
Computer Systems (SS 2016)
Exercise 3: May 10, 2016

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

March 8, 2016

The exercise is to be submitted by the denoted deadline via the submission interface of the
Moodle course as a single file in zip (.zip) or tarred gzip (.tgz) format which contains the
following files:

• A PDF file ExerciseNumber-MatNr.pdf (where Number is the number of the exercise
and MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise, and the
author of the solution (identified by name, Matrikelnummer and email address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that indenta-
tions are appropriately preserved) and an appropriate font size such that source code
lines do not break.

3. A description of all tests performed (copies of program inputs and program outputs)
explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your solution
has unwanted problems or bugs, please document these explicitly (you will get more
credit for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.



Exercise 3: Polygons

1. Write a class Polygon with the following public interface:

class Polygon
{
public:
// create polygon in denoted color (default black)
Polygon(unsigned int color = 0);
virtual ~Polygon();

// add point with relative coordinates (x,y) to polygon
void add(double x, double y);

// draws the polygon at absolute coordinates (x0,y0) scaled by factor f;
// thus every point (x,y) is drawn at position (x0+x*f, y0+y*f)
virtual void draw(double x0, double y0, double f);

};

The class internally holds in a linked list the points of the polygon; for drawing the poly-
gon, this list is to be traversed only once.

2. Derive from Polygon a class

class RegularPolygon: public Polygon
{
public:
RegularPolygon(double x, double y, double r, int n, double a,
unsigned int c = 0);

}

The constructor creates a convex regular polygon1 with color c and n points 0, . . . ,n − 1
where each point i is connected to point i+1 mod n. All points lie on the circle with center
〈x, y〉 and radius r; the line from the center to point 0 has angle a to the positive half of the
horizontal axis. The class shall make use of the data representation of Polygon, i.e. the
constructor of RegularPolygon must compute the coordinates of the individual points
of the polygon and call add() to add them to the polygon.

The function draw() is to be overwritten to draw the polygon (using Polygon::draw())
but in addition also the center point of the polygon (as a small bullet).

3. Derive from RegularPolygon a class with public interface

class Square: public RegularPolygon
{
public:
Square(double x, double y, double r, unsigned int c = 0);

}

1http://en.wikipedia.org/wiki/Regular_polygon

1

http://en.wikipedia.org/wiki/Regular_polygon


The constructor creates (by calling the constructor of RegularPolygon) a square with
color c and horizontal/vertical sides whose bounding circle has center x, y and radius r .

4. Correspondingly derive from RegularPolygon a class with public interface

class Hexagon: public RegularPolygon
{
public:
Hexagon(double x, double y, double r, double a,
unsigned int c = 0);

}

The constructor creates (by calling the constructor of RegularPolygon) a hexagon with
color c whose bounding circle has center x, y and radius r such that the first point has
angle a to the positive half of the horizontal axis.

5. Finally write a class

class Picture
{
public:
Picture(double x, double y, double w, double h, double f = 1.0);
virtual ~Picture();

void add(Polygon *p);
void draw();

}

A Picture object represents a rectangular picture which the constructor initializes with left
upper point x, y, width w and height h such that its sides are horizontal/vertical. The picture
consists of a boundary (a plain rectangle) and a set of polygons; the set is implemented by an
linked list of (pointers to) Polygon objects.

The function draw() draws the picture (boundary and contents); all polygons are scaled by the
factor f used in the construction of the picture and shifted by the position x, y of the left upper
corner of the picture.

Write a program that tests these classes, by creating a picture, populating it with irregular
polygons, squares, and hexagons and drawing the picture. Please note that all regular poly-
gons must be shown with their center point (this indicates that you have correctly overwritten
Polygon::draw()).

2


