# Basics of Complexity 

Wolfgang Schreiner<br>Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at



## 1. Complexity of Computations

## 2. Asymptotic Complexity

## 3. Working with Asymptotic Complexity

## 4. Complexity Classes

## Complexity of Computations

We want to determine the resource consumption of computations.

- Determine the amount of resources consumed by a computation:
- Time
- Space (memory)
- Determine the resource consumption for classes of inputs:
- The maximum complexity for all inputs of the class.
- The average complexity for these inputs.

We are going to make these notions precise.

## Resource Consumption

Turing machine $M$ with input alphabet $\Sigma$ that halts for every input.

- Input set $I=\Sigma^{*}$ :
- The set of input words.
- Input size $||:. I \rightarrow \mathbb{N}$
- $|i|$ : the length of input $i$.
- Time consumption $t: I \rightarrow \mathbb{N}$ :
- $t(i)$ : the number of moves that $M$ makes for input $i$ until it halts.
- Space consumption s:l $\rightarrow \mathbb{N}$ :
- $s(i)$ : the largest distance from the beginning of the tape that the tape head of $M$ reaches for input $i$ until $M$ halts.

For any computational model, $I,|i|, t(i)$ and $s(i)$ may be defined.

## Worst-case Complexity

Computational model with $I,|i|, t(i)$ and $s(i)$ defined.

- Worst-case time complexity $T: \mathbb{N} \rightarrow \mathbb{N}$

$$
T(n):=\max \{t(i)|i \in I \wedge| i \mid=n\}
$$

- Worst-case space complexity $S: \mathbb{N} \rightarrow \mathbb{N}$

$$
S(n):=\max \{s(i)|i \in I \wedge| i \mid=n\}
$$

The maximum amount of resources consumed for any input of size $n$ by computations in a given model.

## Average Complexity

- Input distribution Input:
- Family of (discrete) random variables Input $_{n}$ that describe the distribution of inputs of each size $n$ in I
- determined by probability function $p_{l}^{n}: I \rightarrow[0,1]$
$p_{l}^{n}(i)$ : probability that, among all inputs of size $n$, input $i$ occurs.
- Average time/space complexity $\bar{T}: \mathbb{N} \rightarrow \mathbb{N}$ and $\bar{S}: \mathbb{N} \rightarrow \mathbb{N}$

$$
\begin{aligned}
& \bar{T}(n):=E\left[\text { Time }_{n}\right] \\
& \bar{S}(n):=E\left[\text { Space }_{n}\right]
\end{aligned}
$$

- Expected values of random variables Time $_{n}$ and Space $_{n}$
- determined by probability functions $p_{T}^{n}: \mathbb{N} \rightarrow[0,1]$ and $p_{S}^{n}: \mathbb{N} \rightarrow[0,1]$ $p_{T}^{n}(t) / p_{S}^{n}(s)$ : probabilities that time $t /$ space $s$ is consumed for input of size $n$ assuming that inputs of size $n$ are distributed according to Input $_{n}$.
The average amount of resources consumed for inputs of size $n$ (for a given distribution of inputs) by computations in a given model.


## Example

Given non-empty integer array a of size $n$, find minimum index $j$ such that $a[j]=\max \{a[i] \mid 0 \leq i<n\}$.

$$
\begin{array}{c|l}
j:=0 ; m:=a[j] ; i:=1  \tag{1}\\
\text { while } i<\operatorname{length}(a) & 1 \\
\quad \text { if } a[i]>m \text { then } \\
\quad j:=i ; m:=a[j] & n \\
\quad i:=i+1 & n-1 \\
n-1
\end{array}
$$

- Time: the number of lines executed.

$$
T(n)=1+n+(n-1)+(n-1)+(n-1)=4 n-2
$$

- Space: the number of variables used (including elements of $a$ ).

$$
S(n)=\bar{S}(n)=n+3
$$

We are going to analyze the average time complexity $\bar{T}(n)$.

## Average Time Complexity

Assume a holds $n$ distinct values $\{1, \ldots, n\}$.

- Assume all $n$ ! permutations of a are equally probable.

$$
p_{l}^{n}(i):=1 / n!
$$

- Quantity $N$ becomes random variable.

