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Specifying and Verifying Programs

We will discuss three (closely interrelated) calculi.
Hoare Calculus: {P} ¢ {Q}

If command c is executed in a pre-state with property P and
terminates, it yields a post-state with property Q.

{x=any=blx=x+y{x=a+yAy=b}
Predicate Transformers: wp(c, Q) = P

If the execution of command c shall yield a post-state with
property @, it must be executed in a pre-state with property P.

wp(x :=x+y,x=a+yAy=>b)=(x+y=a+yAy=D>b)
State Relations: ¢ : [P = Q]

The post-state generated by the execution of command c is related to
the pre-state by P = Q (where only variables x, ... have changed).

x=x+y:[var x =old x 4 old y[J*
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The Hoare Calculus

First and best-known calculus for program reasoning (C.A.R. Hoare).
“Hoare triple”: {P} ¢ {Q}
Logical propositions P and @, program command c.
The Hoare triple is itself a logical proposition.
The Hoare calculus gives rules for constructing true Hoare triples.
Partial correctness interpretation of {P} ¢ {Q}:
“If ¢ is executed in a state in which P holds, then it terminates
in a state in which @ holds unless it aborts or runs forever.”
Program does not produce wrong result.
But program also need not produce any result.
Abortion and non-termination are not (yet) ruled out.
Total correctness interpretation of {P} ¢ {Q}:
“If ¢ is executed in a state in which P holds, then it terminates
in a state in which @ holds.”

Program produces the correct result.

We will use the partial correctness interpretation for the moment.
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Weakening and Strengthening N4

P=P {P}c{Q) @=Q
[PYe @)

A1 Az
B
Forward: If we have shown A; and A,, then we have also shown B.
Backward: To show B, it suffices to show A; and A,.

Logical derivation:

Interpretation of above sentence:

To show that, if P holds, then Q holds after executing c, it suffices to
show this for a P’ weaker than P and a @’ stronger than Q.

Precondition may be weakened, postcondition may be strengthened.
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Scalar Assighments . ¢
.

{Qle/x]} x =e {Q}

Syntax

Variable x, expression e.
QR[e/x] ... Q where every free occurrence of x is replaced by e.

Interpretation

To make sure that @ holds for x after the assignment of e to x, it
suffices to make sure that @ holds for e before the assignment.

Partial correctness
Evaluation of e may abort.

{x+3<5} x:=x+3 {x<5}
{x <2} x:=x+3 {x<5}

Wolfgang Schreiner

Special Commands v

{P} skip {P} {true} abort {false}

The skip command does not change the state; if P holds before its
execution, then P thus holds afterwards as well.

The abort command aborts execution and thus trivially satisfies
partial correctness.

Axiom implies {P} abort {Q} for arbitrary P, Q.

Useful commands for reasoning and program transformations.
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Array Assignments 5 *
i
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{Qlali — el/al} ali] .= e {Q}

An array is modelled as a function a: [/ — V.

Index set /, value set V.
ali] = e ...array a contains at index i the value e.

Term a[i — e] (“array a updated by assigning value e to index i")

A new array that contains at index i the value e.
All other elements of the array are the same as in a.

Thus array assignment becomes a special case of scalar assignment.
Think of “a[i] .= €" as “a:= a[i > €]".

{a[i = x][1] > 0} a[i] :=x {a[l] > 0}

Arrays are here considered as basic values (no pointer semantics).
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Array Assignments .ﬁ {‘
How to reason about a[i — €]?
Qlali — €]l
(i=J= Qle) A (i #Jj= Qlall])
Array Axioms
i=j=ali—e|jl=e
i#j = ali = e]lj] = alj]
{ali — x]1] > 0} ai] :=x {a[1] > 0}
{i=1=x>0)A(i#1=a[l]] >0)} a[]:=x {a[l] >0}
Get rid of “array update terms” when applied to indices.
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Conditionals v

{PAbY & {Q) {PA-b} & {Q)
{P} if b then ¢; else ¢; {Q}

{PAb} c{Q} (PAN—-b)=Q
{P} if b then c {Q}

Interpretation
To show that, if P holds before the execution of the conditional, then
Q holds afterwards,
it suffices to show that the same is true for each conditional branch,
under the additional assumption that this branch is executed.

