Specifying and Verifying Programs (Part 1)

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

Wolfgang Schreiner http://www.risc.jku.at

1/52

1. The Hoare Calculus

- 2. Predicate Transformers
- 3. Proving Verification Conditions
- 4. Termination
- 5. Abortion
- 6. Procedures

Specifying and Verifying Programs

We will discuss three (closely interrelated) calculi.

- Hoare Calculus: $\{P\}$ c $\{Q\}$
 - If command *c* is executed in a pre-state with property *P* and terminates, it yields a post-state with property *Q*.

$${x = a \land y = b}x := x + y{x = a + y \land y = b}$$

- Predicate Transformers: wp(c, Q) = P
 - If the execution of command c shall yield a post-state with property Q, it must be executed in a pre-state with property P.

$$wp(x := x + y, x = a + y \land y = b) = (x + y = a + y \land y = b)$$

- State Relations: $c : [P \Rightarrow Q]^{x,...}$
 - The post-state generated by the execution of command c is related to the pre-state by $P \Rightarrow Q$ (where only variables x, \ldots have changed).

$$x = x + y$$
: [var $x = \text{old } x + \text{old } y$]^x

Wolfgang Schreiner

http://www.risc.jku.at

2/52

4/52

The Hoare Calculus

First and best-known calculus for program reasoning (C.A.R. Hoare).

- "Hoare triple": {P} c {Q}
 - Logical propositions P and Q, program command c.
 - The Hoare triple is itself a logical proposition.
 - The Hoare calculus gives rules for constructing true Hoare triples.
- Partial correctness interpretation of $\{P\}$ c $\{Q\}$:

"If c is executed in a state in which P holds, then it terminates in a state in which Q holds unless it aborts or runs forever."

- Program does not produce wrong result.
- But program also need not produce any result.
 - Abortion and non-termination are not (yet) ruled out.
- Total correctness interpretation of $\{P\}$ c $\{Q\}$:

"If c is executed in a state in which P holds, then it terminates in a state in which Q holds."

http://www.risc.jku.at

Program produces the correct result.

We will use the partial correctness interpretation for the moment.

Weakening and Strengthening

$$\frac{P \Rightarrow P' \quad \{P'\} \ c \ \{Q'\} \quad Q' \Rightarrow Q}{\{P\} \ c \ \{Q\}}$$

- Logical derivation: $\frac{A_1 A_2}{B}$
 - Forward: If we have shown A_1 and A_2 , then we have also shown B.
 - Backward: To show B, it suffices to show A_1 and A_2 .
- Interpretation of above sentence:
 - To show that, if P holds, then Q holds after executing c, it suffices to show this for a P' weaker than P and a Q' stronger than Q.

Precondition may be weakened, postcondition may be strengthened.

Wolfgang Schreiner http://www.risc.jku.at

Scalar Assignments

5/52

$${Q[e/x]} x := e {Q}$$

- Syntax
 - Variable *x*, expression *e*.
 - $lackbox{ } Q[e/x] \dots Q$ where every free occurrence of x is replaced by e.
- Interpretation
 - To make sure that *Q* holds for *x* after the assignment of *e* to *x*, it suffices to make sure that *Q* holds for *e* before the assignment.
- Partial correctness
 - Evaluation of e may abort.

$${x+3<5}$$
 $x := x+3$ ${x<5}$ ${x<2}$ $x := x+3$ ${x<5}$

Special Commands

$$\{P\}$$
 skip $\{P\}$ $\{\text{true}\}$ **abort** $\{\text{false}\}$

- The **skip** command does not change the state; if *P* holds before its execution, then *P* thus holds afterwards as well.
- The **abort** command aborts execution and thus trivially satisfies partial correctness.
 - Axiom implies $\{P\}$ abort $\{Q\}$ for arbitrary P, Q.

Useful commands for reasoning and program transformations.

Wolfgang Schreiner http://www.risc.jku.at 6/52

Array Assignments

$${Q[a[i \mapsto e]/a]} \ a[i] := e {Q}$$

- An array is modelled as a function $a: I \rightarrow V$.
 - Index set *I*, value set *V*.
 - $a[i] = e \dots array a contains at index i the value e.$
- Term $a[i \mapsto e]$ ("array a updated by assigning value e to index i")
 - A new array that contains at index *i* the value *e*.
 - All other elements of the array are the same as in a.
- Thus array assignment becomes a special case of scalar assignment.
 - Think of "a[i] := e" as " $a := a[i \mapsto e]$ ".

$${a[i \mapsto x][1] > 0}$$
 $a[i] := x$ ${a[1] > 0}$

Arrays are here considered as basic values (no pointer semantics).

Array Assignments

How to reason about $a[i \mapsto e]$?

$$Q[\underline{a[i \mapsto e]}[j]] \xrightarrow{\sim} (i = j \Rightarrow Q[e]) \land (i \neq j \Rightarrow Q[a[j]])$$

Array Axioms

$$i = j \Rightarrow a[i \mapsto e][j] = e$$

 $i \neq j \Rightarrow a[i \mapsto e][j] = a[j]$

$$\{\underline{a[i \mapsto x]}[1] > 0\} \quad a[i] := x \quad \{a[1] > 0\}$$

$$\{(i = 1 \Rightarrow x > 0) \land (i \neq 1 \Rightarrow a[1] > 0)\} \quad a[i] := x \quad \{a[1] > 0\}$$

Get rid of "array update terms" when applied to indices.