The number of times the corresponding line of the algorithm is executed for each permutation of $a$.

- We are interested in the expected value $E[N]$.
- Average time complexity $\bar{T}(n)$ :

$$
\bar{T}(n)=1+n+(n-1)+E[N]+(n-1)=3 n-1+E[N]
$$

Our goal is to determine the expected value $E[N]$.

## Average Time Complexity (Contd)



- $p_{n k}$ : probability that $N=k$ for array of size $n$.

$$
p_{n 0}+p_{n 1}+p_{n 2}+\ldots+p_{n, n-1}=\sum_{k=0}^{n-1} p_{n k}=1
$$

- $p_{n k}=0$ for $k \geq n:$

$$
p_{n 0}+p_{n 1}+p_{n 2}+\ldots=\sum_{k} p_{n k}=1
$$

- $E[N]$ is sum of products of probability of $N=k$ and value $k$ :

$$
E[N]=p_{n 0} \cdot 0+p_{n 1} \cdot 1+p_{n 2} \cdot 2+\ldots=\sum_{k} p_{n k} \cdot k
$$

Our goal is to determine the value of sum $\sum_{k} p_{n k} \cdot k$.

## Average Time Complexity (Contd)

We apply the technique of "generating functions".

- $G_{n}(z)$ : power series with coefficients $p_{n 0}, p_{n 1}, \ldots$

$$
G_{n}(z):=p_{n 0} \cdot z^{0}+p_{n 1} \cdot z^{1}+p_{n 2} \cdot z^{2}+\ldots=\sum_{k} p_{n k} \cdot z^{k}
$$

- $G_{n}^{\prime}(z)$ : derivative of $G_{n}(z)$

$$
G_{n}^{\prime}(z)=p_{n 0} \cdot 0 \cdot z^{-1}+p_{n 1} \cdot 1 \cdot z^{0}+p_{n 2} \cdot 2 \cdot z^{1}+\ldots=\sum_{k} p_{n k} \cdot k \cdot z^{k-1}
$$

- $G_{n}^{\prime}(1):$

$$
G_{n}^{\prime}(1)=p_{n 0} \cdot 0+p_{n 1} \cdot 1+p_{n 2} \cdot 2+\ldots=\sum_{k} p_{n k} \cdot k
$$

Our goal is to determine $G_{n}^{\prime}(1)$.

## Average Time Complexity (Contd)

We derive a recurrence relation for $G_{n}^{\prime}(1)$.

- $n=1: p_{10}=1$ and $p_{1 k}=0$ for all $k \geq 1$

$$
G_{1}^{\prime}(1)=1 \cdot 0+0 \cdot 1+0 \cdot 2+\ldots=0
$$

- $n>1$ : if the loop has already found the maximum of the first $n-1$ array elements, the last iteration
- will either increment $N$ (if the last element is the largest one)
- Probability $1 / n$.
- $N$ becomes $k$ for $n$, if $N$ was $k-1$ for $n-1$.
- or will leave $N$ as it is (if the last element is not the largest one).
- Probability $(n-1) / n$.
- $N$ becomes $k$ for $n$, if $N$ was $k$ for $n-1$.

$$
p_{n k}=\frac{1}{n} \cdot p_{n-1, k-1}+\frac{n-1}{n} \cdot p_{n-1, k}
$$

Our goal is to determine $G_{n}^{\prime}(1)$ for $n>1$.

## Average Time Complexity (Contd)

- Determine $G_{n}(z)$ from $p_{n k}$ :

$$
\begin{aligned}
p_{n k} & =\frac{1}{n} \cdot p_{n-1, k-1}+\frac{n-1}{n} \cdot p_{n-1, k} \\
G_{n}(z) & =\frac{1}{n} \cdot z \cdot G_{n-1}(z)+\frac{n-1}{n} \cdot G_{n-1}(z)=\frac{z+n-1}{n} \cdot G_{n-1}(z)
\end{aligned}
$$

- Compute $G_{n}^{\prime}(z)$ by derivation of $G_{n}(z)$ :

$$
G_{n}^{\prime}(z)=\frac{1}{n} \cdot G_{n-1}(z)+\frac{z+n-1}{n} \cdot G_{n-1}^{\prime}(z)
$$