{x#0Ax>0}y:=x{y >0} {x#0AxZ20}y:=—x{y>0}
{x#0}if x> 0then y:=xelse y := —x {y >0}
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Command Sequences

{P} a {R} {R} 2 {Q}
{P} c1; 0 {Q}

Interpretation

To show that, if P holds before the execution of ¢i; ¢, then Q holds
afterwards, it suffices to show for some R that

if P holds before ¢;, that R holds afterwards, and that
if R holds before ¢, then Q holds afterwards.

Problem: find suitable R.
Easy in many cases (see later).

{x+y—-1>0y=y—-1{x+y>0} {x+y>0}x:=x+y {x>0}
{x+y—-1>0ly=y—Lx=x+y{x>0}

The calculus itself does not indicate how to find intermediate property.
http://www.risc.jku.at 10/52
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Loops

{Inb} c{l}
{1} while b do c {/ A b}

{true} loop {false}

Interpretation:
The loop command does not terminate and thus trivially satisfies
partial correctness.
Axiom implies {P} loop {Q} for arbitrary P, Q.
If it is the case that
I holds before the execution of the while-loop and
I also holds after every iteration of the loop body,
then [ holds also after the execution of the loop (together with the
negation of the loop condition b).
| is a loop invariant.
Problem:
Rule for while-loop does not have arbitrary pre/post-conditions P, Q.

In practice, we combine this rule with the strengthening/weakening-rule.
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Loops (Generalized)

P=1 {IAb} c{l} (IN-b)=Q
{P} while b do ¢ {Q}

Interpretation:

To show that, if before the execution of a while-loop the property P
holds, after its termination the property @ holds, it suffices to show
for some property / (the loop invariant) that

I holds before the loop is executed (i.e. that P implies /),

if I holds when the loop body is entered (i.e. if also b holds), that
after the execution of the loop body / still holds,

when the loop terminates (i.e. if b does not hold), / implies Q.

Problem: find appropriate loop invariant /.
Strongest relationship between all variables modified in loop body.
The calculus itself does not indicate how to find suitable loop invariant.
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Example

I s=Y1"1jAl<i<n+1
(n>0ANi=1As=0)=1
ANi<nts:=s—H+1i,i:=1+
I A .. 1)
(InNign)=s=3"1,]

{n>0ANi=1As=0}whilei<ndo(s:=s+i;i:=i+1) {s:zj';lj}

The invariant captures the “essence” of a loop; only by giving its
invariant, a true understanding of a loop is demonstrated.
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Backward Reasoning

Implication of rule for command sequences and rule for assignments:

{P} c {Qle/x]}
{P} c;x:=e{Q}

Interpretation
If the last command of a sequence is an assignment, we can remove
the assignment from the proof obligation.
By multiple application, assignment sequences can be removed from
the back to the front.

{P} {P} {P} {P} P=x=4
x = x+1;  x:=x+1; x 1= x+1; {x+1=5}
y = 2%x; y 1= 2%x; {x+2x=15} (ex=4)
z 1= x+y {x+y=15} (& 3x=15)
{z =15} (& x=5)
Wolfgang Schreiner http://www.risc.jku.at 16/52



Weakest Preconditions °¥ If.

A calculus for “backward reasoning” (E.W. Dijkstra).

Predicate transformer wp
Function “wp” that takes a command ¢ and a postcondition @ and
returns a precondition.
Read wp(c, Q) as “the weakest precondition of ¢ w.r.t. Q".
wp(c, Q) is a precondition for ¢ that ensures Q as a postcondition.
Must satisfy {wp(c, Q)} ¢ {Q}.
wp(c, Q) is the weakest such precondition.
Take any P such that {P} ¢ {Q}.
Then P = wp(c, Q).
Consequence: {P} ¢ {Q} iff (P = wp(c, Q))
We want to prove {P} ¢ {Q}.
We may prove P = wp(c, Q) instead.

Verification is reduced to the calculation of weakest preconditions.

Wolfgang Schreiner
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Forward Reasoning .E I(-
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Sometimes, we want to derive a postcondition from a given precondition.
{P} x:=e {3x0: P[xo/x] A x = e[xo/x]}

Forward Reasoning

What is the maximum we know about the post-state of an
assignment x := e, if the pre-state satisfies P?

