[F]^{x s}$
$\vdash \forall x s, y s, z s: I[x s / o l d x s, y s /$ var $x s] \wedge e[y s / x s] \wedge F[y s / o l d x s, z s /$ var $x s] \Rightarrow$

The loop relation is derived from the invariant (not the loop body); we
have to prove the preservation of the loop invariant.
Wolfgang Schreiner

Example

$$
\begin{aligned}
& c_{1}=y:=y+1 ; \\
& c_{2}=x:=x+y
\end{aligned}
$$

$c_{1}:[\operatorname{var} y=\text { old } y+1]^{y}$
$c_{2}:[\operatorname{var} x=\text { old } x+\text { old } y]^{x}$
$c_{1}:[\operatorname{var} y=\text { old } y+1 \wedge \operatorname{var} x=\text { old } x]^{x, y}$
$c_{2}:[\operatorname{var} x=\text { old } x+\text { old } y \wedge \operatorname{var} y=\text { old } y]^{x, y}$
$c_{1} ; c_{2}:\left[\exists x_{0}, y_{0}:\right.$

$$
\begin{aligned}
& y_{0}=\text { old } y+1 \wedge x_{0}=\text { old } x \wedge \\
& \left.\operatorname{var} x=x_{0}+y_{0} \wedge \operatorname{var} y=y_{0}\right]^{x, y}
\end{aligned}
$$

$c_{1} ; c_{2}:[\operatorname{var} x=\text { old } x+\text { old } y+1 \wedge \operatorname{var} y=\text { old } y+1]^{x, y}$
Mechanical translation and logical simplification.

Wolfgang Schreiner

Example

$c=$

$$
\text { if } n<0
$$

$$
s:=-1
$$

else
$s:=0$
$i:=0$
while $i<n$ do $\{I, t\}$

$$
s:=s+i
$$

$$
i:=i+1
$$

$I \Leftrightarrow 0 \leq \operatorname{var} i \leq$ old $n \wedge \operatorname{var} s=\sum_{j=0}^{\text {var }{ }^{i-1} j}$
$t=$ old $n-$ old i
c : [if old $n<0$
then var $i=$ old $i \wedge$ var $s=-1$

$$
\text { else var } \left.\left.i=\text { old } n \wedge \operatorname{var} s=\sum_{j=0}^{\text {old } n-1} j\right)\right]^{s, i}
$$