- Compute $G_{n}^{\prime}(1)$ :

$$
\begin{aligned}
& G_{n}^{\prime}(1)=\frac{1}{n} \cdot G_{n-1}(1)+\frac{z+n-1}{n} \cdot G_{n-1}^{\prime}(1) \\
& \stackrel{(*)}{=} \frac{1}{n} \cdot 1+\frac{1+n-1}{n} \cdot G_{n-1}^{\prime}(1) \\
&=\frac{1}{n}+G_{n-1}^{\prime}(1) \\
&(*) G_{n}(1)=p_{n 0}+p_{n 1}+p_{n 2}+\ldots=\sum_{k} p_{n k}=1 \\
& \text { http://www.ris.j.ju.at }
\end{aligned}
$$

## Average Time Complexity (Contd)

- Recurrence relation for $G_{n}^{\prime}(1)$ :

$$
\begin{aligned}
& G_{1}^{\prime}(1)=0 \\
& G_{n}^{\prime}(1)=\frac{1}{n}+G_{n-1}^{\prime}(1), \text { if } n>0
\end{aligned}
$$

- Solution of $G_{n}^{\prime}(1)$ :

$$
G_{n}^{\prime}(1)=\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}=\sum_{k=2}^{n} \frac{1}{k}=H_{n}-1
$$

- $H(n)=\sum_{k=1}^{n} \frac{1}{k}: n$-th harmonic number
- $H(n)=\ln n+\gamma+\varepsilon_{n}, \gamma \approx 0.577,0<\varepsilon_{n}<1 /(2 n)$.
- Solution of $E[n]$ :

$$
E[N]=\ln n+\gamma+\varepsilon_{n}-1
$$

- Average time complexity $\bar{T}(n)$ :

$$
\bar{T}(n)=3 n-1+E[N]=3 n+\ln n+\varepsilon_{n}+\gamma-2
$$

Analysis of average complexity is more difficult than that of the worst-case.

## Complexity Approximations

Typically, we are only interested to capture the "overall behavior" of a complexity function for large inputs.

- Exact analysis:

$$
\bar{T}(n)=3 n+\ln n+\varepsilon_{n}+\gamma-2
$$

- Approximation:
" $\bar{T}(n)$ is of the order $3 n+\ln n "$
- Coarser approximation:
" $\bar{T}(n)$ is of the order $3 n$ ".
- Even coarser approximation:
" $\bar{T}(n)$ is linear"
- Formalism:

$$
\bar{T}(n)=O(n)
$$

We are going to formalize such complexity approximations.

## 1. Complexity of Computations

## 2. Asymptotic Complexity

## 3. Working with Asymptotic Complexity

## 4. Complexity Classes

## The Landau Symbols



Take $g: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ from the natural numbers to the non-negative reals.
$\square O(g)$ : the set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ such that

$$
\exists c \in \mathbb{R}_{>0}, N \in \mathbb{N}: \forall n \geq N: f(n) \leq c \cdot g(n)
$$

- $f(n)=O(g(n)): f \in O(g)$.
$f$ is bounded from above by $g$.
$\square \Omega(g)$ : the set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ such that

$$
\exists c \in \mathbb{R}_{>0}, N \in \mathbb{N}: \forall n \geq N: f(n) \geq c \cdot g(n)
$$

- $f(n)=\Omega(g(n)): f \in \Omega(g)$..
$f$ is bounded from below by $g$.
- $\Theta(g)$ : the set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ such that

$$
f \in O(g) \wedge f \in \Omega(g)
$$

- $f(n)=\Theta(g(n)): f \in \Theta(g)$.
$f$ is bounded from above and below by $g$.


## Understanding the Landau Symbols

$f \in \mathcal{O}(g): g$ represents a bound for $f$, from above and/or below.


- It suffices, if bound holds from a certain start value $N$ on.
- Finitely many exceptions are allowed.
- It suffices, if the bound holds up to arbitrarily large constant $c$.
- Bounds are independent of "measurement units".

The Landau symbols talk about the asymptotic behavior of functions.

## Common Practice of the Landau Symbols

We need to understand the historically developed usage of the symbols.