We know that P holds for some value xp (the value of x in the
pre-state) and that x equals e[xp/x].

{x>0ny=a}
x:=x4+1
{Ix:x>0Ay=aAx=x+1}
(&(GEx:x>0Ax=x+1)Ay=a)
(&x>0Ay=a)

Wolfgang Schreiner
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Weakest Preconditions °¥ If

The weakest precondition of each program construct.

wp(skip, Q) = Q
wp(abort, Q) = true
wp(x = e, Q) = Qle/x]
wp(cr; c2, Q) = wp(c1, wp(ez, Q))
Wp(lf b then ¢ else ¢, Q) = (b = wp(c1, Q)) A (=b = wp(e, Q))
wp(if b then ¢, Q) & (b = wp(c, Q) A (—b = Q)
wp(while b do ¢, Q) =

Loops represent a special problem (see later).

Strongest Postcondition .ﬁ l(.

A calculus for forward reasoning.

Predicate transformer sp
Function “sp” that takes a precondition P and a command ¢ and
returns a postcondition.
Read sp(c, P) as “the strongest postcondition of ¢ w.r.t. P".
sp(c, P) is a postcondition for ¢ that is ensured by precondition P.
Must satisfy {P} ¢ {sp(c, P)}.
sp(c, P) is the strongest such postcondition.
Take any P, Q such that {P} ¢ {Q}.
Then sp(c, P) = Q.
Consequence: {P} ¢ {Q} iff (sp(c, P) = Q).
We want to prove {P} ¢ {Q}.
We may prove sp(c, P) = Q instead.

Verification is reduced to the calculation of strongest postconditions.
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Strongest Postconditions N4

The strongest postcondition of each program construct.

sp(skip, P) = P

sp(abort, P) = false

sp(x := e, P) = 3x0 : Plxo/x] A x = e[xo/x]

sp(c1; &, P) = sp(cz, sp(ci, P))

sp(if b then ¢ else ¢, P) < sp(ci, P A b) V sp(c2, P A —b)
sp(if b then ¢, P) =sp(c, P A b)V (P A —b)

sp(while bdo ¢, P) = ...

Forward reasoning as a (less-known) alternative to backward-reasoning.
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Weakest Liberal Preconditions for Loops \

Why not apply predicate transformers to loops?

wp(loop, Q) = true
wp(while b do ¢, Q) = Lo(Q) A Li(Q) A La(Q) A ...

Lo(Q) = true
Lit1(Q) = (=b = Q) A (b = wp(c, Li(Q)))

Interpretation
Weakest precondition that ensures that loops stops in a state
satisfying @, unless it aborts or runs forever.
Infinite sequence of predicates L;(Q):
Weakest precondition that ensures that after less than / iterations the
state satisfies Q, unless the loop aborts or does not yet terminate.
Alternative view: L;(Q) = wp(if;, Q)
ifo = loop
if,’+1 = if b then (C; If,)

Wolfgang Schreiner http://www.risc.jku.at 23/52
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Hoare Calculus and Predicate Transformers ‘Xﬂ {‘

In practice, often a combination of the calculi is applied.

{P} c1;while b do c;c, {Q}

Assume ¢; and ¢ do not contain loop commands.

It suffices to prove
{sp(P,c1)} while b do c {wp(c2, Q)}

Predicate transformers are applied to reduce the verification of a program
to the Hoare-style verification of loops.
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Example 5 *
i

wp(while i < ndo i:=i+1,Q)

Lo(@Q) = true
Li(Q) =(i¢n=Q)A(i <n=wp(i:=i+1,true))
S (i€ n=Q)A(i <n=true)
< (i€ n=Q)
LQ=>(Ln=QA(i<n=>wp(i:=i+1,itn=Q))
S(igdn=Q)A
(i<n=((+1£n= Qi+1/])
LQ=>(gn=>QA(<n=>wp(i:=i+1,
(ign=>QAN(i<n=(i+1Ln= Q[i+1/])))
s (ig£n=Q)A
(i<n=((i+1£n= Qi +1/i])A
(iF1<n=(i+2%n= Qli+2/1))
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Weakest Liberal Preconditions for Loops

Sequence L;(Q) is monotonically increasing in strength:
VieN: L;+1(Q) = L,(Q)

The weakest precondition is the “lowest upper bound”:
Vi € N : wp(while b do ¢, Q) = Li(Q).
VP :(VieN: P = L(Q)) = (P = wp(while b do c,Q)).