Let us calculate this "semantic essence" of the program.
Wolfgang Schreiner

Example

$c=$ if $n<0$ then $s:=-1$ else b
$b=(s:=0 ; i:=0 ; w)$
$w=$ while $i<n$ do $\{I, t\}(s:=s+i ; i=i+1)$
$s:=0:[\operatorname{var} s=0]^{s}$
$s:=0:[\operatorname{var} s=0 \wedge \text { var } i=\text { old } i]^{s, i}$
$i:=0:[\operatorname{var} i=0]^{i}$
$i:=0:[\operatorname{var} i=0 \wedge \operatorname{var} s=\mathrm{old} s]^{s, i}$
$s:=0 ; i:=0:\left[\exists s_{0}, i_{0}: s_{0}=0 \wedge i_{0}=\text { old } i \wedge \text { var } i=0 \wedge \operatorname{var} s=s_{0}\right]^{s, i}$
$s:=0 ; i:=0:[\operatorname{var} s=0 \wedge \operatorname{var} i=0]^{s, i}$
$w:\left[\neg(\text { var } i<\operatorname{var} n) \wedge\left(0 \leq \text { old } i \leq \text { old } n \wedge \text { old } s=\sum_{j=0}^{\text {old } i-1} j \Rightarrow I\right)\right]^{\text {s } i}$
$w:\left[\text { var } i \geq \text { old } n \wedge\left(0 \leq \text { old } i \leq \text { old } n \wedge \text { old } s=\sum_{j=0}^{\text {old } i-1} j \Rightarrow I\right)\right]^{s, i}$
$c=$ if $n<0$ then $s:=-1$ else b
$b=(s:=0 ; i:=0 ; w)$
$w=$ while $i<n$ do $\{I, t\}(s:=s+i ; i=i+1)$
$s:=-1:[\operatorname{var} s=-1]^{s}$
$s:=-1:[\operatorname{var} i=\text { old } i \wedge \operatorname{var} s=-1]^{s, i}$
$b:[\operatorname{var} i \geq$ old $n \wedge$
$\left(0 \leq\right.$ old $n \Rightarrow \operatorname{var} i=$ old $n \wedge$ var $\left.\left.s=\sum_{j=0}^{\text {old } n-1} j\right)\right]^{\text {s.i }}$
c: [if old $n<0$
then var $i=$ old $i \wedge$ var $s=-1$
else var $i \geq$ old $n \wedge$
$\left(0 \leq\right.$ old $n \Rightarrow \operatorname{var} i=$ old $n \wedge$ var $\left.\left.s=\sum_{j=0}^{\text {old } n-1} j\right)\right]^{\text {s. },}$
c : [if old $n<0$
then $\operatorname{var} i=$ old $i \wedge \operatorname{var} s=-1$
else var $\left.\left.i=\operatorname{old} n \wedge \operatorname{var} s=\sum_{j=0}^{\text {old } n-1} j\right)\right]^{s, i}$
$c=$ if $n<0$ then $s:=-1$ else b
$b=(s:=0 ; i:=0 ; w)$
$w=$ while $i<n$ do $\{I, t\}(s:=s+i ; i=i+1)$
$s:=0 ; i:=0:[\operatorname{var} s=0 \wedge \operatorname{var} i=0]^{s, i}$
$w:\left[\operatorname{var} i \geq \text { old } n \wedge\left(0 \leq \text { old } i \leq \text { old } n \wedge \text { old } s=\sum_{j=0}^{\text {old } i-1} j \Rightarrow I\right)\right]^{s, i}$
$b:\left[\exists s_{0}, i_{0}: s_{0}=0 \wedge i_{0}=0 \wedge\right.$

$$
\text { var } \left.i \geq \text { old } n \wedge\left(0 \leq i_{0} \leq \text { old } n \wedge s_{0}=\sum_{j=0}^{i_{0}-1} j \Rightarrow I\right)\right]^{s, i}
$$

$b:\left[\exists s_{0}, i_{0}: s_{0}=0 \wedge i_{0}=0 \wedge\right.$ var $i \geq$ old $n \wedge(0 \leq$ old $n \Rightarrow I)]^{s, i}$
b : [var $i \geq$ old $n \wedge$ $\left(0 \leq\right.$ old $n \Rightarrow 0 \leq \operatorname{var} i \leq$ old $\left.\left.n \wedge \operatorname{var} s=\sum_{j=0}^{\operatorname{var} i-1} j\right)\right]^{s, i}$
b : [var $i \geq$ old $n \wedge$ $\left(0 \leq\right.$ old $n \Rightarrow \operatorname{var} i=$ old $\left.\left.n \wedge \operatorname{var} s=\sum_{j=0}^{\text {old } n-1} j\right)\right]^{s, i}$

Partial Correctness

- Specification ($x s, P, Q$)
- Set of program variables xs (which may be modified)
- Precondition P (a formula with "old $x s$ " but no "var $x s$ ").
- Postcondition Q (a formula with both "old $x s$ " and "var xs")
- Partial correctness of implementation c

1. Derive $c:[F]^{x s}$.
2. Prove $F \Rightarrow(P \Rightarrow Q)$

- Or: $P \Rightarrow(F \Rightarrow Q)$
- Or: $(P \wedge F) \Rightarrow Q$

Verification of partial correctness leads to the proof of an implication.

Relationship to Other Calculi

Let all state conditions refer via "old xs" to program variables xs.