- Most wide spread: $f(n)=O(g(n))$.
- Often used when actually $f(n)=\Theta(g(n))$ is meant, i.e.,
- when $g(n)$ is not only a bound from above but also from below.
- Abuse of notation: $f(n)=O(g(n))$
- = does not denote equality but set inclusion.
- Notation has nevertheless been universally adopted.
- Ambiguous notation: $f(n)=O(g(n))$
- Terms $f(n)$ and $g(n)$ with implicit free variable $n$.
- To derive $f \in O(g)$, we have to identify the free variable.
"Let $c>1$. Then $x^{c}=O\left(c^{x}\right) . "$

$$
\text { "Let } c>1, f(x):=x^{c} \text {, and } g(x):=c^{x} \text {. Then } f \in O(g) . "
$$

We stick to the common practice.

## Duality of $O$ and $\Omega$

- Theorem: for all $f, g: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$, we have

$$
f(n)=O(g(n)) \Leftrightarrow g(n)=\Omega(f(n))
$$

- Proof $\Rightarrow$ : We assume $f(n)=O(g(n))$ and show $g(n)=\Omega(f(n))$. By the definition of $\Omega$, we have to find constants $N_{1}, c_{1}$ such that

$$
\forall n \geq N_{1}: g(n) \geq c_{1} \cdot f(n)
$$

Since $f(n)=O(g(n))$, we have constants $N_{2}, c_{2}$ such that

$$
\forall n \geq N_{2}: f(n) \leq c_{2} \cdot g(n)
$$

Take $N_{1}:=N_{2}$ and $c_{1}:=1 / c_{2}$. Then we have, since $N_{1}=N_{2}$, for all $n \geq N_{1}$,

$$
c_{2} \cdot g(n) \geq f(n)
$$

and therefore

$$
g(n) \geq\left(1 / c_{2}\right) \cdot f(n)=c_{1} \cdot f(n) .
$$

- Proof $\Leftarrow$ : analogously.


## Example

We prove $3 n^{2}+5 n+7=O\left(n^{2}\right)$.

- We have to find constants $c$ and $N$ such that

$$
\forall n \geq N: 3 n^{2}+5 n+7 \leq c n^{2}
$$

- For $n \geq 1$, we have

$$
3 n^{2}+5 n+7 \stackrel{1 \leq n}{\leq} 3 n^{2}+5 n+7 n=3 n^{2}+12 n
$$

- For $n \geq 12$, we also have

$$
3 n^{2}+12 n \stackrel{12 \leq n}{\leq} 3 n^{2}+n \cdot n=4 n^{2}
$$

- We take $N:=12(=\max \{1,12\})$ and $c:=4$ and have for $n \geq N$

$$
3 n^{2}+5 n+7 \stackrel{1 \leq n}{\leq} 3 n^{2}+5 n+7 n=3 n^{2}+12 n \stackrel{12 \leq n}{\leq} 3 n^{2}+n \cdot n=4 n^{2}=c n^{2}
$$

Demonstrates general technique for asymptotics of polynomial functions.

## Asymptotic Laws

- Theorem: for all $a_{0}, \ldots, a_{m} \in \mathbb{R}$, we have

$$
a_{m} n^{m}+\ldots+a_{2} n^{2}+a_{1} n+a_{0}=\Theta\left(n^{m}\right)
$$

- Proof: analogous to previous example.
- Theorem: for all $a, b \in \mathbb{R}_{>0}$, we have

$$
\log _{a} n=O\left(\log _{b} n\right)
$$

- Proof: take $c:=\log _{a} b$ and $N:=0$. Then we have for all $n \geq N$

$$
\log _{a} n=\log _{a}\left(b^{\log _{b} n}\right)=\left(\log _{a} b\right) \cdot\left(\log _{b} n\right)=c \cdot\left(\log _{b} n\right)
$$

Polynomials are dominated by the monomial with the highest exponent; in logarithms, bases don't matter.