We can only compute weaker approximation L;(Q).
wp(while b do ¢, Q) = L;(Q).

We want to prove {P} while b do ¢ {Q}.
This is equivalent to proving P = wp(while b do ¢, Q).
Thus P = L;(Q) must hold as well.

If we can prove =(P = L;j(Q)), ...

{P} while b do ¢ {Q} does not hold.
If we fail, we may try the easier proof =(P = Li+1(Q)).

Falsification is possible by use of approximation L;, but verification is not.

Wolfgang Schreiner http://www.risc.jku.at 25/52
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A Constructive Definition of Arrays \
.
% constructive array definition % the array operations
newcontext "arrays2"; length: ARR -> INDEX =
LAMBDA(a:ARR): a.0;
% the types new: INDEX -> ARR =
INDEX: TYPE = NAT; LAMBDA (n:INDEX): (n, any);
ELEM: TYPE; put: (ARR, INDEX, ELEM) -> ARR =
ARR: TYPE = LAMBDA(a:ARR, i:INDEX, e:ELEM):

[INDEX, ARRAY INDEX OF ELEM]; IF i < length(a)
THEN (length(a),

% error constants content(a) WITH [i]:=e)

any: ARRAY INDEX OF ELEM; ELSE anyarray
anyelem: ELEM; ENDIF;
anyarray: ARR; get: (ARR, INDEX) -> ELEM =

LAMBDA(a:ARR, 1i:INDEX):
IF i < length(a)
THEN content(a) [i]
ELSE anyelem ENDIF;

% a selector operation

content:
ARR -> (ARRAY INDEX OF ELEM) =
LAMBDA(a:ARR): a.1;
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N4
3. Proving Verification Conditions
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Proof of Fundamental Array Properties ‘E l(.
L]

% the classical array axioms as formulas to be proved
lengthl: FORMULA
FORALL(n:INDEX): length(new(n)) = n;

length2: FORMULA
FORALL (a:ARR, i:INDEX, e:ELEM):
i < length(a) => length(put(a, i, e))

length(a);

getl: FORMULA
FORALL (a:ARR, i:INDEX, e:ELEM):
i < length(a) => get(put(a, i, e), i)

e;

get2: FORMULA
FORALL(a:ARR, i, j:INDEX, e:ELEM):
i < length(a) AND j < length(a) AND
i/=3j=>
get(put(a, i, e), j) = get(a, j);

[adu]: expand length, get, put, content
[c3b]: scatter
[qid]: proved (CVCL)
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Proof of a Higher-Level Array Property N4

% extensionality on low-level arrays
extensionality: AXIOM
FORALL(a, b:ARRAY INDEX OF ELEM):
a=b <=> (FORALL(i:INDEX):a[il=b[il]);

% unassigned parts hold identical values
unassigned: AXIOM
FORALL(a:ARR, i:INT):
(i >= length(a)) => content(a) [i

[adt]: expand length, get, content
[cw2]: scatter
[gey]: proved (CVCL)
[rey]: assume b_0.1 =a_0.1
[zpt]: proved (CVCL)
[1pt]: instantiate a_0.1, b_0.1 in 1fm
[y51]: scatter
[ku2]: auto
[iub]: proved (CVCL)

% extensionality on arrays to be prc
equality: FORMULA
FORALL(a:ARR, b:ARR): a = b <=>
length(a) = length(b) AND
(FORALL(i:INDEX): i < length(a) => get(a,i) = get(b,i));

Wolfgang Schreiner http://www.risc.jku.at 29/52
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The Verification Conditions .E l(.
[ ]

A & Input = Invariant

Bi :& Invariant Ni < nAr=—1Aa[i] = x = Invariant[i/r]

B, i< Invariant Ni < nAr=—1Aa[i] # x = Invariant[i + 1/i]
C :& Invariant A =(i < n A r = —1) = Output

Input :<= olda = a A oldx = x A\ n= length(a) A\i =0Ar=—1

Output < a = olda N\ x = oldx A
((r=—=1AVi:0<i< length(a) = a[i] # x) V
(0 <r < length(a) Aa[r] =xAVi:0<i<r=a[i] #x))
Invariant :< olda = a A oldx = x A\ n = length(a) A
0<i<nAYj:0<j<i=a[j]#xA
(r==1v(r=iANi<nAa[r] =x))

The verification conditions A, B, By, C have to be proved.