- Hoare Calculus
- For proving $\{P\} \subset\{Q\}$,
- it suffices to derive $c:[F]^{x s}$
- and prove $P \wedge F \Rightarrow Q[\operatorname{var} x s / o l d x s]$
- Predicate Transformers
- Assume we can derive $c:[F]^{\times s}$
- If c does not contain loops, then

$$
\mathrm{wp}(c, Q)=\forall x s: F[x s / \text { var } x s] \Rightarrow Q[x s / \text { old } x s]
$$

$$
\operatorname{sp}(c, P)=\exists x s: P[x s / \text { old } x s] \wedge F[x s / \text { old } x s, \text { old } x s / \text { var } x s]
$$

- If c contains loops, the result is still a valid pre/post-condition but not necessarily the weakest/strongest one.

A generalization of the previously presented calculi

Termination Condition Rules

skip \downarrow true

$$
\text { abort } \downarrow \text { true } \quad x:=e \downarrow \text { true }
$$

$$
\frac{c_{1} \downarrow T_{1} \quad c_{2} \downarrow T_{2}}{c_{1} ; c_{2} \downarrow T_{1} \wedge \mathrm{wp}\left(c_{1}, T_{2}\right)}
$$

$c \downarrow T$
if e then $c \downarrow e^{\prime} \Rightarrow T$

$$
\begin{array}{cc}
c_{1} \downarrow T_{1} \quad c_{2} \downarrow T_{2} \\
\hline \text { if } e \text { then } c_{1} \text { else } c_{2} \downarrow \text { if } e^{\prime} \text { then } T_{1} \text { else } T_{2}
\end{array}
$$

$$
c:[F]^{\times s} \quad c \downarrow T
$$

$\vdash \forall x s, y s, z s:$
$I[x s /$ old $x s, y s / \operatorname{var} x s] \wedge e[y s / x s] \wedge F[y s /$ old $x s, z s / \operatorname{var} x s] \wedge t[y s /$ old $x s] \geq 0 \Rightarrow$
$T[y s /$ old $x s] \wedge 0 \leq t[z s /$ old $x s]<t[y s /$ old $x s]$

$$
\text { while } e \text { do }\{I, t\} c \downarrow t \geq 0
$$

In every iteration of a loop, the loop body must terminate and the termination term must decrease (but not become negative).

- We introduce a judgment $c \downarrow T$.

State condition T (a formula with "old xs" but no "var xs").

- Starting with a pre-state that satisfies condition T the execution of command c terminates.
- Total correctness of implementation c.

Specification (xs, P, Q).

- Derive $c \downarrow T$.
- Prove $P \Rightarrow T$.

Also verification of termination leads to the proof of an implication.

Example


```
\(c=\)
    if \(n<0\)
        \(s:=-1\)
        else
            \(s:=0\)
            \(i:=0\)
            while \(i<n\) do \(\{I, t\}\)
            \(s:=s+i\)
            \(i:=i+1\)
\(I \Leftrightarrow 0 \leq \operatorname{var} i \leq\) old \(\left.n \wedge \operatorname{var} s=\sum_{j=0}^{\text {var } i-1} j\right]\)
\(t=\) old \(n-\) old \(i\)
\(c \downarrow\) if old \(n<0\) then true else
\(c \downarrow\) if old \(n<0\) then true else old \(n \geq 0\)
\(c \downarrow\) true
```

We still have to prove the constraint on the loop iteration.

Example

$$
\begin{aligned}
& s:=s+i ; i:=i+1 \downarrow \text { true } \\
& \forall s_{x}, s_{y}, s_{z}, i_{x}, i_{y}, i_{z}: \\
& \quad\left(0 \leq i_{y} \leq \text { old } n \wedge s_{y}=\sum_{j=0}^{i_{y}-1} j\right) \wedge \\
& i_{y}<\text { old } n \wedge \\
& \quad\left(s_{z}=s_{y}+i_{y} \wedge i_{z}=i_{y}+1\right) \wedge \\
& \quad \text { old } n-i_{y} \geq 0 \Rightarrow \\
& \quad \text { true } \wedge \\
& \quad 0 \leq \text { old } n-i_{z}<\text { old } n-i_{y}
\end{aligned}
$$

Also this constraint is simple to prove.