## Asymptotic Laws

- Theorem: for all $a, b \in \mathbb{R}$ with $b>1$, we have

$$
n^{a}=O\left(b^{n}\right)
$$

- Proof: we know the Taylor series expansion

$$
e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

Since $b^{n}=\left(e^{\ln b}\right)^{n}=e^{n \ln b}$, we have for all $n \in \mathbb{N}$

$$
b^{n}=\sum_{i=0}^{\infty} \frac{(n \ln b)^{i}}{i!}=1+(n \ln b)+\frac{(n \ln b)^{2}}{2!}+\frac{(n \ln b)^{3}}{3!}+\ldots
$$

Since $b>1$, we have $\ln b>0$; therefore we know

$$
b^{n}>\frac{(n \ln b)^{a}}{a!}=\frac{(\ln b)^{a}}{a!} n^{a}
$$

Consequently

$$
n^{a}<\frac{a!}{(\ln b)^{a}} b^{n}
$$

Thus we define $N:=0$ and $c:=a!/(\ln b)^{a}$ and are done.
Polynomials are dominated by all exponentials with base greater one.

## 1. Complexity of Computations

2. Asymptotic Complexity

## 3. Working with Asymptotic Complexity

## 4. Complexity Classes

## Asymptotic Laws

$$
\begin{aligned}
c \cdot f(n) & =O(f(n)) \\
n^{m} & =O\left(n^{m^{\prime}}\right), \text { for all } m \leq m^{\prime} \\
a_{m} n^{m}+\ldots+a_{2} n^{2}+a_{1} n+a_{0} & =\Theta\left(n^{m}\right) \\
\log _{a} n & =O\left(\log _{b} n\right), \text { for all } a, b>0 \\
n^{a} & =O\left(b^{n}\right), \text { for all } a, b \text { with } b>1
\end{aligned}
$$

Reflexivity:

$$
f=O(f), f=\Omega(f), f=\Theta(f)
$$

- Symmetry:
- If $f=O(g)$, then $g=\Omega(f)$.
- If $f=\Omega(g)$, then $g=O(f)$.
- If $f=\Theta(g)$, then $g=\Theta(f)$.


## - Transitivity:

- If $f=O(g)$ and $g=O(h)$, then $f=O(h)$.
- If $f=\Omega(g)$ and $g=\Omega(h)$, then $f=\Omega(h)$.
- If $f=\Theta(g)$ and $g=\Theta(h)$, then $f=\Theta(h)$.

The proof of reflexivity/symmetry/transitivity is an easy exercise.

## Asymptotic Notation in Equations

A more general form of "syntactic abuse".

- Equation:

$$
A\left[\mathcal{O}_{1}(f(n))\right]=B\left[\mathcal{O}_{2}(g(n))\right]
$$

- (Possibly multiple) occurrences of $\mathcal{O}_{1}, \mathcal{O}_{2} \in\{O, \Omega, \Theta\}$.
- Interpretation:

$$
\begin{aligned}
& \forall f^{\prime} \in \mathcal{O}_{1}(f): \exists g^{\prime} \in \mathcal{O}_{2}(g): \\
& \forall n \in \mathbb{N}: A\left[f^{\prime}(n)\right]=B\left[g^{\prime}(n)\right]
\end{aligned}
$$

- Every occurrence of $\mathcal{O}$ is replaced by a function in the corresponding asymptotic complexity class.
- Functions on the left side are universally quantified, functions on the right side are existentially quantified.

A convenient shortcut to express asymptotic relationships.

## Example

Example:

$$
H_{n}=\ln n+\gamma+O\left(\frac{1}{n}\right)
$$

- There is a function $f \in O(1 / n)$ such that, for all $n \in \mathbb{N}$, $H_{n}=\ln n+\gamma+f(n)$.
- Example:

$$
2 n^{2}+3 n+1=O\left(2 n^{2}\right)+O(n)=O\left(n^{2}\right)
$$

- Equation $2 n^{2}+3 n+1=O\left(2 n^{2}\right)+O(n)$

$$
\begin{aligned}
& \exists f \in O\left(2 n^{2}\right), g \in O(n): \\
& \forall n \in \mathbb{N}: 2 n^{2}+3 n+1=f(n)+g(n)
\end{aligned}
$$