Wolfgang Schreiner
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A Program Verification ) *
N4
Verification of the following Hoare triple:
{olda=anoldc=xAn=la|ANi=0Ar=—-1}
while i < nAr=-1do
if a[i] = x
then r .=
else j:=i+1
{a = olda A x = oldx A
(r==-1AVi:0<i<|a|=a[i] #x)V
(0<r<lalAa[r]=xAVi:0<i<r= a[i]#x))}
Find the smallest index r of an occurrence of value x in array a (r = —1,
if x does not occur in a).
Wolfgang Schreiner http://www.risc.jku.at 30/52
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The Verification Conditions .E l(.
[ )
newcontext Input: BOOLEAN = olda = a AND oldx = x AND
"linsearch"; n = length(a) AND i = 0 AND r = -1;

% declaration Output: BOOLEAN = a = olda AND
% of arrays ((r = -1 AND
(FORALL(j:NAT): j < length(a) =>
get(a,j) /= x)) OR
a: ARR; (0 <= r AND r < length(a) AND get(a,r) = x AND

olda: ARR; (FORALL (j :NAT) :

x: ELEM; j <r=>get(a,j) /= x)));

oldx: ELEM;

i: NAT; Invariant: (ARR, ELEM, NAT, NAT, INT) -> BOOLEAN =
n: NAT; LAMBDA(a: ARR, x: ELEM, i: NAT, n: NAT, r: INT):
r: INT; olda = a AND oldx = x AND

n = length(a) AND i <= n AND
(FORALL(j:NAT): j < i => get(a,j) /= x) AND
(r =-10R (r =1 AND i < n AND get(a,r) = x));

Wolfgang Schreiner
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age . - ° . ° .
The Verification Conditions (Contd) N The Proofs N\
J .
A: [bea]: expand Input, Invariant B1: [p1b]: expand Invariant
[fuo]: scatter [If6]: proved (CVCL)
A: FORMULA [bxg]: proved (CVCL)
Input => Invariant(a, x, i, n, r);
(2 user actions) (1 user action)
B1: FORMULA
Invariant(a, x, i, n, r) AND i <n AND r = -1 AND get(a,i) = x B2: [g1b]: expand Invariantin kv C: [dca]: expand Invariant, Output in zfg
=> Invariant (a’ X,i,n, i) 3 ’ [s|x]: scatter ’ [tvy]: scatter
[aly]: auto [doul: auto
B2: FORMULA [cch]: proved (CVCL) oL e (Ve
Invariant(a, x, i, n, r) AND i < n AND r = -1 AND get(a,i) /= x Eg‘:)):]] s:g\‘::g ((8\\;88 [kel]: proved (CVCL)
= : ; . . lel]: scatter
=> Invariant(a,x,i+l,n,r); [d1y]: proved (CVCL) [ [{vn]: auto
[e1y]: proved (CVCL) [lap]: proved (CVCL)
C: FORMULA [feu]: auto

[blt]: proved (CVCL)

Inze:réz:;i? X, i, n, r) AND NOT(i < n AND r = -1) [geu]: proved (CVCL)
user actions user actions
3 i 6 i
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N Termination R
N, ¢
° °
Hoare rules for loop and while are replaced as follows:
I=t>0 {INbAt=N}c{INnt <N}
1. The Hoare Calculus {false} |00p {false} {/} while b do ¢ {I A —|b}
2. Predicate Transformers P=ll=t=20 {InbAt=Njc{Int<N} (IN=b)=Q
{P} while b do ¢ {Q}
3. Proving Verification Conditions New interpretation of {P} c {Q}.

If execution of ¢ starts in a state where P holds, then execution
terminates in a state where @ holds, unless it aborts.
Non-termination is ruled out, abortion not (yet).
The loop command thus does not satisfy total correctness.
5. Abortion Termination term t (type-checked to denote an integer).
Becomes smaller by every iteration of the loop.
But does not become negative.
Consequently, the loop must eventually terminate.