1. Programs as State Relations
2. The RISC ProgramExplorer

Abortion

Also abortion can be ruled out by proving side conditions in the usual way.
Wolfgang Schreiner. Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs. Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria, 2011.

See the report for the full calculus.

The RISC ProgramExplorer

- An integrated environment for program reasoning.
- Research Institute for Symbolic Computation (RISC), 2008-. http://www.risc.jku.at/research/formal/software/ProgramExplorer
- Integrates the RISC ProofNavigator for computer-assisted proving.

Written in Java, runs under Linux (only), freely available (GPL)

- Programs written in "MiniJava".
- Subset of Java with full support of control flow interruptions.
- Value (not pointer) semantics for arrays and objects.
- Theories and specifications written in a formula language.
- Derived from the language of the RISC ProofNavigator.
- Semantic analysis and verification.
- Program methods are translated into their "semantic essence". - Open for human inspection.
- From the semantics, the verification tasks are generated.
- Solved by automatic decision procedure or interactive proof.

Tight integration of executable programs, declarative specifications,
mathematical semantics, and verification tasks.
Wolfgang Schreiner

Using the Software

See "The RISC ProgramExplorer: Tutorial and Manual"

- Develop a theory.

■ File "Theory.theory" with a theory Theory of mathematical types, constants, functions, predicates, axioms, and theorems.

- Can be also added to a program file.
- Develop a program.
- File "Class.java" with a class Class that contains class (static) and object (non-static) variables, methods and constructors.
- Class may be annotated by a theory (and an object invariant).
- Methods may be annotated by method specifications.
- Loops may be annotated by invariants and termination terms.
- Analyze method semantics.
- Transition relations, termination conditions, ... of the method body and its individual commands.
- Perform verification tasks.
- Frame, postcondition, termination, preconditions, loop-related tasks, type-checking conditions.
Wolfgang Schreiner

The Graphical User Interface

Starting the Software

- Starting the software:
module load ProgramExplorer (only at RISC)
ProgramExplorer \&
- Command line options:

Usage: ProgramExplorer [OPTION]...
OPTION: one of the following options:
-h, --help: print this message.
-cp, --classpath [PATH]:
directories representing top package.

Environment Variables:
PE_CLASSPATH:
the directories (separated by ":") representing the
top package (default the current working directory)

- Task repository created/read in current working directory:

Subdirectory .PETASKS. timestamp (ProgramExplorer tasks)
Subdirectory . ProofNavigator (ProofNavigator legacy)

A Program


```
/*@.
class Sum
\{la
    static int sum(int \(n\) ) /*@.
    \{
        int s;
        if ( \(\mathrm{n}<0\) )
            \(\mathrm{s}=-1\);
        else
            \{
            s = 0;
            int \(\mathrm{i}=1\);
            while (i <= n) /*@.
            \{
                \(\mathrm{s}=\mathrm{s}+\mathrm{i}\)
                i \(=\) i+1;
            \(\}^{\}}\)
        return \(s\);
    \}
\(\}^{\}}\)
Markers /*@. . indicate
hidden mathematical annotations.

\section*{A Theory}
```