Wolfgang Schreiner http://www.risc.jku.at

Conditionals

9/52

$$\frac{\{P \wedge b\} \ c_1 \ \{Q\} \ \{P \wedge \neg b\} \ c_2 \ \{Q\}}{\{P\} \ \text{if } b \ \text{then} \ c_1 \ \text{else} \ c_2 \ \{Q\}}$$

$$\frac{\{P \land b\} \ c \ \{Q\} \ (P \land \neg b) \Rightarrow Q}{\{P\} \ \text{if } b \ \text{then } c \ \{Q\}}$$

- Interpretation
 - To show that, if *P* holds before the execution of the conditional, then *Q* holds afterwards.
 - it suffices to show that the same is true for each conditional branch, under the additional assumption that this branch is executed.

$$\frac{\{x \neq 0 \land x \geq 0\} \ y := x \ \{y > 0\} \ \ \{x \neq 0 \land x \not\geq 0\} \ y := -x \ \{y > 0\}}{\{x \neq 0\} \ \text{if} \ x \geq 0 \ \text{then} \ y := x \ \text{else} \ y := -x \ \{y > 0\}}$$

Command Sequences

$$\frac{\{P\}\ c_1\ \{R\}\ \{R\}\ c_2\ \{Q\}}{\{P\}\ c_1; c_2\ \{Q\}}$$

- Interpretation
 - To show that, if P holds before the execution of c_1 ; c_2 , then Q holds afterwards, it suffices to show for some R that
 - \blacksquare if P holds before c_1 , that R holds afterwards, and that
 - \blacksquare if R holds before c_2 , then Q holds afterwards.
- Problem: find suitable R.
 - Easy in many cases (see later).

$$\frac{\{x+y-1>0\}\ y:=y-1\ \{x+y>0\}\ \{x+y>0\}\ x:=x+y\ \{x>0\}}{\{x+y-1>0\}\ y:=y-1; x:=x+y\ \{x>0\}}$$

The calculus itself does not indicate how to find intermediate property.

Wolfgang Schreiner http://www.risc.jku.at 10/52

Loops

{true} **loop** {false}
$$\frac{\{I \land b\} \ c \ \{I\}}{\{I\} \ \text{while} \ b \ \text{do} \ c \ \{I \land \neg b\}}$$

- Interpretation:
 - The loop command does not terminate and thus trivially satisfies partial correctness.
 - Axiom implies $\{P\}$ **loop** $\{Q\}$ for arbitrary P, Q.
 - If it is the case that
 - I holds before the execution of the **while**-loop and
 - I also holds after every iteration of the loop body,

then I holds also after the execution of the loop (together with the negation of the loop condition b).

- I is a loop invariant.
- Problem:
 - Rule for **while**-loop does not have arbitrary pre/post-conditions P, Q.

In practice, we combine this rule with the strengthening/weakening-rule.

Wolfgang Schreiner http://www.risc.jku.at 11/52 Wolfgang Schreiner http://www.risc.jku.at 12/52

Loops (Generalized)

$$\frac{P \Rightarrow I \quad \{I \land b\} \ c \ \{I\} \quad (I \land \neg b) \Rightarrow Q}{\{P\} \text{ while } b \text{ do } c \ \{Q\}}$$

- Interpretation:
 - To show that, if before the execution of a **while**-loop the property *P* holds, after its termination the property *Q* holds, it suffices to show for some property *I* (the loop invariant) that
 - I holds before the loop is executed (i.e. that P implies I),
 - if I holds when the loop body is entered (i.e. if also b holds), that after the execution of the loop body I still holds,
 - when the loop terminates (i.e. if b does not hold), I implies Q.
- Problem: find appropriate loop invariant 1.
 - Strongest relationship between all variables modified in loop body.

The calculus itself does not indicate how to find suitable loop invariant.

Wolfgang Schreiner http://www.risc.jku.at 13/52

- 1. The Hoare Calculus
- 2. Predicate Transformers
- 3. Proving Verification Conditions
- 4. Termination
- 5. Abortion
- 6. Procedures

Example

$$I :\Leftrightarrow s = \sum_{j=1}^{i-1} j \land 1 \le i \le n+1$$

$$(n \ge 0 \land i = 1 \land s = 0) \Rightarrow I$$

$$\{I \land i \le n\} \ s := s+i; i := i+1 \ \{I\}$$

$$(I \land i \le n) \Rightarrow s = \sum_{j=1}^{n} j$$

$$\{n \ge 0 \land i = 1 \land s = 0\} \text{ while } i \le n \text{ do } (s := s+i; i := i+1) \ \{s = \sum_{j=1}^{n} j\}$$

The invariant captures the "essence" of a loop; only by giving its invariant, a true understanding of a loop is demonstrated.