Equation $O\left(2 n^{2}\right)+O(n)=O\left(n^{2}\right)$

$$
\begin{aligned}
& \forall f \in O\left(2 n^{2}\right), g \in O(n): \exists h \in O\left(n^{2}\right): \\
& \forall n \in \mathbb{N}: f(n)+g(n)=h(n)
\end{aligned}
$$

## Further Asymptotic Equations



We thus can express further asymptotic relationships.

$$
\begin{aligned}
O(O(f(n))) & =O(f(n)) \\
O(f(n))+O(g(n)) & =O(f(n)+g(n)) \\
O(f(n)) \cdot O(g(n)) & =O(f(n) \cdot g(n)) \\
O(f(n) \cdot g(n)) & =f(n) \cdot O(g(n)) \\
O\left(f(n)^{m}\right) & =O(f(n))^{m}, \text { for all } m \geq 0
\end{aligned}
$$

The proofs are simple exercises.

## 1. Complexity of Computations

2. Asymptotic Complexity
3. Working with Asymptotic Complexity

## 4. Complexity Classes

## Further Landau Symbols

Take $g: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ from the natural numbers to the non-negative reals.

- $o(g)$ : the set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ such that

$$
\forall c \in \mathbb{R}_{>0}: \exists N \in \mathbb{N}: \forall n \geq N: f(n) \leq c \cdot g(n)
$$

- $f(n)=o(g(n)): f \in o(g)$.
$f$ is asymptotically smaller than $g$.
- $\omega(g)$ : the set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ such that

$$
\forall c \in \mathbb{R}_{>0}: \exists N \in \mathbb{N}: \forall n \geq N: g(n) \leq c \cdot f(n)
$$

- $f(n)=\omega(g(n)): f \in \omega(g)$.
$f$ is asymptotically larger than $g$.
- Theorem: for all $f, g: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$, we have

$$
\begin{aligned}
& f \in o(g) \Leftrightarrow g \in \omega(f) \\
& f \in o(g) \Rightarrow f \in O(g) \wedge f \notin \Theta(g) \\
& f \in \omega(g) \Rightarrow f \in \Omega(g) \wedge f \notin \Theta(g)
\end{aligned}
$$

Useful to create a hierarchy of asymptotic growth functions.

## Hierarchy of Complexity Classes

Define $f \prec g: \Leftrightarrow f=o(g)$.

$$
\begin{aligned}
1 & \prec \log \log \log n \prec \log \log n \prec \sqrt{\log n} \prec \log n \prec(\log n)^{2} \prec(\log n)^{3} \\
& \prec \sqrt[3]{n} \prec \sqrt{n} \prec n \prec n \log n \prec n \sqrt{n} \prec n^{2} \prec n^{3} \\
& \prec n^{\log n} \prec 2^{\sqrt{n}} \prec 2^{n} \prec 3^{n} \prec n!\prec n^{n} \prec 2^{n^{2}} \prec 2^{2^{n}} \\
& \prec 2^{2} \quad(n \text { times })
\end{aligned}
$$

Fundamental knowledge about complexity classes.

## Hierarchy of Complexity Classes

- $O(1)$ (Constant): upper limit on function values.
- Space complexity of algorithms that work with fixed memory size.
- $O(\log n)$ (Logarithmic): values grow very slowly.
- Time complexity of binary search.
- $O(n)$ (Linear): values grow proportionally with argument.
- Time complexity of linear search.
- $O(n \log n)$ (Linear-Logarithmic): value growth is reasonably well behaved.
- Time complexity of fast sorting algorithms, e.g., Mergesort.
- $O\left(n^{c}\right)$ (Polynomial): values grow rapidly but with polynomial bound.
- Executions still "feasible" for large inputs, e.g., matrix multiplication.
- $O\left(c^{n}\right)$ (Exponential): values grow extremely rapidly.
- Executions only reasonable for small inputs; e.g, finding exact solutions to many optimization problems ("traveling salesman problem").
- $O\left(c^{d^{n}}\right)$ (Double Exponential): Function values grow overwhelmingly rapidly.
- Decision of statements about real numbers ("quantifier elimination"), solving multivariate polynomial equations ("Buchberger's algorithm").
Only computations up to polynomial complexity are considered "feasible".


## Complexity Classes



Improvement in asymptotic complexity outperforms technological speedup.