/*@
theory {
sum: (INT, INT) -> INT;
sumaxiom: AXIOM
FORALL(m: INT, n: INT):
IF n<m THEN
sum(m, n) = 0
ELSE
sum(m, n) = n+\operatorname{sum}(m,n-1)
ENDIF;
@*/
@*/
class Sum

```

The introduction of a function \(\operatorname{sum}(m, n)=\sum_{j=m}^{n} j\).

while ( \(\mathrm{i}<=\mathrm{n}\) ) / \(/\) ©
invariant VAR \(n\) < Base. MAX_INT
AND 1 <= VAR i AND VAR i <= VAR n+1
AND VAR s=sum(1, VAR i-1);
decreases VAR \(n-\operatorname{VAR} i+1\);

\section*{@*/}
\{ \(s=s+i ;\)
\(s=s+i ;\)
\(i=i+1 ;\)
\}
\}
The loop invariant and termination term (measure).
static int sum(int n) /*@
requires VAR n < Base.MAX_INT;
ensures
LET result=VALUE@NEXT IN
IF VAR n < 0
THEN result \(=-1\)
ELSE result \(=\operatorname{sum}(1, \operatorname{VAR} \mathrm{n})\) ENDIF;
@*/

For non-negative \(n\), a call of program method \(\operatorname{sum}(n)\) returns \(\operatorname{sum}(1, n)\) (and does not modify any global variable).

\section*{The Specification Language}

Derived from the language of the RISC ProofNavigator.
- State conditions/relations, state terms.
- State condition: method precondition (requires).
- State relation: method postcondition (ensures),
loop invariant (invariant).
- State term: termination term (decreases).
- References to program variables.

OLD \(x\) : the value of program variable \(x\) in the pre-state.
VAR \(x\) : the value of program variable \(x\) in the post-state.
- In state conditions/terms, both refer to the value in the current state.
- If program variable is of the program type \(T\), then then OLD/VAR \(x\) is of the mathematical type \(T^{\prime}\)
int \(\rightarrow\) Base.int=[Base.MIN_INT,Base.MAX_INT].
- Function results

VALUE@NEXT: the return value of a program function.
- The value of the function call's post-state NEXT.

The Method Body

\section*{A Body Command}


\section*{Statement Knowledge}

\section*{[Show Original Formulas}

\section*{Pre-State Knowledge}
old \(n<\) Base.MAX \(_{\text {INT }} \wedge\) old \(n \geq 0 \wedge\) old \(s=0 \wedge\) old \(i=\)

\section*{Precondition}
old \(n<\) Base.MAX alt \(\wedge 1 \leq\) old \(i \wedge\) old \(i \leq\) old \(n+1 \wedge\) old \(s=\operatorname{sum}(1\), old \(i-1)\)

\section*{Effects}
executes: true, continues: false, breaks: false, returns: fals
variables: \(s, i\) exceptions:

\section*{Transition Relation}
var \(i=\) old \(n+1 \wedge\) old \(n<\) Base.MAX IINT \(^{\wedge} \wedge 1 \leq \operatorname{var} i \wedge \operatorname{var} s=\operatorname{sum}(1\), var \(i-1)\)

\section*{Termination Condition}
executes@ now \(\Rightarrow\) old \(n\)-old \(i \geq-\)

Move the mouse pointer over the box to the left of the loop.
```