Wolfgang Schreiner http://www.risc.jku.at 14/52

Backward Reasoning

16/52

Implication of rule for command sequences and rule for assignments:

$$\begin{cases}
P & c \ \{Q[e/x]\} \\
P & c; x := e \ \{Q\}
\end{cases}$$

- Interpretation
 - If the last command of a sequence is an assignment, we can remove the assignment from the proof obligation.
 - By multiple application, assignment sequences can be removed from the back to the front.

Weakest Preconditions

A calculus for "backward reasoning" (E.W. Dijkstra).

- Predicate transformer wp
 - lacksquare Function "wp" that takes a command c and a postcondition Q and returns a precondition.
 - Read wp(c, Q) as "the weakest precondition of c w.r.t. Q".
- = wp(c, Q) is a precondition for c that ensures Q as a postcondition.
 - Must satisfy $\{wp(c, Q)\}$ c $\{Q\}$.
- $\operatorname{\mathsf{wp}}(c,Q)$ is the weakest such precondition.
 - Take any P such that $\{P\}$ c $\{Q\}$.
 - Then $P \Rightarrow wp(c, Q)$.
- Consequence: $\{P\}$ c $\{Q\}$ iff $\{P \Rightarrow \mathsf{wp}(c,Q)\}$
 - We want to prove $\{P\}$ c $\{Q\}$.
 - We may prove $P \Rightarrow wp(c, Q)$ instead.

Verification is reduced to the calculation of weakest preconditions.

verification is reduced to the calculation of weakest preconditions.

Wolfgang Schreiner http://www.risc.jku.at

Forward Reasoning

17/52

Sometimes, we want to derive a postcondition from a given precondition.

$$\{P\} \ x := e \ \{\exists x_0 : P[x_0/x] \land x = e[x_0/x]\}$$

- Forward Reasoning
 - What is the maximum we know about the post-state of an assignment *x* := *e*, if the pre-state satisfies *P*?
 - We know that P holds for some value x_0 (the value of x in the pre-state) and that x equals $e[x_0/x]$.

$$\{x \ge 0 \land y = a\}$$

$$x := x + 1$$

$$\{\exists x_0 : x_0 \ge 0 \land y = a \land x = x_0 + 1\}$$

$$(\Leftrightarrow (\exists x_0 : x_0 \ge 0 \land x = x_0 + 1) \land y = a)$$

$$(\Leftrightarrow x > 0 \land y = a)$$

Weakest Preconditions

The weakest precondition of each program construct.

```
\begin{array}{l} \mathsf{wp}(\mathbf{skip},Q) = Q \\ \mathsf{wp}(\mathbf{abort},Q) = \mathsf{true} \\ \mathsf{wp}(x := e,Q) = Q[e/x] \\ \mathsf{wp}(c_1;c_2,Q) = \mathsf{wp}(c_1,\mathsf{wp}(c_2,Q)) \\ \mathsf{wp}(\mathbf{if}\ b\ \mathbf{then}\ c_1\ \mathbf{else}\ c_2,Q) = (b\Rightarrow \mathsf{wp}(c_1,Q)) \land (\neg b\Rightarrow \mathsf{wp}(c_2,Q)) \\ \mathsf{wp}(\mathbf{if}\ b\ \mathbf{then}\ c,Q) \Leftrightarrow (b\Rightarrow \mathsf{wp}(c,Q)) \land (\neg b\Rightarrow Q) \\ \mathsf{wp}(\mathbf{while}\ b\ \mathbf{do}\ c,Q) = \dots \end{array}
```

Loops represent a special problem (see later).

Wolfgang Schreiner http://www.risc.jku.at 18/52

Strongest Postcondition

A calculus for forward reasoning.

- Predicate transformer sp
 - Function "sp" that takes a precondition *P* and a command *c* and returns a postcondition.
 - Read sp(c, P) as "the strongest postcondition of c w.r.t. P".
- = sp(c, P) is a postcondition for c that is ensured by precondition P.
 - Must satisfy $\{P\}$ c $\{\operatorname{sp}(c, P)\}$.
- $ightharpoonup \operatorname{sp}(c, P)$ is the strongest such postcondition.
 - Take any P, Q such that $\{P\}$ c $\{Q\}$.
 - Then $sp(c, P) \Rightarrow Q$.
- Consequence: $\{P\}$ c $\{Q\}$ iff $(\operatorname{sp}(c,P) \Rightarrow Q)$.
 - We want to prove $\{P\}$ c $\{Q\}$.
 - We may prove $sp(c, P) \Rightarrow Q$ instead.

Verification is reduced to the calculation of strongest postconditions.

Strongest Postconditions

The strongest postcondition of each program construct.

```
sp(skip, P) = P
sp(abort, P) = false
sp(x := e, P) = \exists x_0 : P[x_0/x] \land x = e[x_0/x]
sp(c_1; c_2, P) = sp(c_2, sp(c_1, P))
\operatorname{sp}(\mathbf{if}\ b\ \mathbf{then}\ c_1\ \mathbf{else}\ c_2, P) \Leftrightarrow \operatorname{sp}(c_1, P \wedge b) \vee \operatorname{sp}(c_2, P \wedge \neg b)
sp(if b then c, P) = sp(c, P \wedge b) \vee (P \wedge \neg b)
sp(while \ b \ do \ c, P) = \dots
```

Forward reasoning as a (less-known) alternative to backward-reasoning.