The initial value of t limits the number of loop iterations.

4. Termination

6. Procedures

Any well-founded ordering may be used for the domain of t.
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Example .ﬁ {‘

I s=Y1"1jAl<i<n+1
(n>0Ni=1As=0)=1 |=n—i+1>0
{INi<nAn—i+1=N}s:=s+ii=i+1{IAn—i+1<N}
(INifgn)=s=3"1,]

{n>0ANi=1As=0}whilei<ndo(s:=s+i;i:=i+1) {s:zj'.’:lj}

In practice, termination is easy to show (compared to partial correctness).
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E I .
xample 1
[ ]

wp(while i < ndo i:=i+1,Q)

Lo(Q) = false
LQ)=(#Zn=QA(i<n= wp(i:=i+1L(Q)))
S (igdn=>Q)A(i <n= false)
SidnAQ
L@ =(%n=QA(i<n= wp(i:=i+1 L(Q))
S (gdn=Q)A
i<n=((+1<£nAQ[i+1/i]))
L(Q)=>(<Ln=QA(<n= wp(i:=i+1,1(Q)))
S (igLn=Q)A
(i<n= ((i+1£n=Qi+1/i)A
(i+l<n=((+2£nAQ[i+2/i]))))

Wolfgang Schreiner
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Weakest Preconditions for Loops N\

wp(loop, Q) = false
wp(while b do ¢, Q) = Lo(Q) V L1(Q) V L(Q) V...

Lo(Q) = false
Lini(Q) = (mb = Q) A (b= wp(c, Li(Q)))

New interpretation
Weakest precondition that ensures that the loop terminates in a state
in which @ holds, unless it aborts.
New interpretation of L;(Q)
Weakest precondition that ensures that the loop terminates after less
than / iterations in a state in which @ holds, unless it aborts.
Preserves property: {P} ¢ {Q} iff (P = wp(c, Q))
Now for total correctness interpretation of Hoare calculus.
Preserves alternative view: L;(Q) < wp(if, Q)

ifo = loop
ifi 1 = if b then (c;if;)
Wolfgang Schreiner http://www.risc.jku.at 38/52
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Weakest Preconditions for Loops .ﬁ {‘
[ )

Sequence L;(Q) is now monotonically decreasing in strength:
VieN: L,(Q) = L;+1(Q).
The weakest precondition is the “greatest lower bound”:
Vi e N: Li(Q) = wp(while b do ¢, Q).
VP :(VieN: L(Q) = P)= (wp(while b do ¢, Q) = P).
We can only compute a stronger approximation L;(Q).
Li(Q) = wp(while b do ¢, Q).
We want to prove {P} ¢ {Q}.

It suffices to prove P = wp(while b do c, Q).
It thus also suffices to prove P = L;(Q).
If proof fails, we may try the easier proof P = L;1(Q)

However, verifications are typically not successful with any finite
approximation of the weakest precondition.
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New rules to prevent abortion.
1. The Hoare Calculus

{false} abort {true}

2. Predicate Transformers {Qle/x] A D(e)} x :=e {Q}

{Qla[i — e]/a] A D(e) AND(i) NO < i < length(a)} a[i] :=e {Q}
3. Proving Verification Conditions

New interpretation of {P} ¢ {Q}.
4. Termination If execution of ¢ starts in a state, in which property P holds, then it

does not abort and eventually terminates in a state in which Q holds.

5. Abortion Sources of abortion.

Division by zero.

Index out of bounds exception.
6. Procedures

D(e) makes sure that every subexpression of e is well defined.
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Definedness of Expressions ) * Abortion * *
W W

D(0) = true. Slight modification of existing rules.

D(1) = true.

ggx[); trtg—-( " ength() P = D(b) {PAb}ca {Q} {PA-b}c {Q}
ali]) = D(i) A0 < i < length(a). :

D(e1 + &) = D(er) A D(e). {P} if b then ¢ else ¢; {Q}

D(er x &) = D(e1) A D(e»).

D(ei/e) = D(e1) A D(e2) A e # 0. P = D(b) {PAb}c{Q} (PN-b)= Q@

D(true) = true. {P} if b then c {Q}

D(false) = true.

g(;bﬁf’% A Dl I= (t>0AD(b) {IANbAt=N}c{IAt<N}

ngi v b§§ - ngig A ngzgi {1} while b do ¢ {/ A b}

D(er < &) = D(e1) A D(e&). _ _ _

D(er < &) = D(e1) A D(&). Expressions must be defined in any context.