Body Knowledge
[Show Original Formulas]
Pre-State Knowledge
old n<\mp@subsup{B}{\mathrm{ Base.MAX INT}}{}
Effects
executes: false, continues: false, breaks: false, returns: true
variables: -; exceptions:
Transition Relation
if old }n<0\mathrm{ then
returns@next ^value@next =-1
else
Ms@nex
^retu
\#in\inBase int: in =old n+1^1 <in ^value@ @ext = sum(1, in - 1))

```
Select method symbol "sum" and
"S old \(n<\) Base.MAX \(_{\text {INT }}\)

\section*{The Semantics Elements}
- Pre-State Knowledge

What is known about the pre-state of the command.
- Precondition

What has to be true for the pre-state of the command such that the command may be executed
- Effects

Which kind of effects may the command have.
- variables: which variables may be changed.
- exceptions: which exceptions may be thrown.
- executes, continues, breaks, returns: may the execution terminate normally, may it be terminated by a continue, break, return.
- Transition Relation

The prestate/poststate relationship of the command.
- Termination

What has to be true for the pre-state of the command such that the command terminates
\(\underset{\text { Wolfgang Schreiner }}{\text { Formulas }}\) are shown after simplification (see "Show Original Formulas") . \(_{32 / 46}\)

The Verification Tasks

\section*{State Conditions}
[Show Original Formulas]

\section*{Pre-State Condition}
var \(i=1 \wedge \operatorname{var} s=\operatorname{var} i+2\)

\section*{Post-State Condition}
\(\operatorname{var} s=3 \wedge \operatorname{var} i=2\)

Select the loop body, enter in the box the condition VAR \(s=2\) AND VAR \(i=1\), press "Submit", and move the mouse to \(i=i+1\).
\(\nabla\) method sum
[Sum.sum] effects
[Sum.sum] postcondition
[Sum.sum] termination
\(\nabla\) preconditions
[ [Sum.sum:0] assignment precondition [sum.sum: 1\(]\) while loop precondition [Sum.sum:2] assignment precondition [Sum.sum:3] assignment precondition
\(\nabla\) loops
[Sum.sum:qvb] invariant is preserved
(sum.sum:qvb] measure is well-formed
[3 [Sum.sum:qvb] measure is decreased
type checking conditions
\(\nabla\) specification validation (optional)
[Sum.sum] specification is satisfiable
[Sum.sum] specification is not trivial

\section*{The Verification Tasks}
- Effects: does the method only change those global variables indicated in the method's assignable clause?
- Postcondition: do the method's precondition and the body's state relation imply the method's postcondition?
- Termination: does the method's precondition imply the body's termination condition?
- Precondition: does a statement's prestate knowledge imply the statement's precondition?
- Loops: is the loop invariant preserved, the measure well-formed (does not become negative) and decreased?
- Type checking conditions: are all formulas well-typed?
- Specification validation: does for every input that satisfies a precondition exist a result that does (not) satisfy the postcondition?
Partially solved by automatic decision procedure, partially by an
interactive computer-supported proof
http://www.
Wolfgang Schreiner
http://www.risc.jku.at

            reams_(omun)
            Rums


    \(\Rightarrow \quad 0 \quad 1 \quad 0\)
    Chluere: Lupl|Mon






Wolfgang Schreiner


The program type int [] is mapped to the mathematical type Base.IntArray.

\section*{theory Base}
\{
IntArray: TYPE =
[\#value: ARRAY int OF int, length: nat, null: BOOLEAN\#];
\}
- (VAR a). length: the number of elements in array a.
- (VAR a).value [i]: the element with index \(i\) in array \(a\).
\(\square\) (VAR a).null: \(a\) is the null pointer.
Program type Class is mapped to mathematical type Class. Class; Class [] is mapped to Class.Array.

\section*{The Representation of Arrays}

\section*{Linear Search}
```

 /*@..
 public class Searching
 {
 public static int search(int[] a, int x) /*@.
 {
 int n = a.length;
 int r = -1;
 int i = 0;
 while (i < n && r == -1) /*@..
 {
 if (a[i] == x)
 r = i;
 else
 i = i+1;
 }
 return r;
 }
 }

Theory

```
/*@
theory uses Base {
    int: TYPE = Base.int;
    intArray: TYPE = Base.IntArray;
    smallestPosition: FORMULA
        FORALL(a: intArray, n: NAT, x: int):
            (EXISTS(i:int): 0 <= i AND i < n AND a.value[i] = x) =>
            (EXISTS(i:int): 0 <= i AND i < n AND a.value[i] = x AND
                (FORALL(j:int): 0 <= j AND j < n AND a.value[j] = x =>
                j >= i));
}
@*/
public class Searching
```