Wolfgang Schreiner

http://www.risc.jku.at

21/52

Hoare Calculus and Predicate Transformers

In practice, often a combination of the calculi is applied.

$$\{P\}\ c_1$$
; while b do c; $c_2\ \{Q\}$

- Assume c_1 and c_2 do not contain loop commands.
- It suffices to prove

$$\{\operatorname{sp}(P,c_1)\}\$$
while b do c $\{\operatorname{wp}(c_2,Q)\}$

Predicate transformers are applied to reduce the verification of a program to the Hoare-style verification of loops.

http://www.risc.jku.at

22/52

Weakest Liberal Preconditions for Loops

Why not apply predicate transformers to loops?

wp(loop,
$$Q$$
) = true
wp(while b do c , Q) = $L_0(Q) \wedge L_1(Q) \wedge L_2(Q) \wedge ...$

$$L_0(Q) = \text{true}$$

 $L_{i+1}(Q) = (\neg b \Rightarrow Q) \land (b \Rightarrow \text{wp}(c, L_i(Q)))$

- Interpretation
 - Weakest precondition that ensures that loops stops in a state satisfying Q, unless it aborts or runs forever.
- Infinite sequence of predicates $L_i(Q)$:
 - Weakest precondition that ensures that after less than *i* iterations the state satisfies Q, unless the loop aborts or does not yet terminate.
- Alternative view: $L_i(Q) = wp(if_i, Q)$

$$if_0 = loop$$

 $if_{i+1} = if b then (c; if_i)$

Example

Wolfgang Schreiner

wp(**while** i < n **do** i := i + 1, Q)

```
L_0(Q) = \text{true}
L_1(Q) = (i \not< n \Rightarrow Q) \land (i < n \Rightarrow \mathsf{wp}(i := i + 1, \mathsf{true}))
           \Leftrightarrow (i \not< n \Rightarrow Q) \land (i < n \Rightarrow \text{true})
            \Leftrightarrow (i \not< n \Rightarrow Q)
L_2(Q) = (i \not< n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, i \not< n \Rightarrow Q))
            \Leftrightarrow (i \not< n \Rightarrow Q) \land
                         (i < n \Rightarrow (i + 1 \not< n \Rightarrow Q[i + 1/i]))
L_3(Q) = (i \not< n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1,
                         (i \not< n \Rightarrow Q) \land (i < n \Rightarrow (i + 1 \not< n \Rightarrow Q[i + 1/i])))
           \Leftrightarrow (i \not< n \Rightarrow Q) \land
                         (i < n \Rightarrow ((i+1 \nleq n \Rightarrow Q[i+1/i]) \land
                                   (i+1 < n \Rightarrow (i+2 \nmid n \Rightarrow Q[i+2/i])))
```

Weakest Liberal Preconditions for Loops

- Sequence $L_i(Q)$ is monotonically increasing in strength:
 - $\forall i \in \mathbb{N} : L_{i+1}(Q) \Rightarrow L_i(Q).$
- The weakest precondition is the "lowest upper bound":
 - $\forall i \in \mathbb{N} : wp(\mathbf{while} \ b \ \mathbf{do} \ c, Q) \Rightarrow L_i(Q).$
 - $\forall P : (\forall i \in \mathbb{N} : P \Rightarrow L_i(Q)) \Rightarrow (P \Rightarrow \mathsf{wp}(\mathsf{while}\ b\ \mathsf{do}\ c, Q)).$
- We can only compute weaker approximation $L_i(Q)$.
 - wp(while *b* do c, Q) $\Rightarrow L_i(Q)$.
- We want to prove $\{P\}$ while b do c $\{Q\}$.
 - This is equivalent to proving $P \Rightarrow wp(\mathbf{while}\ b\ \mathbf{do}\ c, Q)$.
 - Thus $P \Rightarrow L_i(Q)$ must hold as well.
- If we can prove $\neg(P \Rightarrow L_i(Q)), \ldots$
 - \blacksquare {*P*} while *b* do *c* {*Q*} does not hold.
 - If we fail, we may try the easier proof $\neg(P \Rightarrow L_{i+1}(Q))$.

Falsification is possible by use of approximation L_i , but verification is not.

Wolfgang Schreiner http://www.risc.jku.at 25/52

A Constructive Definition of Arrays


```
% constructive array definition
                                    % the array operations
newcontext "arrays2";
                                    length: ARR -> INDEX =
                                      LAMBDA(a:ARR): a.0;
                                   new: INDEX -> ARR =
% the types
INDEX: TYPE = NAT;
                                      LAMBDA(n:INDEX): (n, any);
ELEM: TYPE:
                                   put: (ARR, INDEX, ELEM) -> ARR =
ARR:
      TYPE =
                                    LAMBDA(a:ARR, i:INDEX, e:ELEM):
  [INDEX, ARRAY INDEX OF ELEM];
                                       IF i < length(a)</pre>
                                         THEN (length(a),
                                               content(a) WITH [i]:=e)
% error constants
          ARRAY INDEX OF ELEM:
                                         ELSE anyarray
anyelem: ELEM;
                                       ENDIF;
                                    get: (ARR, INDEX) -> ELEM =
anyarray: ARR;
                                      LAMBDA(a:ARR, i:INDEX):
% a selector operation
                                        IF i < length(a)</pre>
content:
                                         THEN content(a)[i]
  ARR -> (ARRAY INDEX OF ELEM) =
                                          ELSE anyelem ENDIF;
 LAMBDA(a:ARR): a.1;
```