D(e1 > &) = D(e1) A D(e2).

D(e1 > &) = D(e1) A D(e2).

Assumes that expressions have already been type-checked.
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Similar modifications of weakest preconditions.

wp(abort, Q) = false
p(x = e, Q) = Qle/x] 1 D(e)
wp(if b then ¢; else o, Q) =
D(b) A (b= wp(c1, Q) A (mb = wp(c2, Q))
wp(if b then ¢, Q) = D(b) A (b= wp(c, Q)) A (-b= Q)
wp(while b do ¢, Q) = (Lo(Q) V L1(Q) V L(Q) Vv ...)

S

Lo(Q) = false
Li+1(Q) = D(b) A (=b = Q) A (b = wp(c, Li(Q)))

wp(c, @) now makes sure that the execution of ¢ does not abort but
eventually terminates in a state in which @ holds.

Wolfgang Schreiner http://www.risc.jku.at 45/52
AN
Procedure Specifications ) *
N

global g;
requires Pre;
ensures Post;

o:=p(i){c}

Specification of a procedure p implemented by a command c.
Input parameter /i, output parameter o, global variable g.
Command ¢ may read/write /, o, and g.

Precondition Pre (may refer to i, g).
Postcondition Post (may refer to i, 0, g, g)-

go denotes the value of g before the execution of p.
Proof obligation

{Pre Nig=1iNgo=g} c {Postli/i]}

Proof of the correctness of the implementation of a procedure with
respect to its specification.
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N
1. The Hoare Calculus
2. Predicate Transformers
3. Proving Verification Conditions
4. Termination
5. Abortion
6. Procedures
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Example

Procedure specification:
global g
requires g > 0A7 >0
ensures gg =g i+o0AN0<o<i
o:=p(i){o:=g%i; g:=g/i}
Proof obligation:
{g>0ANi>0Nip=iAgo =g}
o0:=g%i;, g:=g/i
{gozg'i0+0/\0§0<io}

A procedure that divides g by / and returns the remainder.
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Procedure Calls \

A call of p provides actual input argument e and output variable x.
x = p(e)

Similar to assignment statement; we thus first give an alternative
(equivalent) version of the assignment rule.

Original:
{D(e) A Qle/x]}
xX:=e
{Q}
Alternative:
{D(e) NV¥X : x' = e= Q[X'/x]}
xX:=e

{Q}

The new value of x is given name x’ in the precondition.
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Corresponding Predicate Transformers

wp(x = p(e), Q) =
D(e) A Pre[e/i] A
vx', g’ :
Postle/i,x'/o,g/g0,8'/8] = Q[X'/x,&"/g]
sp(P,x = p(e)) =
Ix0, 80 :

Plx/y,80/8] N
(Prele[xo/x, g0/8]/i,80/g] = Postle[xo/x, g0/gl/i,x/0])

Explicit naming of old/new values required.
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Procedure Calls

From this, we can derive a rule for the correctness of procedure calls.

{D(e) A Pre[e/i] A
Vx',g' : Postle/i, X’/o,g/go,(g)’/g] = QX' /x,g’'/gl}
x = p(e
{Q}

Prele/i] refers to the values of the actual argument e (rather than
to the formal parameter ).

x" and g’ denote the values of the vars x and g after the call.
Post|. . .] refers to the argument values before and after the call.
Q[x'/x, g’ /g] refers to the argument values after the call.

Modular reasoning: rule only relies on the specification of p, not on its
implementation.
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Example 5 *
i

Procedure specification:
global g
requires g > 0N >0
ensures ggp =g -I+oAN0<o<i
o=p(i){o:=g%i, g:=g/i}
Procedure call:
{g>0Ag=NAb>0}
x=p(b+1)
{g-(b+1)<N<(g+1)-(b+1)}
To be proved:
g>20Ng=NAbL>0=
D(b+1)Ag>0Ab+1>0A
vx' g’ :
g=g (b+1)+xXAN0<x' <b+1=
g -(b+1)<N<(g' +1)-(b+1)
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