Method Specification

```
public static int search(int[] a, int x) /*@
    requires (VAR a).null = FALSE;
    ensures
        LET result = VALUE@NEXT, n = (VAR a).length IN
        IF result = -1 THEN
            FORALL(i: INT): 0 <= i AND i < n =>
                (VAR a).value[i] /= VAR x
        ELSE
            0 <= result AND result < n AND
            (FORALL(i: INT): 0 <= i AND i < result =>
                (VAR a).value[i] /= VAR x) AND
            (VAR a).value[result] = VAR x
        ENDIF;
@*/
```


Transition Relation

Termination Condition

executes＠now \Rightarrow old a ．length ≥ 0

Method Semantics

^

```
(\existsin\inBase.int, n\inBase.int:
```

(\existsin\inBase.int, n\inBase.int:
n=old a.length }\wedge(\mathrm{ in }\geqn\vee\mathrm{ value@ @ext }\not=-1)\wedge0\leq\mathrm{ in }\wedge\mathrm{ in }\leq
n=old a.length }\wedge(\mathrm{ in }\geqn\vee\mathrm{ value@ @ext }\not=-1)\wedge0\leq\mathrm{ in }\wedge\mathrm{ in }\leq
^
^
(\foralli\in\mathbb{Z}:0\leqi\wedgei<in }=>\mathrm{ old }a.value[i]\not=old x
(\foralli\in\mathbb{Z}:0\leqi\wedgei<in }=>\mathrm{ old }a.value[i]\not=old x
^
^
(value@ next=-1
(value@ next=-1
\vee
\vee
value@ next =in }\wedge\mathrm{ in <n \ old a.value[value@ next] =old x)) ^ ᄀold a.null
value@ next =in }\wedge\mathrm{ in <n \ old a.value[value@ next] =old x)) ^ ᄀold a.null
returns@next

```
returns@next
```


Loop Annotation

while（ $\mathrm{i}<\mathrm{n}$ \＆\＆ $\mathrm{r}=-1$ ）／＊＠

invariant（VAR a）．null＝FALSE AND VAR $n=(\operatorname{VAR} a)$. length
AND $0<=$ VAR i AND VAR i＜＝VAR n
AND（FORALL（i：INT）： $0<=$ i AND i＜VAR i＝＞
（VAR a）．value［i］／＝VAR x）
AND（VAR $r=-1$ OR（VAR $r=\operatorname{VAR} i$ AND VAR $i<\operatorname{VAR} n$ AND （VAR a）．value［VAR r］＝VAR x ））；
decreases IF VAR $r=-1$ THEN VAR $n-\operatorname{VAR}$ i ELSE 0 ENDIF； ＠＊／
\｛
if（a［i］＝＝x）
$r=i ;$
else
i＝i＋1；
\}

Wolfgang Schreiner

Verification Tasks

［Searching．search］effects
［Searching．search］postcondition
［Searching．search］termination
∇ preconditions
［［Searching．search：0］declaration precondition
［Searching．search：1］declaration precondition
［Searching．search：2］while loop precondition
敛［Searching．search：3］conditional precondition
［Searching．search：4］assignment precondition
∇ loops
［Searching．search：rb］invariant is preserved
［Searching．search：rbl］measure is well－formed
∇ type checking conditions
［景［Searching．（local）：p3x］value is in interval
［Searching（local）：smu］value is in inval
［searching．local）：sulue is in nerval
\square specification validation（optional）

Invariant Proof

Working Strategy

- Develop theory.
- Introduce interesting theorems that may be used in verifications.
- Develop specifications.
- Validate specifications, e.g. by showing satisfiability and non-triviality.
- Develop program with annotations.
- Validate programs/annotations by investigating program semantics.
- Prove postcondition and termination.
- Partial and total correctness.
- By proofs necessity of additional theorems may be detected
- Prove precondition tasks and loop tasks.

By proofs necessity of additional theorems may be detected.
_ Prove mathematical theorems.

- Validation of auxiliary knowledge used in verifications.

The integrated development of theories, specifications, programs, annotations is crucial for the design of provably correct programs.