- 1. The Hoare Calculus
- 2. Predicate Transformers
- 3. Proving Verification Conditions
- 4. Termination
- 5. Abortion
- 6. Procedures

Wolfgang Schreiner http://www.risc.jku.at 26/52

Proof of Fundamental Array Properties


```
% the classical array axioms as formulas to be proved
length1: FORMULA
 FORALL(n:INDEX): length(new(n)) = n;
length2: FORMULA
 FORALL(a:ARR, i:INDEX, e:ELEM):
   i < length(a) => length(put(a, i, e)) = length(a);
get1: FORMULA
 FORALL(a:ARR, i:INDEX, e:ELEM):
   i < length(a) => get(put(a, i, e), i) = e;
get2: FORMULA
                                         [adu]: expand length, get, put, content
 FORALL(a:ARR, i, j:INDEX, e:ELEM):
                                           [c3b]: scatter
   i < length(a) AND j < length(a) AND
                                             [qid]: proved (CVCL)
   i /= i =>
      get(put(a, i, e), j) = get(a, j);
```

Wolfgang Schreiner http://www.risc.jku.at 27/52 Wolfgang Schreiner http://www.risc.jku.at 28/52

Proof of a Higher-Level Array Property


```
% extensionality on low-level arrays
extensionality: AXIOM
  FORALL(a. b: ARRAY INDEX OF ELEM):
    a=b <=> (FORALL(i:INDEX):a[i]=b[i]);
% unassigned parts hold identical values
unassigned: AXIOM
                                         [adt]: expand length, get, content
  FORALL(a:ARR, i:INT):
                                          [cw2]: scatter
    (i >= length(a)) => content(a)[i
                                             [qey]: proved (CVCL)
                                            [rey]: assume b 0.1 = a \ 0.1
                                              [zpt]: proved (CVCL)
                                              [1pt]: instantiate a 0.1, b 0.1 in 1fm
% extensionality on arrays to be pro
                                                [y51]: scatter
equality: FORMULA
                                                  [ku2]: auto
  FORALL(a:ARR, b:ARR): a = b <=>
                                                    fiubl: proved (CVCL)
    length(a) = length(b) AND
    (FORALL(i:INDEX): i < length(a) => get(a,i) = get(b,i));
```

Wolfgang Schreiner http://www.risc.jku.at 29/52

The Verification Conditions


```
A :\Leftrightarrow Input \Rightarrow Invariant \\ B_1 :\Leftrightarrow Invariant \land i < n \land r = -1 \land a[i] = x \Rightarrow Invariant[i/r] \\ B_2 :\Leftrightarrow Invariant \land i < n \land r = -1 \land a[i] \neq x \Rightarrow Invariant[i+1/i] \\ C :\Leftrightarrow Invariant \land \neg (i < n \land r = -1) \Rightarrow Output \\ Input :\Leftrightarrow olda = a \land oldx = x \land n = length(a) \land i = 0 \land r = -1 \\ Output :\Leftrightarrow a = olda \land x = oldx \land \\ ((r = -1 \land \forall i : 0 \leq i < length(a) \Rightarrow a[i] \neq x) \lor \\ (0 \leq r < length(a) \land a[r] = x \land \forall i : 0 \leq i < r \Rightarrow a[i] \neq x)) \\ Invariant :\Leftrightarrow olda = a \land oldx = x \land n = length(a) \land \\ 0 \leq i \leq n \land \forall j : 0 \leq j < i \Rightarrow a[j] \neq x \land \\ (r = -1 \lor (r = i \land i < n \land a[r] = x))
```

The verification conditions A, B_1, B_2, C have to be proved.

A Program Verification

Verification of the following Hoare triple:

Find the smallest index r of an occurrence of value x in array a (r = -1, if x does not occur in a).

Wolfgang Schreiner http://www.risc.jku.at

The Verification Conditions

30/52

```
newcontext
                      Input: BOOLEAN = olda = a AND oldx = x AND
  "linsearch":
                        n = length(a) AND i = 0 AND r = -1;
% declaration
                      Output: BOOLEAN = a = olda AND
% of arrays
                        ((r = -1 AND)
                            (FORALL(j:NAT): j < length(a) =>
                               get(a,j) /= x)) OR
                         (0 \le r \text{ AND } r \le length(a) \text{ AND } get(a,r) = x \text{ AND}
a: ARR:
olda: ARR;
                            (FORALL(j:NAT):
x: ELEM;
                              j < r \Rightarrow get(a, j) /= x));
oldx: ELEM;
i: NAT;
                      Invariant: (ARR, ELEM, NAT, NAT, INT) -> BOOLEAN =
                        LAMBDA(a: ARR, x: ELEM, i: NAT, n: NAT, r: INT):
n: NAT;
                          olda = a AND oldx = x AND
r: INT:
                          n = length(a) AND i <= n AND
                          (FORALL(j:NAT): j < i \Rightarrow get(a,j) /= x) AND
                           (r = -1 \text{ OR } (r = i \text{ AND } i < n \text{ AND } get(a,r) = x));
```

Wolfgang Schreiner http://www.risc.jku.at 31/52 Wolfgang Schreiner http://www.risc.jku.at 32/52

The Verification Conditions (Contd)


```
A: FORMULA
Input => Invariant(a, x, i, n, r);

B1: FORMULA
Invariant(a, x, i, n, r) AND i < n AND r = -1 AND get(a,i) = x
=> Invariant(a,x,i,n,i);

B2: FORMULA
Invariant(a, x, i, n, r) AND i < n AND r = -1 AND get(a,i) /= x
=> Invariant(a,x,i+1,n,r);

C: FORMULA
Invariant(a, x, i, n, r) AND NOT(i < n AND r = -1)
=> Output;
```

Wolfgang Schreiner http://www.risc.jku.at 33/52

- 1. The Hoare Calculus
- 2. Predicate Transformers
- 3. Proving Verification Conditions
- 4. Termination
- 5. Abortion
- 6. Procedures

The Proofs


```
[bca]: expand Input, Invariant
                                          [p1b]: expand Invariant
  Ifuol: scatter
                                            [lf6]: proved (CVCL)
    [bxq]: proved (CVCL)
 (2 user actions)
                                          (1 user action)
[q1b]: expand Invariant in 6kv C:
                                          [dca]: expand Invariant, Output in zfg
                                            [tvy]: scatter
  [slx]: scatter
                                               [dcu]: auto
     [a1y]: auto
                                                [t4c]: proved (CVCL)
       [cch]: proved (CVCL)
                                               [ecu]: split pkg
     [b1y]: proved (CVCL)
                                                [kel]: proved (CVCL)
     [c1v]: proved (CVCL)
                                                [lel]: scatter
     [d1y]: proved (CVCL)
                                                   [lvn]: auto
     [e1y]: proved (CVCL)
                                                    [lap]: proved (CVCL)
                                               [fcu]: auto
                                                [blt]: proved (CVCL)
                                               [gcu]: proved (CVCL)
(3 user actions)
                                          (6 user actions)
```

Wolfgang Schreiner http://www.risc.jku.at

Termination

34/52

36/52

Hoare rules for loop and while are replaced as follows:

- New interpretation of $\{P\}$ c $\{Q\}$.
 - If execution of *c* starts in a state where *P* holds, then execution terminates in a state where *Q* holds, unless it aborts.
 - Non-termination is ruled out, abortion not (yet).
 - The **loop** command thus does not satisfy total correctness.
- Termination term t (type-checked to denote an integer).
 - Becomes smaller by every iteration of the loop.
 - But does not become negative.
 - Consequently, the loop must eventually terminate.

The initial value of t limits the number of loop iterations.

Any well-founded ordering may be used for the domain of t.

Wolfgang Schreiner http://www.risc.iku.at

Example

$$I :\Leftrightarrow s = \sum_{j=1}^{i-1} j \land 1 \le i \le n+1$$

$$(n \ge 0 \land i = 1 \land s = 0) \Rightarrow I \quad I \Rightarrow n-i+1 \ge 0$$

$$\{I \land i \le n \land n-i+1 = N\} \ s := s+i; i := i+1 \ \{I \land n-i+1 < N\}$$

$$(I \land i \not \le n) \Rightarrow s = \sum_{j=1}^{n} j$$

$$\{n \ge 0 \land i = 1 \land s = 0\} \ \text{while} \ i \le n \ \text{do} \ (s := s+i; i := i+1) \ \{s = \sum_{j=1}^{n} j\}$$

In practice, termination is easy to show (compared to partial correctness).

Wolfgang Schreiner

http://www.risc.jku.at

37/52

Example

$$\begin{split} & \text{wp}(\textbf{while } i < n \textbf{ do } i := i+1, Q) \\ & L_0(Q) = \text{false} \\ & L_1(Q) = (i \not< n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i+1, L_0(Q))) \\ & \Leftrightarrow (i \not< n \Rightarrow Q) \land (i < n \Rightarrow \text{ false}) \\ & \Leftrightarrow i \not< n \land Q \\ & L_2(Q) = (i \not< n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i+1, L_1(Q))) \\ & \Leftrightarrow (i \not< n \Rightarrow Q) \land \\ & i < n \Rightarrow (i+1 \not< n \land Q[i+1/i])) \\ & L_3(Q) = (i \not< n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i+1, L_2(Q))) \\ & \Leftrightarrow (i \not< n \Rightarrow Q) \land \\ & (i < n \Rightarrow Q(i+1/i)) \land \\ & (i+1 < n \Rightarrow (i+2 \not< n \land Q[i+2/i])))) \end{split}$$

Weakest Preconditions for Loops

wp(while
$$b$$
 do c , Q) = $L_0(Q) \lor L_1(Q) \lor L_2(Q) \lor ...$
 $L_0(Q)$ = false
 $L_{i+1}(Q) = (\neg b \Rightarrow Q) \land (b \Rightarrow wp(c, L_i(Q)))$

New interpretation

wp(loop, Q) = false

- Weakest precondition that ensures that the loop terminates in a state in which Q holds, unless it aborts.
- New interpretation of $L_i(Q)$
 - Weakest precondition that ensures that the loop terminates after less than *i* iterations in a state in which *Q* holds, unless it aborts.
- Preserves property: $\{P\}$ c $\{Q\}$ iff $(P \Rightarrow wp(c, Q))$
 - Now for total correctness interpretation of Hoare calculus.
- Preserves alternative view: $L_i(Q) \Leftrightarrow wp(if_i, Q)$

 $if_0 = loop$ $if_{i+1} = if b then (c; if_i)$

Wolfgang Schreiner

http://www.risc.jku.at

38/52

Weakest Preconditions for Loops

- Sequence $L_i(Q)$ is now monotonically decreasing in strength:
 - $\forall i \in \mathbb{N} : L_i(Q) \Rightarrow L_{i+1}(Q).$
- The weakest precondition is the "greatest lower bound":
 - $\forall i \in \mathbb{N} : L_i(Q) \Rightarrow \text{wp(while } b \text{ do } c, Q).$
 - $\forall P : (\forall i \in \mathbb{N} : L_i(Q) \Rightarrow P) \Rightarrow (\mathsf{wp}(\mathsf{while}\ b\ \mathsf{do}\ c, Q) \Rightarrow P).$
- We can only compute a stronger approximation $L_i(Q)$.
 - $L_i(Q) \Rightarrow wp(\mathbf{while}\ b\ \mathbf{do}\ c, Q)$.
- We want to prove $\{P\}$ c $\{Q\}$.
 - It suffices to prove $P \Rightarrow wp(\mathbf{while}\ b\ \mathbf{do}\ c, Q)$.
 - It thus also suffices to prove $P \Rightarrow L_i(Q)$.
 - If proof fails, we may try the easier proof $P \Rightarrow L_{i+1}(Q)$

However, verifications are typically not successful with any finite approximation of the weakest precondition.

- 1. The Hoare Calculus
- 2. Predicate Transformers
- 3. Proving Verification Conditions
- 4. Termination
- 5. Abortion
- 6. Procedures

Wolfgang Schreiner

http://www.risc.jku.at

41/52

Abortion

New rules to prevent abortion.

- New interpretation of $\{P\}$ c $\{Q\}$.
 - If execution of c starts in a state, in which property P holds, then it does not abort and eventually terminates in a state in which Q holds.
- Sources of abortion.
 - Division by zero.
 - Index out of bounds exception.

D(e) makes sure that every subexpression of e is well defined.

Wolfgang Schreiner

http://www.risc.jku.at

42/52

Definedness of Expressions

D(0) = true.

D(1) = true.

D(x) = true.

 $D(a[i]) = D(i) \land 0 \le i < \text{length}(a).$

 $D(e_1 + e_2) = D(e_1) \wedge D(e_2).$

 $D(e_1 * e_2) = D(e_1) \wedge D(e_2).$

 $D(e_1/e_2) = D(e_1) \wedge D(e_2) \wedge e_2 \neq 0.$

D(true) = true.

D(false) = true.

 $D(\neg b) = D(b)$.

 $D(b_1 \wedge b_2) = D(b_1) \wedge D(b_2).$

 $D(b_1 \vee b_2) = D(b_1) \wedge D(b_2).$

 $D(e_1 < e_2) = D(e_1) \wedge D(e_2).$ $D(e_1 < e_2) = D(e_1) \wedge D(e_2).$

 $D(e_1 > e_2) = D(e_1) \wedge D(e_2).$

 $D(e_1 \geq e_2) = D(e_1) \wedge D(e_2).$

Assumes that expressions have already been type-checked.

Abortion

Slight modification of existing rules.

$$\frac{P \Rightarrow D(b) \{P \land b\} c_1 \{Q\} \{P \land \neg b\} c_2 \{Q\}}{\{P\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{Q\}}$$

$$\frac{P \Rightarrow D(b) \ \{P \land b\} \ c \ \{Q\} \ \ (P \land \neg b) \Rightarrow Q}{\{P\} \ \text{if } b \ \text{then} \ c \ \{Q\}}$$

$$\frac{I \Rightarrow (t \ge 0 \land D(b)) \quad \{I \land b \land t = N\} \ c \ \{I \land t < N\}}{\{I\} \text{ while } b \text{ do } c \ \{I \land \neg b\}}$$

Expressions must be defined in any context.

Abortion

Similar modifications of weakest preconditions.

```
\begin{aligned} & \mathsf{wp}(\mathbf{abort}, Q) = \mathsf{false} \\ & \mathsf{wp}(x := e, Q) = Q[e/x] \land D(e) \\ & \mathsf{wp}(\mathbf{if} \ b \ \mathbf{then} \ c_1 \ \mathbf{else} \ c_2, Q) = \\ & D(b) \land (b \Rightarrow \mathsf{wp}(c_1, Q)) \land (\neg b \Rightarrow \mathsf{wp}(c_2, Q)) \\ & \mathsf{wp}(\mathbf{if} \ b \ \mathbf{then} \ c, Q) = D(b) \land (b \Rightarrow \mathsf{wp}(c, Q)) \land (\neg b \Rightarrow Q) \\ & \mathsf{wp}(\mathbf{while} \ b \ \mathbf{do} \ c, Q) = (L_0(Q) \lor L_1(Q) \lor L_2(Q) \lor \ldots) \end{aligned}
L_0(Q) = \mathsf{false}
L_{i+1}(Q) = D(b) \land (\neg b \Rightarrow Q) \land (b \Rightarrow \mathsf{wp}(c, L_i(Q)))
```

wp(c, Q) now makes sure that the execution of c does not abort but eventually terminates in a state in which Q holds.

Wolfgang Schreiner

http://www.risc.jku.at

45/52

1. The Hoare Calculus

3. Proving Verification Conditions

2. Predicate Transformers

- 4. Termination
- 5. Abortion
- 6. Procedures

Wolfgang Schreiner

http://www.risc.jku.at

46/52

Procedure Specifications

global g; requires Pre; ensures Post; $o := p(i) \{ c \}$

- lacksquare Specification of a procedure p implemented by a command c.
 - Input parameter *i*, output parameter *o*, global variable *g*.
 - Command c may read/write i, o, and g.
 - Precondition Pre (may refer to i, g).
 - Postcondition *Post* (may refer to i, o, g, g_0).
 - g_0 denotes the value of g before the execution of p.
- Proof obligation

$$\{Pre \land i_0 = i \land g_0 = g\} \ c \ \{Post[i_0/i]\}$$

Proof of the correctness of the implementation of a procedure with respect to its specification.

Example

■ Procedure specification:

```
global g
requires g \ge 0 \land i > 0
ensures g_0 = g \cdot i + o \land 0 \le o < i
o := p(i) \{ o := g\%i; g := g/i \}
```

Proof obligation:

$$\{g \ge 0 \land i > 0 \land i_0 = i \land g_0 = g\}$$

$$o := g\%i; \ g := g/i$$

$$\{g_0 = g \cdot i_0 + o \land 0 \le o < i_0\}$$

A procedure that divides g by i and returns the remainder.

Procedure Calls

A call of p provides actual input argument e and output variable x.

$$x := p(e)$$

Similar to assignment statement; we thus first give an alternative (equivalent) version of the assignment rule.

Original:

$$\{D(e) \land Q[e/x]\}$$

$$x := e$$

$$\{Q\}$$

Alternative:

$$\{D(e) \land \forall x' : x' = e \Rightarrow Q[x'/x]\}$$

$$x := e$$

$$\{Q\}$$

The new value of x is given name x' in the precondition.

Wolfgang Schreiner http://www.risc.jku.at

Corresponding Predicate Transformers

49/52

$$\begin{aligned} & \mathsf{wp}(x = p(e), Q) = \\ & D(e) \land \mathsf{Pre}[e/i] \land \\ & \forall x', g' : \\ & \mathsf{Post}[e/i, x'/o, g/g_0, g'/g] \Rightarrow Q[x'/x, g'/g] \\ & \mathsf{sp}(P, x = p(e)) = \\ & \exists x_0, g_0 : \\ & P[x_0/y, g_0/g] \land \\ & (\mathsf{Pre}[e[x_0/x, g_0/g]/i, g_0/g] \Rightarrow \mathsf{Post}[e[x_0/x, g_0/g]/i, x/o]) \end{aligned}$$

Explicit naming of old/new values required.

Procedure Calls

From this, we can derive a rule for the correctness of procedure calls.

$$\begin{cases} D(e) \land Pre[e/i] \land \\ \forall x', g' : Post[e/i, x'/o, g/g_0, g'/g] \Rightarrow Q[x'/x, g'/g] \end{cases}$$

$$x := p(e)$$

$$\{Q\}$$

- Pre[e/i] refers to the values of the actual argument e (rather than to the formal parameter i).
- \blacksquare x' and g' denote the values of the vars x and g after the call.
- Post[...] refers to the argument values before and after the call.
- Q[x'/x, g'/g] refers to the argument values after the call.

Modular reasoning: rule only relies on the *specification* of p, not on its implementation.

Wolfgang Schreiner

http://www.risc.jku.at

50/52

52/52

Example

Procedure specification:

```
global g
requires g \ge 0 \land i > 0
ensures g_0 = g \cdot i + o \land 0 \le o < i
o = p(i) \{ o := g\%i; g := g/i \}
```

Procedure call:

$$\{g \ge 0 \land g = N \land b \ge 0\}$$

 $x = p(b+1)$
 $\{g \cdot (b+1) \le N < (g+1) \cdot (b+1)\}$

■ To be proved:

$$\begin{split} g &\geq 0 \land g = N \land b \geq 0 \Rightarrow \\ D(b+1) \land g &\geq 0 \land b+1 > 0 \land \\ \forall x', g' : \\ g &= g' \cdot (b+1) + x' \land 0 \leq x' < b+1 \Rightarrow \\ g' \cdot (b+1) &\leq N < (g'+1) \cdot (b+1) \end{split}$$